跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/25 23:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:巫美芳
研究生(外文):Mei-Fang Wu
論文名稱:以射頻磁控濺鍍法在玻璃基板上沉積矽鍺薄膜之成分分析
論文名稱(外文):Deposition and Chemical Analysis of SiGe Thin Films on Glass Substrates by RF Magnetron Sputtering
指導教授:張立信
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料工程學系所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:95
中文關鍵詞:矽鍺薄膜射頻磁控濺鍍成分
外文關鍵詞:SiGe thin filmRF Magnetron SputteringComposition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本研究是採用射頻磁控濺鍍法於CORNING 1737玻璃基板上沉積矽鍺薄膜,所使用的靶材為矽靶貼附鍺靶之貼片靶材,利用改變矽鍺靶材面積比例進行薄膜成分控制,並探討靶材面積比例與矽鍺薄膜成分之間的關係。利用場發射掃描式電子顯微鏡、X光光電子能譜儀、顯微拉曼光譜儀及紫外/可見光光譜儀等儀器分析薄膜微觀結構、成分、性質與光學特性,並藉由在靶材面積比、改變H2/Ar流量比與基板溫度之變化下,探討對矽鍺薄膜之微觀結構、成分、結晶性質及光學特性的影響。
  由實驗的分析結果顯示,隨著靶材面積比例增加,薄膜內鍺含量由0增加至73 %,且薄膜由非晶結構逐漸轉變為結晶結構,由光學特性分析,可得知利用光穿透率計算所得光學能隙值由1.95逐漸下降至1.26 eV。在改變H2/Ar流量比方面,沉積速率隨著H2/Ar流量比增加而下降,薄膜成分則不隨著H2/Ar流量變化,結晶性質則無明顯提升效果。隨著基板溫度增加,在矽薄膜與矽鍺薄膜內成分及沉積速率並無規律性變化,且在較高基板溫度下薄膜具有較佳的結晶性質。
Silicon-germanium (Si1-xGex) thin films were prepared on CORNING 1737 glass substrates by RF magnetron sputtering. The sputtering target was Si target attached with Ge pieces. The ratio of the area of Si and Ge was varied to change the composition of Si1-xGex thin films. The microstructure, composition, crystallinity and band gap of Si1-xGex thin films were respectively analyzed by field-emission scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and UV-VIS spectrophotometer. The effects of the ratio of target area, H2/Ar ratio, and the substrate temperature on these properties were discussed.
The results showed that the content of Ge in the films changes from 0 to 73 % corresponding to the ratio of target area of Ge from 0 to 1/2. With increasing Ge content the crystallinity increas and the band gap of the films determined from the optical transmission measurements decreases uniformly from 1.95 to 1.26 eV. When the H2/Ar ratio changes, the changes of the composition and the crystallinity are not significant. However, the deposition rate decreases with increasing H2/Ar ratio. While the substrate temperature increases, the composition and crystallinity of Si thin films and Si1-xGex thin films do not change apparently. The crystallinity of Si1-xGex thin films can be obtained with the substrate temperature at 673 K with x = 0.73.
摘要 i
Abstract ii
總目次 iii
表目次 vii
圖目次 viii
附錄目次 xii
第一章 緒論 1
1.1. 前言 1
1.2. 研究動機與目的 2
第二章 理論基礎與文獻回顧 3
2.1 Si1-xGex薄膜材料選擇與特性 3
2.1.1 Si薄膜之特性 3
2.1.2 Si1-xGex薄膜之結構與特性 4
2.2 成長Si1-xGex薄膜之方法 6
2.2.1 化學氣相沉積法(Chemical Vapor Deposition, CVD) 6
2.2.2 物理氣相沉積法(Physical Vapor Deposition, PVD) 8
2.2.3 再結晶法 9
2.3 濺鍍理論 11
2.3.1 電漿 11
2.3.2 濺鍍原理 13
2.3.3 射頻濺鍍系統 14
2.3.4 磁控濺鍍系統 21
2.3.5 濺射產率 23
2.3.6 靶材面積比例與薄膜成分之關係 24
2.4 薄膜沉積理論 26
2.4.1 薄膜沉積 26
2.4.2 薄膜微觀結構 27
2.5 文獻回顧 30
第三章 實驗方法與步驟 35
3.1 實驗規劃與實驗流程 35
3.2 實驗材料與基材前處理 36
3.3 沉積系統與薄膜製備 37
3.3.1 薄膜沉積系統 37
3.3.2 薄膜製備流程 41
3.4 薄膜性質分析與量測原理 43
3.4.1 薄膜成分之分析 43
3.4.2 薄膜結晶性質量測 44
3.4.3 薄膜微觀結構觀察 45
3.4.4 薄膜光學特性量測 45
第四章 結果與討論 46
4.1 改變靶材面積比對Si1-xGex薄膜特性之影響 46
4.1.1 薄膜沉積速率之探討 46
4.1.2 薄膜成分之探討 49
4.1.3 結晶性質之探討 59
4.1.4 光學特性分析 63
4.2 改變H2/Ar流量比對Si1-xGex薄膜特性之影響 67
4.2.1 薄膜沉積速率之探討 67
4.2.2 薄膜成分之探討 70
4.2.3 結晶性質之探討 71
4.3 改變基板溫度對Si1-xGex薄膜特性之影響 72
4.3.1 靶材面積比為0之矽靶(AGe = 0) 73
4.3.1.1 薄膜沉積速率之探討 73
4.3.1.2 薄膜成分之探討 76
4.3.1.3 結晶性質之探討 77
4.3.2 靶材面積比為1/8之矽鍺靶材 (AGe = 1/8) 79
4.3.2.1 薄膜沉積速率之探討 79
4.3.2.2 薄膜成分之探討 82
4.3.2.3 結晶性質之探討 83
第五章 結論 85
參考文獻 87
附錄 96
1.張維連,孫軍生,張恩懷,“Si1-xGex合金晶體生長”,人工晶體學報,29(5),97-98。
2.T.-J. King and K. C. Saraswat, “Deposition and properties of low-pressure chemical-vapor deposited polycrystalline silicon-germanium films,” J. Electrochem. Soc., 141 (1994) 2235-2241.
3.G.-W. Wang, H.-X. Zheng, X.-B. Ma, J.-M. Zhang and J.-H. Cao, “Investigation of PECVD- Si1-xGex thin film on SiO2,” Chinese Journal of Liquid Crystals and Displays, 22(2) (2007) 109-114.
4.K. Sasaki and K. Yoshimori, “Crystallinity and strain control growth of SiGe using ion sputtering technique,” Thin Solid Films, 508 (2006) 124-127
5.E. V. Jelenkovic, K. Y. Tong, W. Y. Cheung, S. P. Wong, B. R. Shi and G. K. H. Pang. “SiGe-Si junctions with boron-doped SiGe films deposited by co-sputtering,” Solid-State Electronics, 50 (2006) 199-204.
6.J. A. Tsai, A. J. Tang, T. Noguchi and R. Reif, “Effects of Ge on material and electrical properties of polycrystalline Si1-xGex for thin-film transistors,” J. Electrochem. Soc., 142(9) (1995) 3220-3225.
7.J. Olivares, P. Martín, A. Rodríguez, J. Sangrador, J. Jiménez and T. Rodríguez, “Raman spectroscopy study of amorphous SiGe films deposited by low pressure chemical vapor deposition and polycrystalline SiGe films obtained by solid-phase crystallization,” Thin Solid Films, 358 (2000) 56-61.
8.友達光電股份有限公司網站
http://www.auo.com/auoDEV/technology.php?sec=LTPS&ls=tc
9.王光偉,“半導體鍺矽薄膜材料及相關工藝技術”,半導體技術,31(12),2006,811-891。
10.T.-J. King and K. C. Saraswat, “A low-temperature (≦ 550 ℃) silicon-germanium MOS thin-film transistor technology for large-area electronics,” IEDM Tech. Dig. (1991) 567-570.
11.S. S. Iyer, G. L. Patton, J. M. C. Stork, B. S. Meyerson and D. L. Harame, “Heterojunction bipolar transistors using Si-Ge alloys,” IEEE Trans. Electron Devices, 36(10) (1989) 2043-2064.
12.R. People, “Physics and applications of GexSi1-x/Si strained-layer heterostructures,” IEEE J. Quantum Electron., 22(9) (1986) 1696-1710.
13.C. Eisele, M. Bergera, M. Nerding and H. P. Strunk, “Laser-crystallized microcrystalline SiGe alloys for thin film solar cells,” Thin Solid Films, 427 (2003) 176-180.
14.J. B. Rem, M. C. V. de Leuw, J. Hollerman and J. F. Verweij, “Furnace and rapid thermal crystallization of amorphous GexSil-x and Si for thin film transistors,” Thin Solid Films, 296 (1997) 152-156.
15.T. Matsui, K. Ogata, M. Isomura and M. Kondo, “Microcrystalline silicon-germanium alloys for solar cell application: Growth and material properties,” Journal of Non-Crystalline Solids, 352 (2006) 1255-1258.
16.M. Krause , H. Stiebig, R. Carius, U. Zastrow, H. Bay and H. Wagner, “Structural and optoelectronic properties of microcrystalline silicon germanium,” Journal of Non-Crystalline Solids, 299-302 (2002) 158-162.
17.M. Isomura, K. Nakahata, M. Shima, S. Taira, K. Wakisaka, M. Tanaka and S. Kiyama, “Microcrystalline silicon-germanium solar cells for multi-junction structures,” Solar Energy Materials & Solar Cells, 74 (2002) 519-524.
18.M. N. Makadsi, M. F. A. Alias, A. A. Essa and H. R. Ai-Azawi, “FT-IR and XPS analysis of a-Si1-xGex: H thin films,” Renewable Energy, 28 (2003) 975-984.
19.D. Parnis, E. Zolotoyabko, W. D. Kaplan, M. Eizenberg, N. Mosleh, F. Meyer and C. Schwebel, “Structural disorder in SiGe films grown epitaxially on Si by ion beam sputter deposition,” Thin Solid Films, 249 (1997) 64-68.
20.M. K. Bhan, L. K. Malhotra and S. C. Kashyap, “Electrical and optical properties of ion-beam-sputtered amorphous silicon-germanium alloy films,” Thin Solid Films, 203 (1991) 23-32.
21.C.-W. Hwang, M.-K. Ryu, K.-B. Kim, S.-C. Lee and C.-S. Kim, “Solid phase crystallization of amorphous Si1-xGex films deposited on SiO2 by molecular beam epitaxy,” J. Appl. Phys., 77 (1995) 3042-3048.
22.A. Kanjilal and D. Kanjilal, “Surface roughening in Si1-xGex alloy films by 100 MeV Au: Composition dependency,” Solid State Communications, 139 (2006) 531-536.
23.K. Sawanoa, Y. Hiroseb, S. Koha, K. Nakagawac, T. Hattorib and Y. Shirakia, “Relaxation enhancement of SiGe thin layers by ion implantation into Si substrates,” Journal of Crystal Growth, 251 (2003) 685-688.
24.A. Fedalaa, R. Cherfia, M. Aouchera and T. Mohammed-Brahimb, “Structural, optical and electrical properties of hydrogenated amorphous silicon germanium (a-Si1-xGex) deposited by DC magnetron sputtering at high rate,” Materials Science in Semiconductor Processing, 9 (2006) 690-693.
25.F. Li and J.S. Lannin, “Raman scattering in a-Ge1-xSix: H alloys,” Journal of Non-Crystalline Solids, 114 (1989) 543-545.
26.F. Qin, W. Shin, M. Matsumiya, N. Izu and N. Murayama, “Hydrogen zensor based on RF-sputtered thermoelectric SiGe film,” Jpn. J. Appl. Phys., 42 (2003) 1563-1567.
27.E. V. Jelenkovic, K. Y. Tong, W. Y. Cheung, I. H. Wilson, S. P. Wong and M. C. Poon, “Low temperature doping of poly-SiGe films with boron by co-sputtering,” Thin Solid Films, 368 (2000) 55-60.
28.D. Dimova-Malinovska, L. Nedialkova and V. Kudoyarova, “Compositional dependence of the optical properties and the H local bonding in a-Si1-xGex: H (x < 0.4) thin films,” Solar Energy Materials and Solar Cells, 30 (1993) 27-35.
29.K. Tajima, F. Qiu, W. Shin, N. Sawaguchi, N. Izu, I. Matsubara and N. Murayama “Thermoelectric properties of RF-sputtered SiGe thin film for hydrogen gas sensor,” Jpn. J. Appl. Phys., 43 (2004) 5978-5983.
30.E. V. Jelenkovic, K. Y. Tong, Z. Sun, C. L. Mak and W. Y. Cheung, “ Properties of crystallized Si1-xGex thin films deposited by sputtering,” J. Vac. Sci. Technol. A, 15(6) (1997) 2836-2841.
31.A. Rodríguez, T. Rodríguez, J. Olivares, J. Sangrador, P. Martín, O. Martínez and J. Jiménez, “Nucleation site location and its influence on the microstructure of solid-phase crystallized SiGe films,” J. Appl. Phys., 90(5) (2001) 2544-2552.
32.T.-J. King, K. C. Saraswat and J. R. Pfiester, “PMOS transistors in LPCVD polycrystalline silicon-germanium films,” IEEE Electron Device Let., 12(11) (1991) 584-586.
33.S. Peng, X. Shen, Z. Tang and D. He, “Low-temperature Al-induced crystallization of hydrogenated amorphous Si1−xGex (0.2 ≤ x ≤ 1) thin films,” Thin Solid Films, 516 (2008) 2276-2279.
34.I. Chambouleyrona, F. Fajardob and A. R. Zanatta, “Aluminum-induced crystallization of hydrogenated amorphous germanium thin films,” Appl. Phys. Lett., 79(20) (2001) 3233-3235.
35.M. Gjukic, M. Buschbeck, R. Lechner and M. Stutzmann, “Aluminum-induced crystallization of amorphous silicon-germanium thin films,” Appl. Phys. Lett., 85(11) (2004) 2134-2136.
36.J. Zhang, K. Shimizu and J. Hanna, “Ni-seeding effects on the properties of polycrystalline silicon-germanium grown at low temperature,” Appl. Phys. Lett., 82(11) (2003) 1745-1747.
37.C. H. Yu, P. H. Yeh, S. L. Cheng, L. J. Chen and L. W. Cheng, “Metal-induced crystallization of amorphous Si1−xGex by rapid thermal annealing,” Thin Solid Films, 469-470 (2004) 356-360.
38.S. F. Chen, Y. K. Fang, W. D. Wang, C. Y. Lin and C. S. Lin, “Low temperature grown poly-SiGe thin film by Au metal-induced lateral crystallisation (MILC) with fast MILC growth rate,” Electronics Letters, 39(22) (2003).
39.C. Eisele, M. Bergera, M. Nerding, H. P. Strunk, C. E. Nebel and M. Stutzmann, “Laser-crystallized microcrystalline SiGe alloys for thin film solar cells,” Thin Solid Films, 427 (2003) 176-180.
40.R. Larciprete, P. Willmott, S. Martelli, M. C. Cesile, E. Borsell, S. Chiussi, P. Gonzílez and B. León, “ArF excimer laser epitaxy of SixGel-x alloys studied by XRD and XPS,” Applied Surface Science, 106 (1996) 179-185.
41.S. Chiussi, C. Serra, J. Serra, P. González, B. León, S. Urban, G. Andrä, J. Bergmann, F. Falk, F. Fabbri, L. Fornarini, S. Martelli and F. Rinaldi, “Laser crystallisation of poly-SiGe for microbolometers,” Applied Surface Science, 186 (2002) 166-172.
42.Alfred Grill, “Cold plasma in materials fabrication: From Fundamentals to Applications,” IEEE Press, New York, (1993) 24-26.
43.柯賢文,“表面與薄膜處理技術”,全華圖書股份有限公司,台北,(2005),第5-1∼5-11頁。
44.陳建人等著,“真空技術與應用”,行政院國家科學委員會精密儀器發展中心,新竹,(2004),第379∼389頁。
45.羅吉宗,“薄膜科技與應用”,全華圖書股份有限公司,台北,(2004),第2-1∼2-39頁。
46.張益新,“銅製程矽晶片上ZnO薄膜合成之研究”,國立成功大學材料科學及工程研究所碩士論文,(1999)。
47.白木靖寛、吉田貞史編著,王建義譯著,“薄膜工程學”,全華圖書股份有限公司,台北,(2004),第1-33∼1-39頁。
48.柯賢文,“表面與薄膜處理技術”,全華圖書股份有限公司,台北,(2005),第8-1∼8-17頁。
49.M. Ohring, “Materials science of thin films: deposition and structured, 2nd ed.,” Academic Press, San Diego, (2002) 497-507.
50.J. A. Thornton, “High rate thick film growth,” Ann. Rev. Mater. Sci., 7 (1977) 239-260.
51.T.Ishidate, S. Katagiri, K. Inoue, M. Shibuya, K. Tsuji and S. Minonura, “Lattice vibrational properties of crystalline Si-Ge alloys,” Jpn. J. Appl. Phys., 53(8) (1984) 2584-2519.
52.G. Lucovsky, “An XPS study of sputtered a-Si, Ge alloys,” J. Vac. Sci. Technol., 21(3) (1982) 838-844.
53.S. M. Cho, C. Christensen, G. Lucovsky and D. M. Maher, “Deposition of microcrystalline hydrogenated silicon, germanium alloy (uc-SixGe1-x: H) films by reactive magnetron sputtering (RMS),” Journal of Non-Crystalline Solids, 198-200 (1996) 587-591.
54.M. S. Benrakkad, J. C. Ferrer, B. Garrido, J. J. Pedroviejo, J. Calderer and J. R. Morante, “Structural analysis of thermally oxidized amorphous Si1-xGex layers,” Microelectronic Engineering, 28 (1995) 225-228.
55.Dimova-Malinovska and L. Nedialkova, “Influence of Ge content on vibrational and optical properties of a-Si1-xGex: H thin films,” Solar Energy Materials and Solar Cells, 31 (1993) 283-289.
56.I. Nakamura, T. Ajiki, H. Abe, D. Hoshi and M. Isomura, “Formation of polycrystalline SiGe thin films by the RF magnetron sputtering method with Ar–H2 mixture gases,” Vacuum, 80 (2006) 712-715.
57.I. Nakamura, T. Ajiki and M. Isomura, “Low temperature fabrication of microcrystalline silicon germanium films by RF reactive magnetron sputtering,” Mater. Res. Soc. Symp. Proc., 910 (2006).
58.H. Kawauchi, M. Isomura, T. Matsui and M. Kondo, “Microcrystalline silicon-germanium thin films prepared by the chemical transport process using hydrogen radicals,” Journal of Non-Crystalline Solids, 354 (2008) 2109-2112.
59.L. K. Teh, W. K. Choi, L. K. Bera and W. K. Chim, “Structural characterization of polycrystalline SiGe thin film,” Solid-State Electronics, 45 (2001) 1963-1966.
60.W. K. Choi, L. K. Teh, L. K. Bera, W. K. Chim, A. T. S Wee and Y. X. Jie, “Microstructural characterization of rf sputtered polycrystalline silicon germanium films,” J. Appl. Phys., 91(1) (2002) 444-450.
61.K.A. Miller, C. John, K.Z. Zhang, K.T. Nicholson, F.R. McFeely and M.M. Banaszak Holl, “Self-limiting chemical vapor deposition of an ultra-thin silicon oxide film using tri-(tert-butoxy) silanol,” Thin Solid Films, 397 (2001) 78-82.
62.Y. Hijikata, H. Yaguchi, M. Yoshikawa and S. Yoshida, “Composition analysis of SiO2/SiC interfaces by electron spectroscopic measurements using slope-shaped oxide films,” Applied Surface Science, 184 (2001) 161-166.
63.J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, “Handbook of X-ray photoelectron spectroscopy,” Physical electronics (1995).
64.E. R. C. Weast, D. R. Lide, M. J. Astle and W. H. Beyer, “CRC handbook of chemistry and physics, 70th ed.,” CRC, Boca Raton, FL, 1989.
65.趙學禮,“非晶矽太陽能電池之材料成長、元件製作及特性分析”,國立中央大學物理研究所碩士論文,(1997)。
66.Y. He, C. Yin, G. Cheng, L. Wang and X. Liu, “The structured and properties of nanosize crystalline silicon films,” J. Appl. Phys., 75(2) (1994) 797-803.
67.J. Tauc, A. Abrahám, R. Zallen and M. Slade, “Infrared absorption in amorphous germanium,” J Non-Cryst Solids, 4 (1970) 279-288.
68.C. Kittel, “Introduction to silid state physics 8th ed.,” John Wiley & Sons, Inc., 2005.
69.J. E. Mahan, “Physical vapor deposition of thin films,” John Wiley & Sons, Inc., 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top