跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 03:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳明谷
研究生(外文):Ming-Ku Cheng
論文名稱:鋁鉻鉭鈦鋯多元高熵合金氮化物薄膜製備與擴散阻障性質之研究
論文名稱(外文):Preparation and Diffusion Barrier Property of AlCrTaTiZr High-Entropy-Alloy Nitride Films
指導教授:張守一
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:124
中文關鍵詞:內連線擴散阻障層鋁鉻鉭鈦鋯氮化物熱穩定性
外文關鍵詞:interconnectdiffusion barrierAlCrTaTiZrnitridethermal stability
相關次數:
  • 被引用被引用:5
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在半導體銅內連線結構中,為了防止銅迅速地擴散進入元件內,須在介電層與銅導線間沉積一有效之擴散阻障層 (Diffusion Barrier Layer),且須具有高熱穩定性、低電阻係數、良好界面附著性等特性。因此本研究以射頻磁控濺鍍方法於矽基板上沉積 Al-Cr-Ta-Ti-Zr 五元高熵合金 (High-Entropy Alloy,簡稱 HEA) 及其氮化物 (HEA nitride,簡稱 HEAN) 薄膜,並評估其作為銅內連線擴散阻障層之可行性。在薄膜沉積時通入氮氣及氬氣,而氮氣流量與總氣體流量之比率 (RN) 分別設定為 0%、10%、30%,可分別得到高熵合金薄膜、高熵合金未飽和氮化物薄膜 (氮含量佔約 41%) 及高熵合金飽和氮化物薄膜 (氮含量佔約 50%),其五種金屬元素所佔比例約為等莫耳。擴散阻障性質上的分析結果發現,Si/HEAN (RN=0%)/Cu 疊層結構於 700℃ 退火後,開始出現 Cu3Si 結晶相且電阻率逐漸上升,顯示此 HEA 薄膜已失去擴散阻障能力。而 Si/HEAN (RN=10%)/Cu 疊層結構於 800℃ 退火後,Cu3Si 結晶相些微出現,電阻率亦逐漸上升,顯示此未飽和 HEAN 薄膜逐漸失去擴散阻障能力。而 Si/HEAN (RN=30%)/Cu 疊層結構於 900℃ 退火後,未出現任何反應析出相且電阻率維持在低值,顯示其具有相當優越之擴散阻障能力。
To inhibit rapid Cu diffusion in interconnect structures, an effective diffusion barrier layer with high thermal stability, low electrical resistivity and good interface adhesion is demanded. Thus in this study, AlCrTaTiZr five-element high-entropy-alloy nitride films (HEAN) were deposited on silicon substrates by reactive radio-frequency magnetron sputtering. Thermal stability of the HEAN films and their barrier properties to Cu diffusion were investigated under thermal annealing at 700 to 900
摘要 I
Abstract II
目錄 III
圖目錄 VII
表目錄 XII
壹、前言 1
貳、文獻回顧 3
2-1 積體電路多層內連線 3
2-1-1 電阻-電容延遲效應 (RC Delay) 3
2-1-2 金屬內連線材料 4
2-1-3 低介電常數材料 4
2-1-4 雙鑲嵌 (Dual Damascene) 製程 5
2-1-5 擴散阻障層 (Diffusion Barrier Layer) 7
2-1-6 多元/多層氮化物擴散阻障層材料 8
2-2 高熵合金 11
2-2-1 高熵合金定義 11
2-2-2 高熵合金特性 12
2-2-3 高熵合金氮化物作為擴散阻障層應用潛力之評估 13
2-3 射頻磁控濺鍍 15
2-4研究目的 19
參、實驗步驟 20
3-1 實驗流程規劃 20
3-2 實驗步驟 21
3-2-1 基板準備 21
3-2-2 靶材製備 21
3-2-3 高熵合金氮化物薄膜沉積 22
3-2-4 銅薄膜沉積 22
3-2-5真空熱處理 23
3-3 薄膜性質分析儀器 28
3-3-1 場發射掃描式電子顯微鏡 (FE-SEM) 28
3-3-2 原子力顯微鏡 (AFM) 28
3-3-3 X 光繞射儀 (XRD) 29
3-3-4 穿透式電子顯微鏡 (TEM) 29
3-3-5 電子探針微區分析儀 (EPMA) 30
3-3-6 歐傑電子能譜儀 (AES) 30
3-3-7 四點探針 (Four-Point Probe) 30
肆、結果與討論 32
4-1 高熵合金氮化物薄膜性質分析 32
4-1-1 表面形貌及橫截面微結構 32
4-1-2 薄膜晶體結構 33
4-1-3 薄膜成分 33
4-1-4 薄膜電阻率 34
4-1-5 薄膜微結構 TEM 分析 35
4-1-6 薄膜熱穩定性 35
4-2 高熵合金薄膜 (RN=0%) 擴散阻障性質 55
4-2-1 表面形貌及橫截面微結構 55
4-2-2薄膜晶體結構 55
4-2-3 薄膜成分 57
4-2-4 薄膜電阻率 57
4-2-5 薄膜微結構 TEM 分析 64
4-3 高熵合金未飽和氮化物薄膜 (RN=10%) 擴散阻障性質 74
4-3-1 表面形貌及橫截面微結構 74
4-3-2薄膜晶體結構 74
4-3-3 薄膜成分 76
4-3-4 薄膜電阻率 76
4-3-5 薄膜微結構 TEM 分析 84
4-4 高熵合金飽和氮化物薄膜 (RN=30%) 擴散阻障性質 94
4-4-1 表面形貌及橫截面微結構 94
4-4-2薄膜晶體結構 95
4-4-3 薄膜成分 95
4-4-4 薄膜電阻率 96
4-4-5 薄膜微結構 TEM 分析 103
伍、結論 116
陸、參考文獻 118
[1] X.W. Lin and D. Pramanik, “Future interconnect technologies and copper metallization”, Solid State Technology, 41 (10) (1998) 63-69.
[2] A. Cros, M.O. Aboelfotoh, and K.N. Tu, “Formation, oxidation, electronic, and electrical properties of copper silicides”, Journal of Applied Physics, 67 (7) (1990) 3328-3336.
[3] K.H. Min, K.C. Chun, and K.B. Kim, “Comparative study of tantalum and tantalum nitrides (Ta2N and TaN) as a diffusion barrier for Cu metallization”, Journal of Vacuum Science & Technology B, 14 (5) (1996) 3263-3269.
[4] T. Kouno, H. Niwa, and M. Yamada, “Effect of TiN Microstructure on Diffusion Barrier Properties in Cu Metallization”, Journal of the Electrochemical Society, 145 (6) (1998) 2164-2167.
[5] P. Alén, M. Ritala, K. Arstila, J. Keinonen, and M. Leskelä, “Atomic Layer Deposition of Molybdenum Nitride Thin Films for Cu Metallizations”, Journal of the Electrochemical Society, 152 (5) (2005) G361-G366.
[6] R. Hübner, M. Hecker, N. Mattern, V. Hoffmann, K. Wetzig, H. Heuer, C. Wenzel, H.J. Engelmann, D. Gehre, and E. Zschech, “Effect of nitrogen content on the degradation mechanisms of thin Ta–Si–N diffusion barriers for Cu metallization”, Thin Solid Films, 500 (2006) 259-267.
[7] S.H. Kwon, O.K. Kwon, J.S. Min, and S.W. Kang, “Plasma-Enhanced Atomic Layer Deposition of Ru–TiN Thin Films for Copper Diffusion Barrier Metals”, Journal of the Electrochemical Society, 153 (6) (2006) G 578-G581.
[8] S.Rawal, D.P. Norton, H. Ajmera, T.J. Anderson, L. McElwee-White, “Properties of Ta–Ge–(O)N as a diffusion barrier for Cu on Si”, Applied Physics Letters, 90 (2007) 051913.
[9] P. Majumder and C.G. Takoudis, “Investigation on the diffusion barrier properties of sputtered Mo/W–N thin films in Cu interconnects”, Applied Physics Letters, 91 (2007) 162108.
[10] Y. Wang, F. Cao, Y.T. Liu, and M.H. Ding, “Investigation of Zr–Si–N/Zr bilayered film as diffusion barrier for Cu ultralarge scale integration metallization”, Applied Physics Letters, 92 (2008) 032108.
[11] X.P. Qu, J.J. Tan, M. Zhou, T. Chen, Q. Xie, G.P. Ru, and B.Z. Li, “Improved barrier properties of ultrathin Ru film with TaN interlayer for copper metallization”, Applied Physics Letters, 88 (2006) 151912 .
[12] K.T. Nam, A. Datta, S.H. Kim, and K.B. Kim, “Improved diffusion barrier by stuffing the grain boundaries of TiN with a thin Al interlayer for Cu metallization”, Applied Physics Letters, 79 (16) (2001) 2549-2551.
[13] J.C. Chuang, S.L. Tu, and M.C. Chen, “Sputtered Cr and Reactively Sputtered CrN Serving as Barrier Layers Against Copper Diffusion”, Journal of the Electrochemical Society, 145 (12) (1998) 4290-4296.
[14] M.T. Wang, Y.C. Lin, and M.C. Chen, “Barrier Properties of Very Thin Ta and TaN Layers Against Copper Diffusion”, Journal of the Electrochemical Society, 145 (1998) 2538-2545.
[15] M.Y. Kwak, D.H. Shin, T.W. Kang, and K.N. Kim, “Characteristics of TiN barrier layer against Cu diffusion”, Thin Solid Films, 339 (1999) 290-293.
[16] M.B. Takeyama, A. Noya, and K. Sakanishi, “Diffusion barrier properties of ZrN films in the Cu/Si contact systems”, Journal of Vacuum Science & Technology B, 18(3) (2000) 1333-1337.
[17] R.R. Schaller, “Moore’s Law: past, present and future”, IEEE Spectrum, 34 (6) (1997) 52-59.
[18] J.J. Sniegowski, “Moving the World with Surface Micromachining”, Solid State Technology, 39 (2) (1996) 83-87.
[19] S.P. Murarka and S.W. Hymes, “Copper metallization for ULSL and beyond”, Critical Reviews in Solid State and Materials Sciences, 20 (2) (1995) 87-124.
[20] 莊達人,“VLSI 製造技術”,高立出版社,2006 年。
[21] R.C. Weast, CRC Handbook of Chemistry and Physics, The Chemical Rubber Co., 1970.
[22] R.S. Muller, T.I. Kamins, “Device Electronics for Integrated Circuits”, 2nd ed., John Wiley & Sons, New York, (1986) p. 1-56.
[23] M. Karimi and T. Tomkowski, “Diffusion of Cu on Cu Surfaces”, Physical Review B, 52 (7) (1995) 5364-5374.
[24] A. Noya and K. Sasaki, “Auger Electron Spectroscopy Study on the Characterization and Stability of the Cu9Al4/TiN/Si System”, Japanese Journal of Applied Physics, Part 2, 30 (10) (1991) L1760- L1763.
[25] M. Stavrev, D. Fischer, A. Preub, C. Wenzel, and N. Mattern, “Study of nanocrystalline Ta(N,O) diffusion barriers for use in Cu metallization”, Microelectronic Engineering, 33 (1997) 269-275.
[26] T. Oku, E. Kawakami, M. Uecubo, K. Takahiro, S.Yamaguchi, and M. Murakami, “Diffusion barrier property of TaN between Si and Cu”, Applied Surface Science, 99 (1996) 265-272.
[27] C.W. Chen, J.S. Chen and J.S. Jeng, “Improvement on the Diffusion Barrier Performance of Reactively Sputtered Ru–N Film by Incorporation of Ta”, Journal of the Electrochemical Society, 155 (6) (2008) H438-H442.
[28] Y. Liu, S. Song, D. Mao, H. Ling and M. Li, “Diffusion barrier performance of reactively sputtered Ta–W–N between Cu and Si”, Microelectronic Engineering, 75 (2004) 309-315.
[29] L.C. Leu, D.P. Norton, L. McElwee-White and T.J. Anderson, “Ir/TaN as a bilayer diffusion barrier for advanced Cu interconnects”, Applied Physics Letters, 92 (2008) 111917.
[30] S.T. Lin and C. Lee, “Characteristics of sputtered Ta–B–N thin films as diffusion barriers between copper and silicon”, Applied Surface Science, 253 (2006) 1215-1221.
[31] Y.L. Kuo, C. Lee,T, J.C. Lin, Y.W. Yen and W.H. Lee, “Evaluation of the thermal stability of reactively sputtered (Ti, Zr)Nx nano-thin films as diffusion barriers between Cu and Silicon”, Thin Solid Films, 484 (2005) 265-271.
[32] X. Sun, J.S. Reid, E. Kolawa, M.A. Nicolet and R.P. Ruiz, “Reactively sputtered Ti-Si-N films. II. Diffusion barriers for Al and Cu metallizations on Si”, Journal of Applied Physics, 81 (2) (1997) 664-671.
[33] J.L. Ruan, J.L. Huang, J.S. Chen and D.F. Lii, “Effects of substrate bias on the reactive sputtered Zr–Al–N diffusion barrier films”, Surface & Coatings Technology, 200 (2005) 1652-1658.
[34] J.S. Reid, R.Y. Liu, P.M. Smith, R.P. Ruiz and M-A. Nicolet, “W-B-N diffusion barriers for Si/Cu metallizations”, Thin Solid Films, 262 (1995) 218-223.
[35] S. Rawal, D.P. Norton, T.J. Anderson and L.McElwee-White, “Properties of W–Ge–N as a diffusion barrier material for Cu”, Applied Physics Letters, 87 (2005) 111902.
[36] S.Y. Chang and C.L. Lu, “Thermal Stability and Interface Diffusion Behaviors of Electrolessly Deposited CoWP and Cu Films”, Journal of the Electrochemical Society, 155 (3) (2008) D234-D243.
[37] K.I. Yoshimoto, S. Shinkai and K. Sasaki, “Application of HfN/Hf Bilayered Film as a Diffusion Barrier for Cu Metallization System of Si Large-Scale Integration”, Japanese Journal of Applied Physics, 39 (2000) 1835-1839.
[38] S. Rawal, D.P. Norton, K. Kim, T.J. Anderson and L. McElwee-White, “Ge/HfNx diffusion barrier for Cu metallization on Si”, Applied Physics Letters, 89 (2006) 231914.
[39] 鄭耿豪,“利用射頻磁控濺鍍法製備高熵合金氮化物硬質薄膜”,國立清華大學材料科學工程研究所碩士論文,2005 年。
[40] J.W. Yeh, S.K.Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, “Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes”, Advanced Engineering Materials, 6 (5) (2004) 299-303.
[41] 蔡銘洪,“多元高熵合金薄膜微結構及電性演變之研究”,國立清華大學材料科學工程研究所碩士論文,2005 年。
[42] L.K. Elbaum, M. Wittmer, C.Y. Ting and J.J. Cuomo, “ZrN diffusion barrier in aluminum metallization schemes”, Thin Solid Films, 104 (1983) 81-87.
[43] M. Damayanti, T. Sritharan, S.G. Mhaisalkar, and Z.H. Gan, “Effects of dissolved nitrogen in improving barrier properties of ruthenium”, Applied Physics Letters, 88 (2006) 044101.
[44] M.H. Tsai, C.W. Wang, C.H. Lai, J.W. Yeh, and J.Y. Gan, “Thermally stable amorphous (AlMoNbSiTaTiVZr)50N50 nitride film as diffusion barrier in copper metallization”, Applied Physics Letters, 92 (2008) 052109.
[45] W.R. Grove, “On Some Phenomena of the Voltaic Discharge”, The Philosophical Magazine, 16 (1840) 478-482.
[46] D.S. Rickerby and A. Matthews, “Advanced Surface Coatings: a handbook of surface engineering”, Glasgow, Blackie, 1991.
[47] J.A. Thornton, “High Rate Thick Film Growth”, Annual Review of Materials Science, 7 (1977) 239-260.
[48] B. Chapman, “Glow Discharge Processes”, A Wiley-Interscience Publication, New York, (1980) p 142.
[49] H. Xiao, “Introduction to Semiconductor Manufacturing Technology”, Prentice Hall, (2000) 232-233.
[50] S. Haukka, K.E. Elers and M. Tuominen, “Atomic Layer CVD for Continuously Shrinking Devices”, Materials, technology, and reliability for advanced interconnects and low-k dielectrics, Materials Research Society Symposium Proceedings, 612 (2001) D6.
[51] C.T. Lynch, “Handbook of Materials Science”, Cleveland, Ohio CRC Press, (1) (1974).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊