跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/24 15:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林鎮元
研究生(外文):Chen-Yuan Lin
論文名稱:薄膜封裝結構在有機太陽能電池之技術開發與研究
論文名稱(外文):Development and Characterization of Thin-Film Packaging Structure for Organic Solar Cells
指導教授:武東星
指導教授(外文):Dong-Sing Wuu
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:101
中文關鍵詞:高分子太陽電池P3HTPCBM塊材異質接面結構可撓式阻障層
外文關鍵詞:polymer solar cellsP3HTPCBMbulk-heterojunctionflexiblebarrier layers
相關次數:
  • 被引用被引用:1
  • 點閱點閱:354
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高分子太陽電池目前所遭遇之難題即光電轉換效率無法超越無機太陽電池,以及其使用時效壽命較短,本論文針對此兩問題進行研究與探討。本研究使用聚(3-己烷噻吩)(P3HT)與C60之衍生物(PCBM),以塊材異質接面結構(bulk heterojunction, BHJ)製作有機太陽電池。元件效率之部份,針對主動層探討不同溶液濃度、溶質比、溶劑退火條件與厚度之影響,另外,包含元件之熱退火及元件工作面積對其效能之影響,藉由改善主動層之光譜吸收率、降低元件之串連電阻、提昇高分子之載子遷移率進而提昇短路電流密度,來得到其最佳參數,將溶液濃度由20 mg/ml(P3HT:PCBM=1:1)改為27.5 mg/ml(P3HT:PCBM=1.75:1)並於真空環境中進行溶劑退火與使用熱退火以140℃烘烤10分鐘並且改變主動層塗佈轉速由1000 rpm改為2500 rpm且將元件工作面積由1 cm2 改為 0.04 cm2,且以加入甘油之PEDOT做為電洞傳輸層使得效率由原始之0.2%提昇至7.73%。此外,本研究中使用不同基板來製作有機太陽電池元件,實驗發現軟性基板對於有機層有較佳之匹配性,故以軟性基板製作出之可撓式有機太陽電池具有與玻璃製作之有機太陽電池擁有相當之光電轉換效率。有機太陽電池的另一問題即其使用壽命較短,本研究以電漿輔助化學氣相沉積系統(Plasma Enhanced Chemical Vapor Deposition, PECVD),於80℃之下,沉積氮化矽與氧化矽薄膜,以多層堆疊之方式製作出水氣透過率(Water Vapor Transmission Rate, WVTR) ~3.12×10-6 g/m2/day之無機堆疊水氣阻障層。最佳化之高分子太陽電池經由阻障層封裝後,能有效提升元件使用壽命約30倍。於25℃、相對濕度60%之下,經1500小時後,仍具有原效率之50%的光電轉換效率。
Polymer solar cells (PSCs) are facing two main challenges right now: One is the lower power conversion efficiency (PCE) than that of inorganic solar cells and the other is the short lifetime. In this work, these two essential problems were discussed. The bulk-heterojunction solar cells consisted of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) were fabricated on both glass and polymer substrates for comparison. To improve the PCE of the device, the total concentration of the solution, the solute ratio of P3HT:PCBM, the thickness of the active layer, the working area and the annealing condition were studied. The optimum parameter was obtained by improving the absorption ability of the polymer films, reducing the series resistance of the devices and increasing the carrier mobility. The PSC can be increased form 0.2% to 7.73%, after changing the total concentration of the solution from 20 mg/ml (P3HT:PCBM=1:1) to 27.5 mg/ml (P3HT:PCBM=1.75:1), solvent annealing in vacuum, thermal annealing in oven 140℃/10 min, changing the spin speed of active layer from 1000 rpm to 2500 rpm, changing the working area from 1 cm2 to 0.04 cm2 and using the G-PEDOT with a hole transportation layer. Moreover, it was found that the PCEs are similar on both glass and flexible substrates. On the other hand, to extend the lifetime of PSCs, the barrier structure was used for the encapsulation of the PSCs. A multilayer inorganic barrier structure consisting of silicon oxide and silicon nitride films was deposited by plasma-enhanced chemical vapor deposition system with a water vapor transmission rate of 3.12×10-6 g/m2/day. After encapsulation, the lifetime of PSCs increased about 30 times while the shelf lifetime of PSCs was nearly 1500 hours under 25℃, relative humidity 60%.
目次
封面內頁
簽名頁
授權書
中文摘要 i
英文摘要 iii
誌謝 v
目錄 vi
表目錄 ix
圖目錄 x


第一章 緒論 1
1-1 前言 1
1-2 研究背景 2
1-3 研究動機 6

第二章 理論基礎與文獻回顧 7
2-1有機高分子太陽電池之理論基礎 7
2-1-1太陽電池工作原理 7
2-1-2有機太陽電池光電流產生方式 8
2-1-3太陽電池等效電路(ECD) 13
2-1-4有機太陽電池之光電轉換效率特性 13
2-2薄膜阻障層對有機高分子太陽電池之影響 15
2-3電漿輔助化學氣相沉積法原理 16
2-3-1電漿之定義 16
2-3-2電漿生成原理 18
2-3-3薄膜沉積機構 19
2-3-4電漿輔助化學氣相沉積法 20
2-4氮化矽薄膜之結構與特性 21
2-5水/氧氣滲透理論 22

第三章 實驗方法與分析 26
3-1 元件結構 26
3-2 有機太陽電池製作流程 26
3-2-1準備材料 26
3-2-2 正電極-ITO電極 28
3-2-3 電洞傳輸層與主動層 28
3-2-4 負電極-Al電極 29
3-3 水氣氧氣阻障層製作方式 30
3-4 元件量測與分析 30
3-4-1 n & k光學量測系統 30
3-4-2原子力顯微鏡(AFM)量測系統 31
3-4-3 X光繞射儀(XRD)量測系統 31
3-4-4太陽電池模擬光源量測系統 32
3-4-5水氣及氧氧透過率測量儀 33
3-4-6鍍鈣試驗(Calcium test) 34

第四章 結果與討論 36
4-1吸光層濃度對轉換效率之影響 36
4-2 P3HT與PCBM溶質比例對轉換效率之影響 37
4-3以塑膠基板製作有機太陽電池 39
4-4退火對有機太陽電池光電轉換效率之影響 41
4-4-1元件熱退火 41
4-4-2溶劑退火 42
4-5主動層厚度對元件特性之影響 43
4-6元件面積對元件特性之影響 44
4-7薄膜封裝對元件時效之影響 46
4-7-1以無機多層堆疊水氣阻障層封裝有機太陽電池元件 46
4-7-2以TiOx薄膜作為電漿傷害緩衝層之探討 48

第五章 結論 50

參 考 文 獻 52














表目錄

表1-1 有機太陽電池種類比較表………………………..……......…..62
表2-1 AM1.5光譜能量分佈表…………………………………..……63
表3-1 PECVD系統規格說明..……………………..…....……………64
表4-1 不同基板製作有機太陽電池之元件特性表………..…....……65
表4-2 不同熱退火溫度與時間之元件光電轉換效率表………..……65
表4-3 不同環境溶劑退火之元件光電流特性表………..……………65
表4-4 不同主動層轉速之元件光電流特性表………..…....…………66
表4-5 不同工作面積之元件光電流特性表………..…....……………66
表4-6 不同工作面積與加入甘油之PEDOT之元件光電流特性表...67
表4-7 不同封裝結構之元件光電流特性表………..…....……………67















圖目錄

圖1-1 塊材異質接面(bulk heterojunction)元件結構……………...….68
圖2-1 (a)p-n接面 (b)p-n接面能帶圖……………..……….....…...…69
圖2-2 有機太陽電池能帶結構圖…..………………………....………69
圖2-3 (a) s軌域結合s軌域結合為σ鍵 (b) s軌域結合p軌域結合為σ鍵 (c) p軌域結合p軌域結合為σ鍵……………….………70
圖2-4 p軌域結合p軌域結合為π鍵…………………………………70
圖2-5 有機高分子太陽電池供電轉換步驟及損失機制………..……71
圖2-6 有機高分子太陽電池之等效電路圖[25]…………….…..……72
圖2-7 有機高分子太陽電池電流對電壓曲線圖[25]……….…..……72
圖2-8 有機高分子元件之封裝方式[26]……….……..………………73
圖2-9 AC電漿產生器之應用[40]……….……………………………74
圖2-10 薄膜沉積的過程:(a)吸附與擴散成核 (b)晶粒成長 (c)晶粒聚結 (d)縫道填補 (e)膜的成長[40]………….……….…………75
圖2-11 化學反應氣相沉積的五個主要機構…………………..………75
圖2-12 Si3N4形式之一的晶體結構………………….....………………76
圖2-13 水/氧氣穿透示意圖…………………………….....……………76
圖2-14 水/氧氣擴散示意圖………………………..………...…………77
圖2-15 薄膜缺陷示意圖…………………………..……………………77
圖3-1 元件結構示意圖………………………..………………………78
圖3-2 P3HT結構圖………………………..…………..………………78
圖3-3 PCBM結構圖………………………..…………………………79
圖3-4 圖案化之ITO電極圖…………………..………………………79
圖3-5 圖案化之Al電極圖………………………..………..…………80
圖3-6 本實驗所使用PECVD之規格簡圖………………..…………80
圖3-7 Model 1280 N&K Tech. Inc.光學量測系統圖…..…………..…81
圖3-8 原子力顯微鏡(AFM)量測系統圖………………………...……82
圖3-9 X光繞射(X-Ray Diffraction, XRD)量測系統圖………………82
圖3-10 太陽電池模擬光源量測系統圖…………………………..……83
圖3-11 透水/氧測量儀結構圖………………………………...………84
圖3-12 透水/氧測量儀內部………………………………...…………84
圖3-13 (a)水氣(b)氧氣測量儀工作原理……………………….………85
圖3-14 鈣測試法試片製作結構示意…………………………..………86
圖4-1 不同濃度吸光層之光譜吸收率,溶質濃度分別為(◆) 20、(▼) 25、(▲)30 m、(●)35與(■)40 mg/ml…………..............………87
圖4-2 不同吸光層濃度之AFM表面輪廓圖,掃描面積為5×5 μm2,(a) 25 (b) 30 (c) 35和(d) 40 mg/ml……………………..………87
圖4-3 不同吸光層濃度之I-V光電流特性,溶質濃度分別為(◆) 20、(▼) 25、(▲) 30、(●) 35與(■)40 mg/ml………………...….……88
圖4-4 改變溶液攪拌溫度之吸光層表面輪廓,掃描面積為5×5 μm2,(a) 40和(b) 45°C…………………………………......................89
圖4-5 改變PCBM濃度之吸光層光譜吸收率,PCBM濃度分別為(▼) 10、(▲)13、(●)17.5與(■)22 mg/ml………………………….….89
圖4-6 不同PCBM濃度之AFM表面輪廓圖,掃描面積為5×5 μm2,(a)10(b)13 (c)17.5和(d)22 mg/ml………………………....……90
圖4-7 改變PCBM濃度之I-V光電流特性,PCBM濃度分別為 (▽) 10、(∆) 13、(○) 17.5與(□) 22 mg/ml…………………….……90
圖4-8 PES與玻璃基板製作有機高分子太陽電池元件結構圖……...91
圖4-9 不同基板之可見光穿透率光譜,市售ITO/ galss (No. 1- □),EB-ITO/ glass (No. 2- △),EB-ITO/barrier/PES (No. 3- ♁) , EB-ITO/PES substrate (No. 4- ☆),主動層溶液之可見光吸收光譜 (○) …………………………..………………………………91
圖4-10 不同ITO基板之AFM圖,(a)市售ITO/galss (b)EB-ITO/glass和(c)EB-ITO/barrier/PES…………...……..……………………92
圖4-11 主動層溶液塗佈於不同ITO基板之AFM圖,(a)市售ITO/galss (b)EB-ITO/glass和(c)EB-ITO/barrier/PES……………….……92
圖4-12 主動層溶液退火前與退火後之XRD圖…………………….…93
圖4-13 主動層溶液退火前與退火後之元件I-V曲線圖………...……93
圖4-14 二次熱退火之元件I-V曲線圖,圖中曲線分別為(■)140°C /10分鐘+80°C/45分鐘-光電流(□) 140°C/10分鐘+80°C/45分鐘-暗電流(●) 80℃45分鐘-光電流(○) 80°C/45分鐘-暗電流….94
圖4-15 不同環境溶劑退火之元件光電流特性, (■) 大氣環境、(●) N2環境和(▲)真空環境………………………………...………94
圖4-16 不同轉速塗佈主動層之主動層吸收光譜…………………..…95
圖4-17 不同轉速塗佈主動層之元件I-V曲線圖……………….…..…95
圖4-18 不同工作面積之元件示意圖,工作面積分別為 (a) 1 (b) 0.24 (c) 0.09和(d) 0.09 cm2…………………………..…………….……96
圖4-19 不同工作面積之元件I-V曲線圖…………………………...…96
圖4-20 不同工作面積之元件示意圖,工作面積分別為 (a) 0.06和(b) 0.04 cm2…………………………….………..…………….……97
圖4-21 不同工作面積之元件I-V曲線圖,(■)0.06 cm2-PEDOT、(▲) 0.06 cm2-G-PEDOT和(●) 0.04cm2-G-PEDOT………………..97
圖4-22 元件封裝示意圖,工作面積分別為 (a) 1 (b) 0.24 (c) 0.09(d) 0.09(e) 0.06和(f) 0.04 cm2……………………………...………98
圖4-23 不同封裝結構之元件示意圖 (a)barrier/Al (b)barrier/Al/TiOx..98
圖4-24 不同厚度之SiOx薄膜之透水透氧率關係圖……………..……99
圖4-25 不同厚度之SiNx薄膜之透水透氧率關係圖……………..……99
圖4-26 Barrier layers 結構鈣測試之光學顯微鏡圖…………………100
圖4-27 高效率元件封裝結構之元件時效測試結果………...……….100
圖4-28 封裝結構之元件時效測試結果 (a)元件無barrier (b)有barrier之元件 (c)以TiOx為緩衝層之元件和(d)以TiOx為緩衝層沉積barrier之元件…………………………………………..…...…101
參考文獻

[1]漢斯.勞申巴赫著,張金熹,廖春發,傅德棣等譯“太陽電池陣設計手冊”宇航出版社 (1987)。
[2]安其霖,曹國琛,李國欣等編“太陽電池原理與工藝”上海科學技術出版社 (1984)。
[3]鄭弘彬,洪勝富“有機無機混合太陽電池製程之研究”碩士論文,國立清華大學 (2006)。
[4]C. W. Tang, “Two-layer organic photovoltaic cell” Appl. Phys. Lett. 48 (1986) 183.
[5]P. Peuman, A. Yakimov and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells” J. Appl. Phys. 93 (2003) 3693.
[6]J. Xue, S. Uchida, B. P. Rand and S. R. Forrest, “4.2% efficient organic photovoltaic cells with low series resistances” Appl. Phys. Lett. 84 (2004) 3013.
[7]B. O’Regan and M. A. Grätzel, “A low cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films” Nature 353 (1991) 737.
[8]H. Spanggaard and F. C. Krebs, “A brief history of the development of organic and polymeric photovoltaics” Sol. Energy Mater. Sol. Cells 83 (2004) 125.
[9]G. Li, V. Shrotriya, J. Huang, Y. Yao and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends” Nature Mater. 4 (2005) 864.
[10]W. Ma, C. Yang, X. Gong, K. Lee and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology” Adv. Funct. Mater. 15 (2005) 1617.
[11]M. A. Green, K.Emery, D. L. King, S. Igari and W. Warta, Prog., “Short Communication: solar cell efficiency tables (version 25)” Photovolt: Res. Appl. 13 (2005) 387.
[12]徐明生,李振國,闕端麟“有機太陽電池研究進展”材料科學與工程 18 (2002) 92。
[13]馬振基,張正華,李陵嵐,葉楚平,楊平華“有機與塑膠太陽能電池”(2007)。
[14]R. D. Bettignies, J. Leroy, M. Firon and C. Sentein, “Accelerated lifetime measurements of P3HT:PCBM solar cells” Synthetic Metals 156 (2006) 510.
[15]G. Dennler, C. Lungenschmied, H. Neugebauer, N. S. Sariciftci, M. Latre`che, G. Czeremuszkin and M. R. Wertheimer, “A new encapsulation solution for flexible organic solar cells” Thin Solid Films 511-512 (2006) 349.
[16]F. C. Krebs and K. Norrman, “Analysis of the failure mechanism for a stable organic photovoltaic during 10000 h of Testing” Prog. Photovolt: Res. Appl. 15 (2007) 697.
[17]J. Lange, Y. Wyser and Packag. “Recent innovations in barrier technologies for plastic packaging-a review” Technol. Sci. 16 (2003) 149.
[18]S. Iwamori, Y. Gotoh and K. Moorthi, “Silicon oxide gas barrier films deposited by reactive sputtering” Surf. Coat. Technol. 166 (2003) 24.
[19]C. Bichler, T. Kerbstadt, H. C. Langowski and U. Moosheimer, “The substrate-barrier film interface in thin barrier film coating,” Surf. Coat. Technol. 97 (1997) 299.
[20]C. H. Jeong, J. H. Lee, J. T. Lim, N. G. Cho, C. H. Moon and G. Y. Yeom, “Deposition of SiO2 by plasma-enhanced chemical vapor deposition as the diffusion barrier to polymer substrates” Jpn. J. Appl. Phys. 44 (2005) 1022.
[21]A. N. R. da Silva, N. I. Morimoto and O. Bonnaud, “Tetraethy- lorthosilicate SiO2 films deposited at a low temperature” Micro- electronics reliability 40 (2000) 621.
[22]S. M. Sze, “Physics of semiconductor devices” 2nd Edition.
[23]莊嘉琛“太陽能工程 – 太陽電池篇”金華科技圖書股份有限公司 (1997)。
[24]C. J. Brabec, N. S. Sariciftci and J. C. Hummelen, “Plastic solar cells ” Adv. Funct. Mater. 1 (2001) 1.
[25]Dipl.Ing. Klaus Petritsch “Organic solar cell architectures” Cambridge and Graz (2000).
[26]J. S. Lewis and M. S. Weaver, “Thin-film permeation-barrier technology for flexible organic light-emitting devices” IEEE J. Quantum Electron. 10 (2004) 45.
[27]P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty and M. E. Thompson, “Reliability and degradation of organic light emittingdevices” Appl. Phys. Lett. 65 (1994) 2922.
[28]G. Gu, P. E. Burrows, S. Venkatesh, S. R. Forrest and M. E. Thompson, “Vacuum-deposited, nonpolymeric flexible organic light-emitting devices” Opt. Lett. 22 (1997) 172.
[29]M. S. Weaver, J. J. Brown, R. H. Hewitt, S. Y. Mao, L. A. Michalski, T. Ngo, K. Rajan, M. A. Rothman, J. A. Silvernail, W. E. Bennet, C.Bonham, P. E. Burrows, G. L. Graff, M. E. Gross, M. Hall, E. Mast and P. M. Martin, “Flexible organic LEDs: Plastics promise thin panels butpresent new problems” Inform. Display 17 (2001) 26.
[30]G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri and A. J.Heeger, “Flexible light-emitting diodes made from soluble conductingpolymers” Nature 357 (1992) 477.
[31]T. B. Harvey, S. Q. Shi and F. So, “Passivated organic device havingalternating layers of polymer and dielectric” U.S. Patent 5757126 (1998).
[32]F. B. McCormick, P. F. Baude and G. D. Vernstrom, “Encapsualated organicelectronic devices and method for making the same” InternationalPatent WO A1 (2002) 05361.
[33]T. B. Harvey, S. Q. Shi and F. So, “Passivated organic devices” U.S.Patent 5686360 (1997).
[34]D. Affinito, “Environmental barrier material for organic light emittingdevice and method for making” U.S. Patent 6268695 (2001).
[35]M. S. Weaver, L. A. Michalski, P. E. Burrow and G. L. Graff, “Organic light-emitting devices with extended operating lifetimes on plastic substrates” Appl. Phys. Lett. 81 (2002) 2929.
[36]A. S. da Silva Sobrinho, G. Czeremuszkin, M. Latrèche and M. R. Wertheimer, “Defect-permeation correlation for ultrathin transparent barrier coatings on polymers” J. Vac. Sci. Technol. A 18 (2000) 149.
[37]H. Chatham, “Oxygen diffusion barrier properties of transparent oxide coatings on polymeric substrates” Surf. Coat. Technol. 78 (1996) 1.
[38]M. Vogt and R. Hauptmann, “Plasma-deposited passivation layers for moisture and water protection” Surf. Coat. Technol. 75 (1995) 676.
[39]A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera and M. Tsuchida, “Flexible OLED displays using plastic substrates” IEEE J. Quantum Electron. 10 (2004) 107.
[40]莊達人“VLSI製造技術”高立圖書有限公司 (2004)。
[41]S. B. Amor, G. Baud, M. Jacquet, G. Nansé, P. Fioux and M. Nardin, “XPS characterization of plasma-treated and alumina-coated PMMA” Appl. Surf. Sci. 153 (2000) 172.
[42]K. Koski, J. Hölsä, P. Juliet, Z.H. Wang, R. Aimo and K. Pischow, “Characterization of aluminium oxide thin films deposition on polycarbonate substrate by reactive magnetron sputtering” Mater. Sci. and Eng. B 65 (1999) 94.
[43]Y. Leterrier, “Durabillity of nanosized oxygen-barrier coatings on polymers” Mater. Sci. 48 (2003) 1.
[44]W. Huang, X. Wang, M. Sheng, L. Xu, F. Stubhan, L. Luo, T. Feng, X. Wang, F. Zhang and S. Zou, “Low temperature PECVD SiNx films applied in OLED packaging” Mater. Sci. and Eng. B 98 (2003) 248.
[45]H. Lin, L. Xu, X. Chen, X. Wang, M. Sheng, F. Stubhan, K. Merkel and J. Wilde, “Moisture-resistant properties of SiNx films prepared by PECVD” Thin Solid Film 333 (1998) 71.
[46]H. Y. Low and S. J. Chua, “Mechanical properties of organic light-emitting thin films deposited on polymer-based barrier substrate: potential for flexible organic light-emitting displays” Mater. Lett. 53 (2002) 227.
[47]C. Juang, J. H. Chang and R. Y. Hwang, “Properties of very low temperature plasma deposited silicon nitride films” J. Vac. Sci. Technol. B 10 (1992) 1221.
[48]T. M. Klein, T. M. Anderson, A. I. Chowdhury and G. N. Parsons, “Hydrogenated silicon nitride thin films deposited between 50 and 250°C using nitrogen/silane mixtures with helium dilution” J. Vac. Sci. Technol. A 17 (1999) 108.
[49]W. Xu, T. Fujimoto and I. Kojima, “Preparation and characterization of smooth and dense silicon nitride thin films” Thin Solid Film 394 (2001) 109.
[50]W. R. Hall, K. K. Dohrer, M. R. Tant and I. D. Sand, “A diffusion model for water vapor transmission through microporous polyethylene/CaCo3 films” Colloids and Surfaces A: Physicochem. Eng. Aspects 187 (2001) 483.
[51]J. Comyn, in: J. Comyn(Ed.), Polymer Permeability, Elsevier Applied Science, London and New York 1986.
[52]R. S. Kumar, M. Auch, E. Ou, G. Ewald and C. Soo Jin, “Low moisture permeation measurement through polymer substrates for organic light emitting devices” Thin Solid Films 417 (2002) 120.
[53]B. M. Henry, A. G. Erlat, A. McGuigan, C. R. M. Grovenor, G. A. D. Briggs, Y. Tsukahara, T. Miyamoto, N. Noguchi and T. Niijima, “Characterization of transparent aluminium oxide and indium tin oxide layers on polymer substrates” Thin Solid Films 382 (2001) 194.
[54]A. P. Roberts, B. M. Henry, A. P. Sutton, C. R. M. Grovenor, G. A. D. Briggs, T. Miyamoto, M. Kano, Y. Tsukahara and M. Yanaka, “Gas permeation in silicon-oxide/polymer (SiOx/PET) barrier films: role of the oxide lattice, nano-defects and macro-defects” J. Membr. Sci. 208 (2002) 75.
[55]D. H. Kim, Y. D. Park, Y. S. Jang, H. C. Yang, Y. H. Kim, J. I. Han, D. G. Moon, S. J. Park, T. Y. Chang, C. W. Chang, M. K. Joo, C. Y. Ryu and K. W. Cho, “Enhancement of field-effect mobility due to surface-mediated molecular ordering in regioregular polythiophene thin film transistors” Adv. Funct. Mater. 15 (2005) 77.
[56]P. Vanlaeke, A. Swinnen, I. Haeldermans, G. Vanhoyland, T. Aernouts, D. Cheyns, C. Deibel, J. D’Haen, P. Heremans, J. Poortmans, J.V. Manca, “P3HT/PCBM bulk heterojunction solar cells: Relation between morphology and electro-optical characteristics” Sol. Energy Mater. Sol. Cells 90 (2006) 2150.
[57]楊小青“Application of computer simulation in the investigation of photoelectric material”博士論文 國立中山大學 (2004)。
[58]石政言“Improvement of short-circuit current density of organic solar cells by using post-treatments and different organic solvents” 碩士論文 國立東華大學 (2005)。
[59]余樹禎“晶體之結構與性質”渤海堂文化公司 (1989)。
[60]“PERMATRAN-W Model 3/61 Operator’s Manual” mocon Chaper 4-5.
[61]“OX-TRAN Model 2/61 Operator’s Manual” mocon Chaper 4-5.
[62]G. Nisato, P. C. P. Bouten, P. J. Slikkerveer, W. D. Bennett, G. L. Graff, N. Rutherford and L. Wiese, “Evaluating high performance diffusion barrier: the calcium test” Proc. Asia Display/IDW01 (2001)
[63]N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, “Semiconducting polymers (as donors) and buckminsterfullerene (as acceptor): photoinduced electron transfer and heterojunction devices” Science 258 (1992) 1474.
[64]S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz and J. C. Hummelen, “2.5% efficient organic plastic solar cells” Appl. Phys. Lett. 78 (2001) 841.
[65]X. Yang and J. Loos, “Toward high-performance polymer solar cells: The importance of morphology control” Macromolecules 40 (2007) 1353.
[66]J. K. J. Duren, X. Yang, J. Loos, C. W. T. Bulle-Lieuwma, A. B. Sieval, J. C. Hummelen and R. A. J. Janssen, “Relating the morphology of poly(p-phenylene vinylene)/methanofullerene blends to solar-cell performance” Adv. Funct. Mater. 14 (2004) 425.
[67]V. Shrotriya, J. Ouyang, R. J. Tseng, G. Li and Y. Yang, “Absorption spectra modification in poly(3-hexylthiophene):methanofullerene blend thin films” Chem. Phys. Lett. 411 (2005) 138.
[68]D. Chirvase, J. Parisi, J. C. Hummelen and V. Dyakonov, “Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites” Nanotechnology 15 (2004) 1317.
[69]A. K. Pandey and J. M. Nunzi, “Efficient flexible and thermal stable pentancene/C60 small molecule based organic solar cells,” Appl. Phys. Lett. 89 (2006) 213506.
[70]T. Erd, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stuhn, P. Schilinsky, C. Waldauf and C. J. Brabec, “Correlation between structural and optical properties of composite polymer/fullerene film for organic solar cells” Adv. Funct. Mater. 15 (2005) 1193.
[71]G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang and Y. Yang, “Solvent Annealing-effect in polymer solar cells based on poly ( 3-hexylthiophene ) and methanofullerenes” Adv. Funct. Mater. 17 (2007) 1636.
[72]F. Monestier, J. -J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend ” Sol. Energy Mater Sol. Cells 91 (2007) 405.
[73]G. Li, V. Shrotriya, Y. Yao and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene)” J. Appl. Phys. 98 (2005) 043704.
[74]S. H. Jin, B. V. K. Naidu, H. S. Jeon, S. M. Park, J. S. Park, S. C. Kim, J. W. Lee and Y. S. Gal, “Optimization of process parameters for high-efficiency polymer photovoltaic devices based on P3HT ︰PCBM system” Sol. Energy Mater Sol. Cells 91 (2007) 1187.
[75]H. K. Kim, D. G. Kim, K. S. Lee, M. S. Huh, S. H. Jeong, K. I. Kim and T. Y. Seong, “Plasma damage-free sputtering of indium tin oxide cathode layers for top-emitting organic light-emitting diodes” Appl. Phys. Lett. 86 (2005) 183503.
[76]J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer” Adv. Mater. 18 (2006) 572.
[77]A. Hayakawa, O. Yoshikawa, T. Fujieda, K. Uehara and S. Yoshikawa, “High performance polythiophene/fullerene bulk-heterojunction solar cell with a TiOx hole blocking layer” Appl. Phys. Lett. 90 (2007) 163517.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊