跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/05 21:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳文棠
研究生(外文):Wen-Tang Wu
論文名稱:以中間緩衝層於直流電漿濺鍍中誘發氮化鋁結晶薄膜之微結構與性質
論文名稱(外文):Characteristics and Microstructure of Buffer Layer Induced Crystalline AlN Thin Films Prepared by DC Sputtering
指導教授:薛富盛薛富盛引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:71
中文關鍵詞:氮化鋁氮化鈦緩衝層濺鍍
外文關鍵詞:aluminum nitridetitaninum nitrideTiN/Ti buffer layerDC sputtering
相關次數:
  • 被引用被引用:1
  • 點閱點閱:87
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氮化鋁作為薄膜材料具有許多優異的物理性質,像是具有良好的熱穩定性、化學鈍性、硬度、以及透明度高等,尤其是應用在表面聲波元件、擴散阻障層以及發光層材料更是近年來被廣泛研究的主題。檢視以往發表的文獻以及現今的商業製程不難發現,大多的製程都具有較高的製程溫度或是利用高功率的輸出來達到較高的成膜能量以及沈積速率,以得到具有(002)優選方向的氮化鋁結晶薄膜。本研究試圖在氮化鋁薄膜沈積之前先行於矽基材上沈積緩衝層材料,並討論各種製程參數可能影響薄膜微結構與特性,並嘗試在相對較低的溫度甚至室溫下,利用低功率直流電漿濺鍍製程獲得結晶態的氮化鋁薄膜,以期能改善高溫以及高功率參數產生氮化鋁結晶薄膜時所造成的損傷及缺點。實驗的結果顯示在室溫中利用1.5x10-3torr下製備的氮化鈦緩衝層可以成功的獲得具有明顯(100)結晶方向的氮化鋁薄膜,並利用該參數在300℃的環境下進行持溫製程就可以獲得具有明顯(002)優選方向的氮化鋁結晶薄膜。
Aluminum nitride (AlN) exhibits superior properties such as good thermal stability, chemical stability, hardness, and high optical transparency. These characteristics render itself in many applications, e.g. surface acoustics wave device, diffusion barrier layer, and photo-luminance material. Nevertheless, it usually has to be prepared at high substrate temperature and high power resources to obtain high particle energy and deposition rate, along with (002) prefer-orientation. In this study, buffer layers were deposited first on Si substrate, and we tried to get crystalline AlN thin films at low process temperature and output power. Effect of processing parameters on the microstructure and characteristics of AlN thin films was investigated. Experimental results show that crystalline AlN films with TiN/Ti buffer layer can be prepared under lower working pressure, 1.5x10-3 torr, and AlN films with (002) prefer-orientation are deposited on Si substrate with TiN/Ti buffer layer at 300℃.
致謝
圖目錄
表目錄
1. 緒論………………………………………………………………………………1
1.1 前言………………………………………………………………………1
1.2 研究動機…………………………………………………………………2
2. 文獻回顧…………………………………………………………………………3
2.1 氮化鋁材料特性…………………………………………………………3
2.2 相關製程…………………………………………………………………6
2.3 PVD型電漿薄膜製程……………………………………………………10
2.4 薄膜緩衝層應用…………………………………………………………15
3. 實驗……………………………………………………………………………21
3.1 實驗設計…………………………………………………………………21
3.2 樣品製備…………………………………………………………………22
3.2.1 基材前處理…………………………………………………………22
3.2.2 真空濺鍍系統………………………………………………………22
3.2.3 鍍膜參數……………………………………………………………24
3.3 儀器分析說明……………………………………………………………26
3.3.1 穿透式電子顯微鏡…………………………………………………26
3.3.2 場發射掃描式電子顯微鏡…………………………………………27
3.3.3 原子力顯微鏡………………………………………………………28
3.3.4 X光繞射儀…………………………………………………………30
3.3.5 化學電子能譜儀……………………………………………………30
3.3.6 快速退火處理………………………………………………………31
4. 結果與討論……………………………………………………………………33
4.1 AlTiN緩衝層……………………………………………………………33
4.1.1 改變AlTiN中Ti之含量…………………………………………33
4.1.2 基板偏壓與其他參數………………………………………………41
4.2 TiN緩衝層………………………………………………………………48
4.2.1 改變系統壓力………………………………………………………48
4.2.2 改變TiN層厚度……………………………………………………49
4.2.3 製程溫度與熱處理…………………………………………………49
4.2.4 ESCA分析…………………………………………………………51
5. 結論……………………………………………………………………………62
參考文獻……………………………………………………………………………63
附錄A: JCPDS繞射資料表
1.E.S. Dettmer and B. M. Romenesko, “Steady state thermal conductivity measurements of AlN and SiC substrate materials,” IEEE Trans. Components, Hybrids, Manuf. Tech-nol.12, 543 (1989) 551-556
2.H. Ott, Zeitschr, Physik 22 (1924) 201
3.G.. A. Jeffery and G.. S. Parry, “Crystal structure of aluminum nitride,“ J. chem. Phys. 23 (1953) 406
4.G. A. Slack, “Nonmetallic crystals with high thermal conductivity,“ J. Phys. Chem. Solids 34 (1973) 321-335
5.E. Gabe and Y. Le Page, “X-ray-diffraction determination of valence electron density in aluminum nitride, “ Phys. Rev. B 24 (1981) 5634-5641
6.C. F. Cline and J. S. Kahn, “Microhardness of single crystals of BeO and other wurtzite compounds,“ J. Elec. Chem. Soc. 110 (1963) 773
7.T. J. Davies and P. E. Evans, “Strength of aluminum nitride whiskers,“ Nature 207 (1965) 254-255
8.F. N. Tavadze and G. G. Surmava, “Mechanical characteristics of filimentary crystals of aluminum nitride,“ Sov. Phys. Semi. 15 (1973) 901
9.G. A. Slack and T. F. McNelly, “Growth of high purity AlN crystals,“ J. Crys. Grow. 34 (1976) 263-279
10.G. A. Slack and S. F. Bartram, “Thermal expansion of some diamond-like crystals,“ J. Appl. Phys. 46 (1975) 89-98
11.W. M. Yim and R. J. Paff, “Thermal expansion of AlN, sapphire, and silicon,“ J. Appl. Phys. 45 (1974) 1456-1457
12.T. L. Chu and D. W. Ing, “Epitaxial growth of aluminum nitride,“ Solid state Electron. 10 (1967) 1023-1026
13.T. Y. Sheng and Z. Q. Yu, “Disk hydrogen plasma assisted chemical vapor deposition of aluminum nitride,“ Appl. Phys. Lett. 52 (1988) 576
14.王慶均, “氮化鋁薄膜之製程、微結構與氧化行為,” 中興大學材料科學與工程系博士學位論文(2004)
15.K. Kawabe and R. H. Tredgold, “Electrical and optical properties of AlN - a thermostable semiconductor,“ Elect. Eng. Jpn. 87 (1967) 62
16.J. Edwards and K. Kawabe, “Space charge conduction and electrical behavior of aluminum nitride single crystals,” Solid State Comm. 3 (1965) 99-100
17.W. M. Yim and E. J. Stofko, “Epitaxially grown AlN and its optical band gap,“ J. Appl. Phys. 44 (1973) 292-294
18.J. Pastrnak and L. Roskovcova, “Optical absorption edge of AlN single crystals,“ Phys. Stat. Solid. 26 (1968) 591
19.V. V. Michanilin and V. E. Oranovski, “Optical properties of AlN single crystals in the energy region 3 to 40 eV,” Phys. Stat. Solid. B 55 (1973) k51
20.J. Pastrnak and L. Roskovcova, “Refraction index measurements on AlN single crystals,“ Phys. Stat. Solid. 14 (1966) k5
21.J. Pastrnak and L. Roskovcova, “The dispersion of the refractive index and the birefringence of AlN,“ Phys. Stat. Solid. 20 (1967) k29
22.G. A. Cox and D. O. Cummins, “On the preparation, optical properties, and electrical behavior of aluminum nitride,“ J. Phys. Chem. Solids 28 (1967) 543
23.T. Goto and W. Zheng, “Preparation of Al-O-N films by electron cyclotron resonance plasma-assisted chemical vapor deposition,” Jpn, J. Appl. Phys. 38 (1999) 3668-3674
24.H. Harris and N. Biswas, “Plasma enhanced metalorganic chemical vapor deposition of amorphous aluminum nitride,” J. Appl. Phys. 90,11 (2001) 5825-5831
25.M. Yoshioka and N. Takahashi, “Growth of the AlN nano-pillar crystal films by means of a halide chemical vapor deposition under atmospheric pressure,” Mat. Chem. Phys. 86 (2004) 74-77
26.R. Bathe and R. D. Vispute, “AlN thin films deposited by pulsed laser ablation, sputtering and filtered arc techniques,” Thin Solid Films 398 –399 (2001) 575-580
27.A. Jacquot and B. Lenoir, “Optical and thermal characterization of AlN thin films deposited by pulsed laser deposition,” Appl. Surf. Sci. 186 (2002) 507-512
28.S. Inoue and K. Okamoto, “Epitaxial growth of AlN on Cu(1 1 1) substrates using pulsed laser deposition,” J. Crys. Grow. 289 (2006) 574-577
29.C. Cibert and M. Chatras, “Pulsed laser deposition of aluminum nitride thin films for FBAR applications,” Appl. Surf. Sci. 253 (2007) 8151-8154
30.T. Kitahara and N. Ichikawa, “Fabrication of particle free epitaxal AlN thin films by reactive PLD combined with an electron beam and a rotating crucible,” Vac. 82 (2008) 109-112
31.Y. Someno and M. Sasaki, “Low-temperature growth of polycrystalline AlN films by microwave plasma CVD,” Jpn. J. Appl. Phys. 29, 2 (1990) 358-360
32.R. Y. Krupitskaya and G. W. Auner, “Optical characterization of AlN films growth by plasma source molecular beam epitaxy,” J. Appl. Phys. 84, 5 (1998) 2861-2865
33.X. Q. Shen and M. Shimizu, “Impact of vicinal sapphire (0001) substrates on the high-quality AlN films by plasma-assisted molecular beam epitaxy,” Jpn. J. Appl. Phys. 42 (2003) 293-295
34.“真空技術與應用,” 國科會儀科中心出版品
35.John. A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings,” J. Vac. Sci. Tech. 11, 4 (1974) 666-670
36.John. A. Thornton, “The microstructure of sputter-deposition coatings,” J. Vac. Sci. Tech. A4, 6 (1986) 3059-3065
37.A. Kimura and M. Kawate, “Anisotropic lattice expansion and shrinkage of hexagonal TiAlN and CrAlN films,” Surf. Coat. Tech. 169 –170 (2003) 367-370
38.V. Brien and P. Miska, “Columnar growth of AlN by r.f. magnetron sputtering: Role of the {1 01‾ 3} planes,“ J. Crys. Grow. 307 (2007) 245-252
39.C. H. Chou and Y. C. Lin, “Growth of high quality AlN thin films on diamond using TiN/Ti buffer layer,“ Diam. Relat. Mat. 15 (2006) 404-409
40.“材料分析,” 汪建民編著
41.J. Acosta and A. Rojo, “Process monitoring during AlN deposition by reactive magnetron sputtering,” Surf. Coat. Tech. 201 (2007) 7992-7999
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊