跳到主要內容

臺灣博碩士論文加值系統

(34.236.36.94) 您好!臺灣時間:2021/07/24 23:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳學維
研究生(外文):Hsueh-Wei Wu
論文名稱:在藍寶石基板進行低差排密度氮化鎵磊晶膜之製程開發與特性研究
論文名稱(外文):Fabrication and Characterization of Low-Dislocation-Density GaN Epilayers on Sapphire Substrates
指導教授:武東星
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:80
中文關鍵詞:差排蝕刻孔穴圖案化藍寶石基板
外文關鍵詞:DislocationEtch-pitPatterned sapphire substrate
相關次數:
  • 被引用被引用:1
  • 點閱點閱:472
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本論文主要研究氮化鎵磊晶膜成長於一般藍寶石基板和凸形、凹形、倒金字塔凹形圖案化藍寶石基板之材料特性,並探討材料特性與光學特性之關係。我們經由高解析雙晶繞射結果顯示出不同差排型態於圖案化藍寶石基板。由掃描式電子顯微鏡發現倒金字塔凹形圖案化藍寶石基板之蝕刻孔穴在氮化鎵磊晶膜表面呈有規律的分佈。相對於藍寶石基板平台處,倒金字塔凹形圖案上方的蝕刻孔穴密度比較少,而凸形圖案化藍寶石基板上則未發現此現象。高解析雙晶繞射與蝕刻孔穴法結果顯示,成長於倒金字塔凹形圖案化藍寶石基板之氮化鎵磊晶膜結晶品質優於凸形圖案化藍寶石基板。倒金字塔凹形圖案化藍寶石基板降低刃差排密度效果比螺旋差排好。倒金字塔凹形圖案化藍寶石基板上成長氮化鎵磊晶膜之螺旋差排密度為~107 cm-2,相對於一般藍寶石基板,刃差排密度則由109 cm-2降到 108 cm-2,相對於凸形圖案化藍寶石基板,光激發光譜積分強度比較強(相對於一般藍寶石基板增加15.7%)。而且隨著刃差排密度降低時,光激發光譜強度有增加趨勢,這現象反應出刃差排可能扮演氮化鎵磊晶膜之非輻射再結合中心。
  上述成長於倒金字塔凹形圖案化藍寶石基板上的氮化鎵磊晶膜之材料特性,比較適合作為二次成長氮化鎵磊晶膜的模板。採用無光罩技術製作二氧化矽阻擋層後,二次成長氮化鎵磊晶膜,化學蝕刻法顯示螺旋差排密度為7.3 × 105 cm-2,刃差排為 3.1 × 106 cm-2,相對於直接成長於凹形圖案化藍寶石基板上的氮化鎵磊晶膜,刃差排密度可有效降低~102 cm-2,光激發光譜圖之積分強度則增加40.1%。
Material properties of GaN epilayers grown on the wet-etched protruding, truncated and invert-pyramidal recessing patterned sapphire substrates (PSSs) as well as planar substrates , are in detail investigated, along with its relationship to their optical characterization. High-resolution x-ray diffraction (XRD) results reveal different dislocation configurations on the PSSs. The scanning electron microscopy images show that the etched pits in the case of the invert-pyramidal recessing PSS exhibit a regular distribution, less etched pits densities (EPDs) or threading dislocation densities onto the recessing pattern area than those onto the sapphire mesas. While no regular distribution for the etched pits onto the former is observed. Additionally, crystal quality of the GaN grown onto the invert-pyramidal recessing PSS is better than that onto the protruding PSS. The screw and edge dislocation density of GaN grown onto the invert-pyramidal recessing PSS is about 107 and 108 cm-2 (common 109 cm-2) respectively determined by etched pits method. The calculated density is a little lower than that derived from the XRD method. The reason to interpret this difference is proposed in this study. From photoluminescence (PL) spectra, the GaN grown onto the invert-pyramidal recessing PSS exhibits the narrowness among all GaN epilayers grown the four substrates mentioned above. Moreover, we demonstrate a tendency that the PL integrated intensity of all GaN epilayers decreases with an increment of the density of the dislocations with edge component. The results indicate that the edge-type dislocations act as the dominant nonradiative centers in GaN epitaxial layers.
These results could reflect that the GaN grown on the invert-pyramidal recessing PSS is a much better template for the regrowth of GaN using a maskless technique as compared with the protruding PSS. The GaN after regrowth shows that EPDs associated with screw dislocation are around 7.3 × 105 cm-2 and those with edge dislocations are around 3.1 × 106 cm-2. As compared with the GaN directly grown onto the invert-pyramidal recessing PSS, the EPDs corresponding to edge dislocations of the regrown GaN on this template decrease a factor of two orders (from 108 cm-2 to 106 cm-2).
書名頁
審核頁
授權書
誌謝 i
中文摘要 ii
Abstract iii
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1-1 前言 1
1-2 研究背景 1
1-3 研究動機與目的 2
第二章 理論基礎與文獻回顧 4
2-1 氮化鎵磊晶膜與藍寶石基板之關係 4
2-1-1 三族氮化物結構簡介 4
2-1-2 藍寶石基板簡介 4
2-1-3 藍寶石基板與氮化鎵磊晶膜結構之差異 4
2-2 貫穿式差排形成機制與影響 6
2-3 降低差排密度之方法 7
2-4 分析差排之方法 9
2-4-1 穿透式電子顯微鏡與差排種類之關係 9
2-4-2 蝕刻孔穴與差排種類之關係 10
2-4-3 X光搖擺曲線與差排密度之關係 11
2-4-4 X光搖擺曲線與差排種類之關係 13
第三章 實驗步驟與分析設備 15
3-1 實驗流程 15
3-1-1 圖案化藍寶石基板 15
3-1-2 二次成長氮化鎵磊晶膜 16
3-1-3 氮化鎵之磊晶參數 17
3-2 分析設備 17
3-2-1 光激發光譜量測系統 17
3-2-2 掃描式電子顯微鏡與能量散佈光譜分析量測系統 18
3-2-3 原子力顯微鏡 18
3-2-4 X光繞射儀 19
第四章 實驗結果與討論 20
4-1 化學性蝕刻對藍寶石基板之影響 20
4-1-1 化學性蝕刻對於藍寶石基表面粗糙度之影響 20
4-1-2 化學性蝕刻藍寶石基板之蝕刻輪廓分析 20
4-2 圖案化藍寶石基板成長氮化鎵磊晶膜之空孔形成機制 21
4-3 氮化鎵磊晶膜之蝕刻孔穴密度與差排種類分析 22
4-3-1 氮化鎵磊晶膜之蝕刻孔穴分析 22
4-3-2 圖案化藍寶石基板降低差排密度之機制 24
4-4 X光繞射法之差排密度與差排種類分析 24
4-5 氮化鎵磊晶膜之光激光光譜分析 26
4-6 二次成長氮化鎵磊晶膜之分析 27
第五章 結論與未來展望 29
參考文獻 31


表目錄

表 1- 1 異質磊晶常見問題 36
表 1- 2 常用於生長氮化鎵的基板晶格常數及熱膨脹係數 37
表 2- 1 三族氮化物其性質比較(W): Wurtzite (Z): Zincblende 38
表 2- 2 藍寶石的性質 38
表 2- 3 氮化鎵與藍寶石結構相對關係 39
表 2- 4 不同廠牌氮化鎵基板應用在發光二極體之市售規格表 39
表 2- 5 Kyma 氮化鎵基板應用在雷射二極體之市售規格表 40
表 4- 1 氮化鎵磊晶膜成長於各種基板之蝕刻孔洞密度 40
表 4- 2 氮化鎵磊晶膜成長於各種基板之搖擺曲線半高寬 41
表 4- 3 利用X光之(002)與(110)搖擺曲線半高寬計算氮化鎵磊晶膜成長於各種基板之螺旋差排與刃差排密度 41


圖目錄

圖 1- 1 圖案化藍寶石基版結合側向磊晶技術之 (a) TEM剖視圖 (b)二氧化矽阻擋差排往上延伸之示意圖 42
圖 2- 1 (a) Wurtzite GaN結構 (b) Zincblende GaN結構示意圖 43
圖 2- 2 藍寶石的晶包 (a)菱形晶格 (b)六方晶格 43
圖 2- 3 (2×2×1)晶包的透視圖 (a)沿著[0001]方向的菱形晶系的晶包 (b)沿著(0001)方向的六方晶系的晶包 44
圖 2- 4 藍寶石的面 (a)從C 軸俯視 (b)從側面看 44
圖 2- 5 氮化物半導體和各種基板之晶格常數與能隙關係圖 45
圖 2- 6 氮化鎵與藍寶石基板之晶格關係示意圖 45
圖 2- 7 異質磊晶結構晶格不匹配現象的橫截面示意圖 46
圖 2- 8 差排示意圖 (a)刃差排 (b)螺旋差排 47
圖 2- 9 氮化鎵二極體結構內部之差排型態示意圖 47
圖 2- 10 採用側向磊晶技術成長氮化鎵磊晶膜 (a)示意圖 (b) SEM剖面圖 48
圖 2- 11 差排分佈於GaN/sapphire之TEM剖面圖 48
圖 2- 12 (a)氮化鎵磊晶膜表面被蝕刻後之氮化鎵磊晶膜特徵圖 (b) 氮化鎵磊晶膜表面被蝕刻後之AFM 特徵圖 (c)α、β、γ三種蝕刻孔洞之側向形貌示意圖 (d)α蝕刻孔洞之TEM剖面圖 (e) β蝕刻孔洞之TEM剖面圖 49
圖 2- 13 X光入射束與反射晶面(11 0)關係圖 50
圖 3- 1 圖案化藍寶石基板製作流程圖 51
圖 3- 2 光罩之圖形示意圖 51
圖 3- 3 (a)凸形圖案化藍寶石基板 (b)凹形圖案化藍寶石基板 (c)倒金字塔凹形圖案化藍寶石基板之SEM圖 52
圖 3- 4 (a)凸形圖案化藍寶石基板 (b)凹形圖案化藍寶石基板 (c)倒金字塔凹形圖案化藍寶石基板之SEM剖面圖 53
圖 3- 5 二次成長氮化鎵磊晶膜之製程流程圖 54
圖 3- 6 氮化鎵磊晶薄膜製程溫度與時間關係圖 (a)第一層氮化鎵磊晶層 (b)二次成長氮化鎵磊晶層 55
圖 3- 7 光激發光光譜量測系統示意圖 56
圖 3- 8 光激發而輻射再結合過程示意圖 56
圖 3- 9 掃描式電子顯微鏡系統示意圖 57
圖 3- 10 原子力顯微鏡量測系統示意圖 57
圖 3- 11 (a)X光繞射系統示意圖 (b)晶格散漫示意圖 (c)omega掃描示意圖 (d) X光繞射系統之光學模組構造圖 58

圖 4- 1 (a)一般藍寶石基板 (b)化學性蝕刻後藍寶石基板之AFM圖 59
圖 4- 2 (a)凸形圖案化藍寶石基板 (b)凹形圖案化藍寶石基板 (c)倒金字塔凹形圖案化藍寶石基板之SEM剖面圖 60
圖 4- 3 氮化鎵磊晶膜成長於 (a)一般藍寶石基板 (b)凸形圖案化藍寶石基板 (c)凹形圖案化藍寶石基板 (d)倒金字塔凹形圖案化藍寶石基板之光學顯微鏡圖 61
圖 4- 4 氮化鎵磊晶膜成長於 (a)一般藍寶石基板 (b)凸形圖案化藍寶石基板 (c)凹形圖案化藍寶石基板 (d)倒金字塔凹形圖案化藍寶石基板之SEM剖面圖 62
圖 4- 5 氮化鎵磊晶膜成長於 (a)凸形圖案化藍寶石基板 (b)凹形圖案化藍寶石基板之示意圖 (c)倒金字塔凹形圖案化藍寶石基板之示意圖 63
圖 4- 6 由光學顯微鏡觀察氮化鎵磊晶膜成長於 (a)一般藍寶石基板 (b)凸形圖案化藍寶石基板 (c)凹形圖案化藍寶石基板 (d)倒金字塔凹形圖案化藍寶石基板之蝕刻孔穴分佈圖 64
圖 4- 7 由SEM之1000倍率下觀察氮化鎵磊晶膜成長於 (a)一般藍寶石基板 (b)凸形圖案化藍寶石基板 (c)凹形圖案化藍寶石基板 (d)倒金字塔凹形圖案化藍寶石基板之蝕刻孔穴分佈圖 65
圖 4- 8 (a)氮化鎵磊晶膜表面被蝕刻後之SEM 特徵圖 (b)氮化鎵磊晶膜表面被蝕刻後之AFM 特徵圖 (c)α、β、γ三種蝕刻孔洞之側向圖 66
圖 4- 9 由SEM之4000倍率下觀察氮化鎵磊晶膜成長於 (a)一般藍寶石基板 (b)凸形圖案化藍寶石基板 (c)凹形圖案化藍寶石基板 (d)倒金字塔凹形圖案化藍寶石基板之蝕刻孔穴分佈圖 67
圖 4- 10 由AFM掃描氮化鎵磊晶膜成長於倒金字塔凹形圖案化藍寶石基板之蝕刻後的情形 68
圖 4- 11 氮化鎵磊晶膜成長於 (a)一般藍寶石基板 (b)凸形圖案化藍寶石基板 (c)凹形圖案化藍寶石基板 (d)倒金字塔凹形圖案化藍寶石基板之內部差排分佈示意圖 69
圖 4- 12 氮化鎵磊晶膜成長於 (a)一般藍寶石基板 (b)凸形圖案化藍寶石基板 (c)凹形圖案化藍寶石基板 (d)倒金字塔凹形圖案化藍寶石基板之X光(0002)面搖擺曲線 70
圖 4- 13 氮化鎵磊晶膜成長於 (a)一般藍寶石基板 (b)凸形圖案化藍寶石基板 (c)凹形圖案化藍寶石基板 (d)倒金字塔凹形圖案化藍寶石基板之X光(10 2)面搖擺曲線 71
圖 4- 14 氮化鎵磊晶膜成長於 (a)一般藍寶石基板 (b)凸形圖案化藍寶石基板 (c)凹形圖案化藍寶石基板 (d)倒金字塔凹形圖案化藍寶石基板之X光(30 2)面搖擺曲線 72
圖 4- 15 氮化鎵磊晶膜成長於 (a)一般藍寶石基板 (b)凸形圖案化藍寶石基板 (c)凹形圖案化藍寶石基板 (d)倒金字塔凹形圖案化藍寶石基板之X光(11 0)面搖擺曲線 73
圖 4- 16 氮化鎵磊晶膜成長於各種基板之搖擺曲線半高寬趨勢圖 74
圖 4- 17 氮化鎵磊晶膜成長於 (a)一般藍寶石基板 (b)凸形圖案化藍寶石基板 (c)凹形圖案化藍寶石基板 (d)倒金字塔凹形圖案化藍寶石基板之PL圖。(e)為氮化鎵磊晶膜成長於四種基板於3.20 eV到3.50 eV範圍之PL圖 75
圖 4- 18 CMP磨除SiO2後之FESEM圖 (a)蝕刻孔穴上方之表面圖 (b) Si元素之EDS mapping (c) Si元素之EDS 線性掃描分布圖。 76
圖 4- 19 由SEM之 (a)1000倍率 (b)4000倍率下觀察二次成長氮化鎵磊晶膜之蝕刻孔穴分佈圖 76
圖 4- 20 二次成長氮化鎵磊晶膜之X光搖擺曲線圖 (a)(0002)反射晶面 (b)(10 2)反射晶面 (c)(30 2)反射晶面 (d )(11 0)反射晶面 77
圖 4- 21 氮化鎵磊晶膜之搖擺曲線半高寬趨勢圖 78
圖 4- 22 (a)二次成長氮化鎵磊晶膜之PL圖 (b)為二次成長氮化鎵磊晶膜、氮化鎵磊晶膜成長於倒金字塔凹形圖案化藍寶石基板之3.20 eV到3.50 eV範圍PL圖 79
圖 4- 23 二次成長氮化鎵磊晶膜之內部差排分佈示意圖 80
[1]K. H. Kim, Z. Y. Fan, M. Khizar, M. L. Nakarmi, J. Y. Lin, and H.X. Jiang, “AlGaN-based ultraviolet light-emitting diodes grown on AlN epilayers,” Appl. Phys. Lett. 85, 4777 (2004).
[2]F. Huet, M. A. di Forte-Poisson, A. Romann, M. Tordjman, J. di Persio, and B. Pecz, “Modelling the defect structure in GaN MOCVD thin films by X-ray diffraction,” Mater. Sci. Eng., B 59, 198 (1999).
[3]L. Liu, J.H. Edgar, “Substrates for gallium nitride epitaxy,” Mater. Sci. Eng., R 37, 61 (2002).
[4]S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto and H. Kiyoku, “High-Power, Long-Lifetime InGaN Multi-Quantum-Well-Structure Laser Diodes”, Jpn. J. Appl. Phys., 36, L1568 (1997).
[5]T. Shibata, H. Sone, K. Yahashi, M. Yamaguchi, K. Hiramatsu, N. Sawaki, and N. Itoh, “Hydride vapor-phase epitaxy growth of high-quality GaN bulk single crystal by epitaxial lateral overgrowth,” J. Cryst. Growth, 189, 67 (1998).
[6]P. Fini, L. Zhao, B. Moran, H. Marchand, J. P. Ibbetson, M. Hansen, S. P. DenBaars, U. K. Mishra, and J. S. Speck , “High-quality coalescence of laterally overgrown GaN stripes on GaN/sapphire seed layers,” Appl. Phys. Lett., 75, 1706 (1999).
[7]X. Li, S. G. Bishop, and J. J. Coleman, “GaN epitaxial lateral overgrowth and optical characterization,” Appl. Phys. Lett., 73, 1179 (1998).
[8]S. J. Chang, Y. C. Lin, Y. K. Su, C. S. Chang, T. C. Wen, S. C. Shei, J. C. Ke, C. W. Kuo, S. C. Chen, and C. H. Liu, “Nitride-based LEDs fabricated on patterned sapphire substrates,” Solid State Electro., 47, 1539 (2003).
[9]D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, S. Y. Huang, C. F. Lin, “Defect reduction and efficiency improvement of near-ultraviolet emitters via laterally overgrown GaN on a GaN/patterned sapphire template,” Appl. Phys. Lett., 89, 161105 (2006).
[10]C. Y. Hwang, Ph.D.Mechenics and Materials Sciance, Rutgers University, Piscataway, NJ (1995).
[11]施文忠, “藍寶石基板之乾式蝕刻及其應用於氮化鎵發光二極體之研究,” 虎尾科技大學光電材料與科技研究所碩士論文, 2005.
[12]C. D. Thurmond and R. A. Logan, “The Equilibrium Pressure of N2 over GaN,” J. Electrochem. Soc., 199, 622 (1972).
[13]B. Heying, X. H. Wu, S. Keller, Y. Li. D. kapolnek, B. P. Keller, S. P. Debaars and J. S. Speck, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films,” Appl. Phys. Lett., 68, 643 (1996.)
[14]Bhattacharya, “Semiconductor Optoelectric Devices”, Prentice Hall.
[15]K. N. Tu, J. W. Mayer, and L. C. Feldman, “Electronic Thin Film Science for Electronic Engineers and Materials Scientist,” Macmillan, New York.
[16]D. Hull, “Introduction to Dislocations,” 2an Edition. Pergamon Press, Oxford.
[17]李玉柱, “發光二極體之薄膜應力與光電特性的關係,” 成工大學機械工程學系研究所碩士論文, 2002.
[18]X. H. Wu, C. R. Elsass, A. Abare, M. Mack, S. Keller, P. M. Petroff, S. P. DenBaars, and J. S. Speck, “Structural origin of V-defects and correlation with localized excitonic centers in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett., 72, 692 (1998).
[19]S. Keller, G. Parish, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Dislocation reduction in GaN films through selective island growth of InGaN,” Appl. Phys. Lett., 77, 2665 (2000).
[20]M. Kneissl, D. P. Bour, L. Romano, C. G. Van de Walle, J. E. Northrup, W. S. Wong, D. W. Treat, M. Teepe, Tanya Schmidt, and Noble M. Johnson, “Performance and degradation of continuous-wave InGaN multiple-quantum-well laser diodes on epitaxially laterally overgrown GaN substrates,” Appl. Phys. Lett., 77, 1931 (2000).
[21]M. Kneissl, T. L. Paoli, P. Kiesel, D. W. Treat, M. Teepe, N. Miyashita, and N. M. Johnson, “Two-section InGaN multiple-quantum-well laser diode with integrated electroabsorption modulator,” Appl. Phys. Lett., 80, 3283 (2002).
[22]H. K. Cho and J. Y. Lee, “Formation mechanism of V defects in the InGaN/GaN multiple quantum wells grown on GaN layers with low threading dislocation density,” Appl. Phys. Lett., 79, 251 (2001).
[23]H. K. Cho and J. Y. Lee, “Influence of strain-induced indium clustering on characteristics of InGaN/GaN multiple quantum wells with high indium composition,” J. Appl. Phy. 91, 1104 (2002).
[24]李政鴻, “AlInGaN UV LED 元件製作,” 電光先鋒, P1~P5, 2007年5月.
[25]D. Morita, M. Yamamoto, K. Akaishi, K. Matoba, K. Yasutomo, Y. Kasai, M. Sano, S. I. Nagahama, and T. Mukai, “Watt-class high-output-power 365 nm ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys., 43, L5945 (2004).
[26]S. Porowski, and I. Grzegory, “Thermodynamical properties of III-V nitrides and crystal growth of GaN at high N2 pressure,” J. Cryst. Growth, 178, 174 (1997).
[27]H. P. Maruska, and J. J. Tietjen, “The Preparation and properties of vapor-deposited single-crystal-line GaN,” Appl. Phys. Lett., 15, 327 (1969).
[28]K. Motoki, T. Okahisa, N. Matsumoto, M. Matsushima, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, T. Hirano, M. Nakayama, S. Nakahata, M. Ueno, D. Hara, Y. Kumagai, A. Koukitu, and H. Seki, “Preparation of Large Freestanding GaN Substrates by Hydride Vapor Phase Epitaxy Using GaAs as a Starting Substrate”, Jpn. J. Appl. Phys., 40, L140 (2001).
[29]H. Amano, T. Asahi, and I. Akasaki, “Stimulated emission near ultraviolet at room temperature from a GaN film grown on sapphire by MOVPE using an AlN buffer layer,” Jpn. J. Appl. Phys., 29, L205 (1990).
[30]T. S. Zheleva, O. H. Nam, M. D. Bremser, and R. F. Davis, “Dislocation density reduction via lateral epitaxy in selectively grown GaN structures,” Appl. Phys. Lett., 71, 2472 (1992).
[31]Y. Kato, S. Kitamura, K. Hiramatsu, and N. Sawaki, “Selective growth of wurtzite GaN and AlxGa1−xN on GaN/sapphire substrates by metalorganic vapor phase epitaxy,” J. Cryst. Growth, 144, 133 (1994).
[32]A. Usui, H. Sunakawa, A. Sakai, and A. Yamaguchi, “Thick GaN epitaxial growth with low dislocation density by hydride vapor phase epitaxy,” Jpn. J. Appl. Phys., 36, L899 (1997).
[33]K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, T. Jyouichi, Y. Imada, M.kato, H. Kudo, T. Taguchi, “High Output Power InGaN Ultraviolet Light-Emitting Diodes Fabricated on Patterned Substrates Using Metalorganic Vapor Phase Epitaxy ,” Phys. Stat. Sol. (a), 188, 121 (2001).
[34]J. E. Ayers, “The measurement of threading dislocation densities in semiconductor crystals by X-ray diffraction,” J. Crystal Growth, 135, 71 (1994).
[35]T. Metzger, R. Hopler, E. Born, O. Ambacher, M. Stutzmann, R. Stommer, M. Schuster, H. Gobel, S. Christiansen, M. Albrecht, and H. P . Strunk, “ Defect structure of epitaxial GaN films determined by transmission electron microscopy and triple-axis X-ray diffractometry,” Philos. Mag. A, 77, 1013 (1998).
[36]T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto, and M. Ikeda, “Characterization of threading dislocations in GaN epitaxial layers,” Appl. Phys. Lett., 76, 3421 (2000).
[37]B. Heying, X. H. Wu, S. Keller, Y. Li,c) D. Kapolnek, B. P. Keller, S. P. DenBaars, and J. S. Speck, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films,” Appl. Phys. Lett., 68, 643 (1996).
[38]J. Chaudhuri, M. H. Ng, D. D. Koleske, A. E. Wickenden, abd R. L. Henry, “ High resilution X-ray diffraction and X-ray topography study of GaN on sapphire,” Mater. Sci. Eng., B64, 99 (1999).
[39]M. J. Hordon, and B. L. Averbach, “X-ray measurements of dislocation density in deformed copper and aluminum single crystals,” Acta. Metallurgica, 9, 237 (1961).
[40]H. Heinke, V. Kirchner, S. Einfeldt, and D. Hommel, “Anzlysis of the Defect Structure of Epitaxial GaN,” Phys. Stat. Sol. (a), 176, 391 (1999).
[41]R. Chierchia, T. BWttcher, H. Heinke, S. Einfeldt, S. Figge, and D. Hommel, “Microstructure of heteroepitaxial GaN revealed by x-ray diffraction,” J. Appl. Phys., 93, 8918 (2003).
[42]鄭明欣, 林宏旻, 鐘明光, “X光倒易空間圖譜技術分析矽鍺異質磊晶材料的應變,” 科儀新知,第29卷 第1期, 91頁 (2007).
[43]W. K. Wang, S. Y. Huang, S. H. Huang, K. S. Wen, D. S. Wuua , and R. H. Horng, “Fabrication and efficiency improvement of micropillar InGaN/Cu light-emitting diodes with vertical electrodes,” J. Electrochem. Soc., 153, G765 (2006).
[44]David B. Williams and C. Barry Cater, “Transmission Electron Microscopy,” Plenum publishing corporation, 242 (1996).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top