跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/29 01:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:尤譽姍
研究生(外文):Yu-Shan Yu
論文名稱:普來氏月桃之抗氧化性、誘發細胞凋亡與抗發炎特性之研究
論文名稱(外文):Antioxidant activity, induction of apoptosis and anti-inflammatory action of Alpinia pricei Hayata
指導教授:顏國欽顏國欽引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:155
中文關鍵詞:普來氏月桃抗氧化性多酚化合物細胞凋亡血癌細胞發炎反應NF-κB
外文關鍵詞:Alpinia pricei Hayataantioxidant activityphenolic compoundscell apoptosisHL-60 cellsinflammatoryNF-κB
相關次數:
  • 被引用被引用:5
  • 點閱點閱:462
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
普來氏月桃 (Alpinia pricei Hayata)為薑科月桃屬植物,是台灣原生種之月桃植物,分布於亞洲地區,具有抗高血壓、抗過敏、抗傷害、抗血小板凝集及抗痙攣等功效。但目前仍未有針對普來氏月桃功能性評估之研究被報導,因此本研究主要探討普來氏月桃之抗氧化性、誘發細胞凋亡與抗發炎特性。內容主要分成三部分:(一) 普來氏月桃之抗氧化性及其活性成分、(二) 普來氏月桃透過死亡受體及粒腺體途徑誘發人類血癌細胞凋亡與(三) 普來氏月桃及其活性成分抑制LPS誘導RAW 264.7巨噬細胞發炎反應之影響。
首先探討普來氏月桃乙醇萃取物 (70% ethanol extracts of Alpinia pricei Hayata, EEAP)之抗氧化性及其活性成分。由總多酚、trolox equivalent antioxidant capacity (TEAC)、oxygen-radical absorbance capacity (ORAC)及cellular antioxidant activity (CAA) assay之結果得知,EEAP具有良好之抗氧化力。此外,2.5 μg/mL之EEAP可有效抑制Cu2+誘導LDL之氧化修飾,減少共軛雙烯及thiobarbituric acid reactive substances (TBARS)之生成。在彗星試驗法中,EEAP可降低由H2O2所誘導的DNA損傷。利用HPLC分析EEAP中之酚酸及類黃酮成分,發現EEAP含有chlorogenic acid (48.4 mg/g extract)、pinocembrin (12.3 mg/g extract)、caffeic acid (3.1 mg/g extract)、ferulic acid (1.2 mg/g extract)、rutin (0.9 mg/g extract)、p-hydroxybenzoic acid (0.56 mg/g extract)、apigenin (4.6 μg/g extract)以及curcumin (4.5 μg/g extract)。推測EEAP因含有許多多酚類物質,使其具有良好之抗氧化性,可延緩LDL之氧化修飾,亦可減少DNA之氧化損傷。
接著進一步探討EEAP之抗癌活性及其分子機轉。研究中將EEAP處理多種人類癌細胞探討其對細胞存活率之影響,發現EEAP對CH27、HL-60及A549細胞之抑制效果最佳,IC50濃度分別為49、59及89.9 μg/mL。經由PI染色後發現EEAP可顯著增加CH27、HL-60及A549細胞 sub-G1 phase之數量,其中以HL-60細胞最為顯著。以EEAP處理HL-60細胞後,利用Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI)進行雙染分析,由結果得知EEAP可使早期及晚期凋亡之細胞增加。以25 μg/mL之EEAP處理HL-60細胞後可明顯看到細胞核濃縮及粒腺體膜電位 (mitochondria membrane potential, ΔΨm)喪失的現象。由western blot之結果得知,EEAP可藉由死亡受體及粒腺體途徑誘發血癌細胞凋亡。本研究亦發現EEAP所含之caffeic acid、apigenin、curcumin及pinocembrin可顯著抑制血癌細胞生長,其IC50濃度分別為84.2、7.5、5.5及10.2 μM,且可顯著降低HL-60細胞之粒腺體膜電位。推測EEAP因含有caffeic acid、apigenin、curcumin及pinocembrin等多酚化合物,而具有誘發人類癌細胞凋亡之潛力。
最後利用RAW 264.7巨噬細胞探討EEAP與其活性成分抑制發炎反應之影響及其分子機轉探討。實驗結果發現25 μg/mL之EEAP可抑制lipopolysaccharide (LPS)誘導nitric oxide (NO)與prostaglandin E2 (PGE2)之產生,且可抑制LPS誘導inducible nitric oxide synthase (iNOS)與cyclooxygenase-2 (COX-2)之蛋白質及基因表現。EEAP中只有apigenin、curcumin與pinocembrin具有抑制LPS誘導NO與PGE2生成之效果。此外apigenin、curcumin與pinocembrin亦可抑制LPS誘導iNOS與COX-2之蛋白質及基因表現。EEAP與pinocembrin可抑制LPS誘導nuclear factor-kappa B (NF-κB)轉位進入核內及抑制其轉錄活性。此外EEAP與pinocembrin可抑制LPS誘導胞內活性氧之產生與p47phox蛋白質之表現。Pinocembrin亦可透過抑制mitogen-activated protein kinase (MAPK)之磷酸化而調控NF-κB活化。EEAP及其活性成分pinocembrin可抑制LPS所誘導之NO與PGE2生成,主要是透過抑制NF-κB活化、減少胞內活性氧產生以及抑制MAPK蛋白磷酸化而達到抗發炎之作用。
綜合以上結果,EEAP因含有酚酸及類黃酮成分而具有良好之抗氧化力,能抑制LDL之氧化及減少DNA之氧化損傷。EEAP因含有具生理活性之多酚化合物使其可透過Fas-及mitochondria-pathway誘發血癌細胞凋亡。且EEAP及其抗發炎活性成分pinocembrin可透過抑制NF-κB活化、減少ROS生成及調控MAPK pathway而具有抗發炎作用。
Alpinia pricei Hayata (Zingiberaceae) is cultivated throughout Asia and is an endemic plant in Taiwan. Alpinia species have been widely used as a medicine for antihypertension, antiallergy, antinociception, antiplatelet and antispasm. However, limited scientifically confirmed information is available on other biological functions of A. pricei Hayata. The aims of this study were to evaluate antioxidant activity, apoptosis inducing activity and anti-inflammatory properties of Alpinia pricei Hayata. There are three topics included in this study: (1) Antioxidant activity and bioactive constituents of Alpinia pricei Hayata; (2) Induction of apoptosis by Alpinia pricei Hayata in human leukemia cells via a Fas- and mitochondria-mediated pathway; (3) Anti-inflammatory effect of Alpinia pricei Hayata and its active compounds in lipopolysaccharide-stimulated RAW 264.7 macrophages.
The antioxidant activity and bioactive compounds of 70% ethanol extracts from Alpinia pricei Hayata (EEAP) were investigated. The results of total phenolics content, trolox equivalent antioxidant capacity (TEAC), oxygen-radical absorbance capacity (ORAC) and the cellular antioxidant activity (CAA) indicated revealed that EEAP had good antioxidant activity. From the formation of conjugated diene and thiobarbituric acid reactive substances (TBARS), EEAP (2.5 μg/mL) was found to possess inhibitory effect on the oxidative modification of low-density lipoprotein (LDL) induced by Cu2+. H2O2-induced DNA damage in human lymphocytes was significantly decreased by EEAP as determined by comet assay. An HPLC analysis revealed that EEAP contained phenolic compounds such as chlorogenic acid (48.4 mg/g extract), pinocembrin (12.3 mg/g extract), caffeic acid (3.1 mg/g extract), ferulic acid (1.2 mg/g extract), rutin (0.9 mg/g extract), p-hydroxybenzoic acid (0.56 mg/g extract), apigenin (4.6 μg/g extract) and curcumin (4.5 μg/g extract). These findings suggest that phenolics and flavonoids in EEAP may directly contribute to the antioxidant activity, the inhibitory effect on LDL oxidative modification and protection of DNA damage of EEAP.
The anti-cancer activity and their molecular mechanism of EEAP were also investigated. First, the cytotoxicity effect of EEAP on various human cancer cells was studied. The results indicated that EEAP had relatively high inhibitory activities in CH27, HL-60 and A549 cells with IC50 values of 49, 59 and 89.9 μg/mL, respectively. Treatment of CH27, HL-60 and A549 cells with EEAP markedly increased accumulation of the sub-G1 phase (apoptotic cells). The results also indicated that EEAP had the highest pro-apoptotic activities in HL-60 human leukemia cells among the tested cancer cells. Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) apoptosis flow cytometric assay showed that EEAP increased the number of early apoptotic and late apoptotic cells. PI and DAPI staining showed that apoptotic bodies appeared when cells were treated with 25 μg/mL of EEAP for 48 h. Treatment of HL-60 cells with EEAP caused the loss of mitochondria membrane potential (ΔΨm). Western blot data revealed that EEAP induced apoptosis in HL-60 cells through the Fas- and mitochondria-pathway. The results further showed that the active phenolic compounds in EEAP, including caffeic acid, apigenin, curcumin and pinocembrin, decrease HL-60 cell viability with IC50 values of 84.2, 7.5, 5.5 and 10.2 μM, respectively. Caffeic aicd, apigenin, curcumin and pinocembrin also caused a marked alteration in ΔΨm. These results demonstrate that EEAP-induced apoptotic ability in HL-60 cells can be related to its phenolic compounds, including caffeic aicd, rutin, apigenin, curcumin and pinocembrin.
Finally, the molecular mechanism underlying the anti-inflammatory properties of EEAP and its active compounds was studied using RAW 264.7 macrophages. Treatment with EEAP inhibited lipopolysaccharide (LPS)-stimulated nitric oxide (NO) and prostaglandin E2 (PGE2) production in RAW 264.7 macrophages. Western blotting and real-time RT-PCR analysis showed that EEAP treatment decreased protein and mRNA expression of LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in RAW 264.7 macrophages, respectively. In EEAP, only apigenin, curcumin and pinocembrin could inhibited LPS-stimulated NO and PGE2 production. Furthermore, apigenin, curcumin and pinocembrin decreased LPS-induced iNOS and COX-2 protein and mRNA expression in RAW 264.7 macrophages, respectively. In addition, EEAP and pinocembrin inhibited LPS-induced nuclear translocation of nuclear factor-κB (NF-κB) and NF-κB-mediated reporter gene expression. EEAP and pinocembrin also significantly inhibited LPS-induced intracellular reactive oxygen species (ROS) production and p47phox protein expression in RAW 264.7 macrophages. Pinocembrin inhibited phosphorylation of mitogen-activated protein kinase (MAPK) in LPS-stimulated RAW 264.7 macrophages. Taken together, these results indicate that EEAP and its active compound pinocembrin suppresses the LPS-induced production of NO and PGE2 by inhibiting NF-κB activation, suppression of ROS generation and inhibiting phosphorylation of MAPK.
In conclusion, the results indicate that phenolics and flavonoids in EEAP may directly contribute to the antioxidant activity, the inhibitory effect on LDL oxidative modification and protection of DNA damage of EEAP. EEAP induces apoptosis in HL-60 cells through the Fas- and mitochondria-pathway. EEAP and its active compound pinocembrin suppresses the LPS-induced production of NO and PGE2 by inhibiting NF-κB activation, suppression of ROS generation and inhibiting phosphorylation of MAPK.
全文摘要 (中)…………………………………………………… I
全文摘要 (英)…………………………………………………… IV
前言……………………………………………………………… 1
第一章、文獻整理……………………………………………… 3
壹、普來氏月桃之簡介………………………………………… 4
貳、氧化壓力…………………………………………………… 6
一、ROS的產生……………………………………………… 6
二、ROS與相關疾病………………………………………… 7
1. 癌症 (Cancer) ………………………………………… 8
2. 心血管疾病 (Cardiovascular disease) ……………… 9
3. 缺血/再灌流傷害 (Ischemic/reperfusion injury)…… 9
4. 風濕性關節炎 (Rheumatoid arthritis)………………… 10
5. 糖尿病 (Diabetes)……………………………………… 10
6. 神經功能失調 (Neurological disorders)……………… 11
7. 老化 (Aging)……………………………………………… 11
參、低密度脂蛋白的氧化與發炎及心血管疾病之關係……… 17
肆、細胞生長與死亡…………………………………………… 20
一、細胞週期………………………………………………… 20
二、細胞死亡模式…………………………………………… 20
三、細胞凋亡途徑…………………………………………… 21
四、細胞凋亡與癌症治療…………………………………… 22
伍、發炎反應………………………………………………… 25
一、一氧化氮合成酶 (nitric oxide synthase, NOS)及環氧化酶 (cyclooxygenase, COX)與發炎之關係………………… 25
二、巨噬細胞及NF-κB之活化…………………………… 26
陸、研究目的………………………………………………… 29
柒、研究架構………………………………………………… 30
第二章、普來氏月桃乙醇萃取物之抗氧化活性成分研究……………………………………………………………… 31
中文摘要……………………………………………………… 32
英文摘要……………………………………………………… 33
前言…………………………………………………………… 34
材料與方法…………………………………………………… 35
結果與討論…………………………………………………… 44
一、EEAP之總多酚化合物含量與抗氧化性………………… 44
二、EEAP對銅離子誘導LDL氧化修飾形成共軛雙烯產物及TBARS之影響………………………………………………………… 45
三、EEAP對過氧化氫誘導人類淋巴細胞DNA損傷之影響…………………………………………………………… 46
四、EEAP之活性成分分析…………………………………… 47
第三章、普來氏月桃乙醇萃取物透過死亡受體及粒腺體途徑誘發人類血癌細胞凋亡…………………………………………… 58
中文摘要……………………………………………………… 59
英文摘要……………………………………………………… 60
前言…………………………………………………………… 62
材料與方法…………………………………………………… 63
結果…………………………………………………………… 71
一、EEAP對各種人類癌細胞生長之影響…………………… 71
二、EEAP誘導CH27、A549及HL-60細胞凋亡之影響………… 71
三、EEAP誘導HL-60細胞凋亡與壞死之影響……………… 72
四、EEAP對人類淋巴細胞生長之影響…………………… 72
五、EEAP對HL-60細胞核型態之影響……………………… 72
六、EEAP對HL-60細胞粒腺體膜電位之影響……………… 73
七、EEAP對HL-60細胞之Fas、FasL、caspase-8與tBid蛋白質表現之影響……………………………………………………………… 73
八、EEAP對HL-60細胞之Bcl-2家族蛋白質表現之影響…………………………………………………………………… 73
九、EEAP對HL-60細胞之caspase-9、caspase-3與PARP蛋白質表現及caspase-9與caspase-3活性之影響……………………… 74
十、Chlorogenic acid、p-hydroxybenzoic acid、caffeic acid、ferulic acid、rutin、apigenin、curcumin及pinocembrin對HL-60細胞存活率之影響………………………………………… 74
十一、Caffeic acid、apigenin、curcumin及pinocembrin對HL-60細胞粒腺體膜電位之影響…………………………………… 75
討論…………………………………………………………… 76
第四章、普來氏月桃乙醇萃取物及其活性成分抑制LPS誘導RAW 264.7巨噬細胞發炎反應之影響……………………………… 94
中文摘要……………………………………………………… 95
英文摘要……………………………………………………… 96
前言…………………………………………………………… 98
材料與方法…………………………………………………… 100
結果…………………………………………………………… 109
一、EEAP對RAW 264.7巨噬細胞存活率之影響………… 109
二、EEAP抑制LPS誘導RAW 264.7巨噬細胞一氧化氮生成之影響………………………………………………………… 109
三、EEAP抑制LPS誘導RAW 264.7巨噬細胞前列腺素E2生成之影響…………………………………………………………… 109
四、Chlorogenic acid、p-hydroxybenzoic acid、caffeic acid、ferulic acid、rutin、apigenin、curcumin及pinocembrin對RAW 264.7巨噬細胞存活率之影響…………………………… 109
五、Chlorogenic acid、p-hydroxybenzoic acid、caffeic acid、ferulic acid、rutin、apigenin、curcumin及pinocembrin抑制LPS誘導RAW 264.7巨噬細胞一氧化氮生成之影響…………………………………………………………… 110
六、Apigenin、curcumin及pinocembrin抑制LPS誘導RAW 264.7巨噬細胞前列腺素E2生成之影響……………………………… 110
七、EEAP及其活性成分對LPS誘導RAW 264.7巨噬細胞之iNOS及COX-2蛋白質表現之影響………………………………………… 111
八、EEAP及其活性成分對LPS誘導RAW 264.7巨噬細胞中iNOS、COX-2、IL-6及TNF-α基因表現之影響……………………… 111
九、EEAP及其活性成分對LPS誘導RAW 264.7巨噬細胞核內磷酸化p65蛋白質表現之影響………………………………………… 112
十、EEAP及其活性成分對LPS誘導RAW 264.7巨噬細胞中NF-κB轉錄活性之影響………………………………………………… 112
十一、EEAP及其活性成分對LPS誘導巨噬細胞產生ROS之影響………………………………………………………… 112
十二、EEAP對LPS誘導RAW 264.7巨噬細胞中p47phox蛋白質表現之影響………………………………………………………… 113
十三、Pinocembrin對LPS誘導RAW 264.7巨噬細胞中磷酸化ERK1/2、JNK及p38蛋白質表現之影響…………………………… 113
討論…………………………………………………………… 114
第五章、總結論………………………………………………… 139
第六章、參考文獻……………………………………………… 140
李時珍。1985。本草綱目。第一書局。1806頁。
林國華。1987。常見中草藥。好兄弟出版社。222頁。
徐建成。2006。複方中草藥與雞血藤抑制四氯化碳誘導大鼠肝損傷功效評估。中興大學食品暨應用生物科技學系碩士論文。
張永勳。2000。台灣原住民藥用植物彙編。行政院衛生署中醫藥委員會。490頁。
許詩淵。1988。月桃根莖之成分對於各種胃及十二指腸損傷之保護作用。中華藥學雜誌:41-48。
郭育妏。2006。台灣產月桃屬植物分類與根莖精油分析之研究。國立嘉義大學林業暨自然資源研究所碩士論文。
黃鼎文。2005。台灣五葉松松針之抗氧化及抗發炎效果。國立中興大學食品科學系碩士論文。
Abaza, L., Talorete, T. P., Yamada, P., Kurita, Y., Zarrouk, M. and Isoda, H. 2007. Induction of growth inhibition and differentiation of human leukemia HL-60 cells by a Tunisian gerboui olive leaf extract. Biosci. Biotechnol. Biochem. 71: 1306-1312.
Adams, J. M. and Cory, S. 1998. The Bcl-2 protein family: Arbiters of cell survival. Science 281: 1322-1326.
Ahmad, S., Israf, D. A., Lajis, N. H., Shaari, K., Mohamed, H., Wahab, A. A., Ariffin, K. T., Hoo, W. Y., Aziz, N. A., Kadir, A. A., Sulaiman, M. R. and Somchit, M. N. 2006. Cardamonin, inhibits pro-inflammatory mediators in activated RAW 264.7 cells and whole blood. Eur. J. Pharmacol. 538: 188-194.
Aikens, J. and Dix, T. A. 1991. Perhydroxyl radical (HOO•) initiated lipid-peroxidation-the role of fatty-acid hydroperoxides. J. Biol. Chem. 266: 15091-15098.
Ajizian, S. J., English, B. K. and Meals, E. A. 1999. Specific inhibitors of p38 and extracelluar signal-regulated kinase mitogen-activated protein kinase pathways block inducible nitric oxide synthase and tumor necrosis factor accumulation in murine macrophages stimulated with lipopolysaccharide and interferon-γ. J. Infect. Dis. 179: 939-944.
Amer, J., Goldfarb, A. and Fibach, E. 2003. Flow cytometric measurement of reactive oxygen species production by normal and thalassaemic red blood cells. Eur. J. Haematol. 70: 84-90.
Andalibi, A., Liao, F., Imes, S., Fogelman, A. M. and Lusis, A. J. 1993. Oxidized lipoproteins influence gene expression by causing oxidative stress and activating the transcription factor NF-kappa B. Biochem. Soc. Trans. 21: 651-655.
Andersen, J. K. 2004. Oxidative stress in neurodegeneration: Cause or consequence? Nat. Rev. Neurosci. 5: S18-S25.
Andersson, M., Stenqvist, P. and Hellman, B. 2007. Interindividual differences in initial DNA repair capacity when evaluating H2O2-induced DNA damage in extended-term cultures of human lymphocytes using the comet assay. Cell Biol. Toxicol. 23: 401-411.
Arambewela, L. S., Arawwawala, L. D. and Ratnasooriya, W. D. 2004. Antinociceptive activities of aqueous and ethanolic extracts of Alpinia calcarata rhizomes in rats. J. Ethnopharmacol. 95: 311-316.
Arnao, M. B., Cano, A., Hernadez-Ruiz, J., Carcia-Canovas, F. and Acosta, M. 1996. Inhibition by L-ascorbic acid and other antioxidants of the 2,2’-azino-bis (3-ethyl-benzthia zoline-6-sulfonic acid) oxidation catalyzed by peroxidase: a new approach for determining total antioxidant status of foods. Anal. Biochem. 236: 225-261.
Babior, B. M. 2000. Phagocytes and oxidative stresss. Am. J. Med. 109: 33-44.
Bauerova, K. and Bezek, S. 1999. Role of reactive oxygen and nitrogen species in etiopathogenesis of rheumatoid arthritis. Gen. Physiol. Biophys. 18: 15-20.
Becker, L. B. 2004. New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovasc. Res., 61: 461-470.
Berliner, J. A., Territo, M. C., Sevanian, A., Ramin, S., Kim, J. A., Bamshad, B., Esterson, M. and Fogelman, A. M. 1990. Minimally modified low density lipoprotein stimulates monocyte endothelial interactions. J. Clin. Invest. 85: 1260-1266.
Berry, C. E. and Hare, J. M. 2004. Xanthine oxidoreductase in the cardiovascular system: Molecular mechanisms and pathophysiologic implications. J. Physiol. 555: 589-606.
Bezerra, M. A., Leal-Cardoso, J. H., Coelho-De-Souza, A. N., Criddle, D. N. and Fonteles, M. C. 2000. Myorelaxant and antispasmodic effects of the essential oil of Alpinia speciosa on rat ileum. Phytother. Res. 14: 549-551.
Block, G., Patterson, B. and Subar, A. 1992. Fruit, vegetables and cancer prevention: a review of the epidemiological evidence. Nutr. Cancer 18: 1-19.
Bor, J. Y., Chen, H. Y. and Yen, G. C. 2006. Evaluation of antioxidant activity and inhibitory effect on nitric oxide production of some common vegetables. J. Agric. Food Chem. 54: 1680-1686.
Bourne, L. and Rice-Evans, C. A. 1997. The effect of the phenolic antioxidant ferulic acid on the oxidation of low density lipoprotein depends on the pro-oxidant used. Free Radic. Res. 27: 337-344.
Brownlee, M. 1995. Advanced protein glycosylation in diabetes and aging. Annu. Rev. Med. 46: 813-820.
Brownlee, M. and Cerami, A. 1981. The biochemistry of the complications of diabetes-mellitus. Ann. Rev. Biochem. 50: 385-432.
Buege, J. A. and Aust, S. D. 1978. Microsomal lipid peroxidation. Methods Enzymol. 52: 302-310.
Butterfield, D. A., Castegna, A., Lauderback, C. M. and Drake, J. 2002. Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol. Aging 23: 655-664.
Cadenas, E. and Davies, K. J. A. 2000. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic. Biol. Med. 29: 222-230.
Cadenas, E. and Sies, H. 1998. The lag phase. Free. Radic. Res. 28: 601-609.
Campbell, N. A. and Reece, J. B. 2002. The cell cycle. In: Biology (Campbell, N. A. 84 and Reece, J. B. eds.), pp: 226. Benjamin Cummings, San Francisco.
Cao, G., Sofic, E. and Prior, R. L. 1996. Antioxidant capacity of tea and common vegetables. J. Agric. Food Chem. 44: 3426-3431.
Carr, A. C., McCall, M. R. and Frei, B. 2000. Oxidation of LDL by myeloperoxidase and reactive nitrogen species: reaction pathways and antioxidant protection. Arterioscler. Thromb. Vasc. Biol. 20: 1716-1723.
Carter, A. B., Knudtson, K. L., Monick, M. M. and Hunninghake, G. W. 1999. The p38 mitogen-activated protein kinase is required for NF-κB-dependent gene expression. The role of TATA-binding protein (TBP). J. Biol. Chem. 274: 30858-30863.
Chen, C. C. and Wang, J. K. 1998. p38 but not p44/42 mitogen-activated protein kinase is required for nitric oxide synthase induction mediated by lipopolysaccharide in RAW 264.7 macrophages. Mol. Pharmacol. 55: 481-488.
Chen, I. N., Chang, C. C., Ng, C. C., Wang, C. Y., Chyu, Y. T. and Chang, T. L. 2008. Antioxidant and antimicrobial activity of Zingiberaceae plants in Taiwan. Plant. Foods Hum. Nutr. 63: 15-20.
Chen, Y. H., Chen, H. Y., Hsu, C. L. and Yen, G. C. 2007. Induction of apoptosis by the Lactuca indica L. in human leukemia cell line and its active components. J. Agric. Food Chem. 55: 1743-1749.
Cho, Y. C., Kim, H. J., Kim, Y. J., Lee, K. Y., Choi, H. J., Lee, I. S. and Kang, B. Y. 2008. Differential anti-inflammatory pathway by xanthohumol in IFN-gamma and LPS-activated macrophages. Int. Immunopharmacol. 8: 567-573.
Choi, C. Y., Park, K. R., Lee, J. H., Jeon, Y. J., Liu, K. H., Oh, S., Kim, D.E. and Yea, S. S. 2007. Isoeugenol suppression of inducible nitric oxide synthase expression is mediated by down-regulation of NF-kappaB, ERK1/2, and p38 kinase. Eur. J. Pharmacol. 576: 151-159.
Choi, S. I., Jeong, C. S., Cho, S. Y. and Lee, Y. S. 2007. Mechanism of apoptosis induced by apigenin in HepG2 human hepatoma cells: involvement of reactive oxygen species generated by NADPH oxidase. Arch. Pharm. Res. 30: 1328-1335.
Crofford, L. J., Wilder, R. L., Ristimäki, A. P., Sano, H., Remmers, E. F., Epps, H. R. and Hla, T. 1994. Cyclooxygenase-1 and -2 expression in rheumatoid synovial tissues. Effects of interleukin-1 beta, phorbol ester, and corticosteroids. J. Clin. Invest. 93: 1095-1101.
Cunnane, G., FitzGerald, O., Beeton, C., Cawston, T. E. and Bresnihan, B. 2001. Early joint erosions and serum levels of matrix metalloproteinase 1, matrix metalloproteinase 3, and tissue inhibitor of metalloproteinases 1 in rheumatoid arthritis. Arth. Rheumat. 44: 2263-2274.
Cushing, S. D., Berliner, J. A., Valente, A. J., Territo, M. C., Navab, M., Parhami, F., Gerrity, R., Schwartz, C. J. and Fogelman, A. M. 1990. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc. Natl. Acad. Sci. USA 87: 5134-5138.
Dalle-Donne, I., Rossi, R., Colombo, R., Giustarini, D. and Milzani, A. 2006. Biomarkers of oxidative damage in human disease. Clin. Chem. 52: 601-623.
Dauphinee, S. M. and Karsan, A. 2006. Lipopolysaccharide signaling in endothelial cells. Lab. Invest. 86: 9-22.
DeCoursey, T. E. and Ligeti, E. 2005. Regulation and termination of NADPH oxidase activity. Cell. Mol. Life Sci. 62: 2173-2193.
DeLeo, F. R., Renee, J., McCormick, S., Nakamura, M., Apicella, M., Weiss, J. P. and Nauseef, W. M. 1998. Neutrophils exposed to bacterial lipopolysaccharide upregulate NADPH oxidase assembly. J. Chin. Invest. 101: 455-463.
Devaraj, S. and Jialal, I. 2000. Antioxidants and vitamins to reduce cardiovascular disease. Curr. Atheroscler. Rep. 2: 342-351.
Dhalla, N. S., Temsah, R. M. and Netticadan, T. 2000. Role of oxidative stress in cardiovascular diseases. J. Hypertens. 18: 655-673.
Dröge, W. 2002. Free radicals in the physiological control of cell function. Physiol. Rev. 82: 47-95.
Fan, G. J., Kang, Y. H., Han, Y. N. and Han, B. H. 2007. Platelet-activating factor (PAF) receptor binding antagonists from Alpinia officinarum. Bioorg. Med. Chem. Lett. 17: 6720-6722.
Fantuzzi, G., and Dinarello, C.A. 1996. The inflammatory response in interleukin-1 beta-deficient mice: comparison with other cytokine-related knock-out mice. J. Leukoc. Biol. 59: 489-493.
Firestein, G. S., Echeverri, F., Yeo, M., Zvaifler, N. J. and Green, D. R. 1997. Somatic mutations in the p53 tumor suppressor gene in rheumatoid arthritis synovium. Proc. Natl. Acad. Sci. USA 94: 10895-10900.
Fossel, M. 2003. Cells, Aging and Human Disease. New York: Oxford University Press.
García-Alonso, M., de Pascual-Teresa, S., Santos-Buelga, C. and Rivas-Gonzalo, J. C. 2004. Evaluation of the antioxidant properties of fruits. Food Chem. 84: 13-18.
Ghosh, S. and Karin, M. 2002. Missing pieces in the NF-κB puzzle. Cell 109: 81-96.
Gordon, S. 2003. Alternative activation of macrophages. Nat. Rev. Immunol. 3: 23-35.
Görlach, A., Klappa, P. and Kietzmann, T. 2006. The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control. Antioxid. Redox. Signal. 8: 1391-1418.
Granger, D. N., Stokes, K. Y., Shigematsu, T., Cerwinka,W. H., Tailor, A. and Krieglstein, C. F. 2001. Splanchnic ischaemia-reperfusion injury: Mechanistic insights provided by mutant mice. Acta Physiol. Scand. 173: 83-91.
Green, D. R. and Reed, J. C. 1998. Mitochondria and apoptosis. Science 281: 1309-1312.
Griguer, C. E., Oliva, C. R., Kelley, E. E., Giles, G. I., Lancaster, J. R. and Gillespie, G. Y. 2006. Xanthine oxidase-dependent regulation of hypoxia-inducible factor in cancer cells. Cancer Res. 66: 2257-2263.
Guha, M. and Mackman, N. 2001. LPS induction of gene expression in human monocytes. Cell Signal. 13: 85-94.
Halliwell, B. and Gutteridge, J. M. C. 2007. Free radicals in biology and medicine (fourth edition). Oxford University Press.
Hammer, K. D., Hillwig, M. L., Solco, A. K., Dixon, P. M., Delate, K., Murphy, P. A., Wurtele, E. S. and Birt, D. F. Inhibition of prostaglandin E2 production by anti-inflammatory Hypericum perforatum extracts and constituents in RAW 264.7 mouse macrophage cells. J. Agric. Food Chem. 55: 7323-7331.
Hansson, M., Asea, A., Ersson, U., Hermodsson, S. and Hellstrand, K. 1996. Induction of apoptosis in NK cells by monocyte-derived reactive oxygen metabolites. J. Immunol. 156: 42-47.
Hare, J. M. and Stamler, J. S. 2005. NO/redox disequilibrium in the failing heart and cardiovascular system. J. Clin. Invest., 115: 509-517.
Harman, D. 1956. Aging-A theory based on free-radical and radiation-chemistry. J. Gerontol. 11: 298-300.
Hayflick, L. 1998. How and why we age. Exp. Gerontol. 33: 639-653.
Hehner, S. P., Breitkreutz, R., Shubinsky, G., Unsoeld, H., Schulze-Osthoff, K., Schmitz, M. L. and Dröge, W. 2000. Enhancement of T cell receptor signaling by a mild oxidative shift in the intracellular thiol pool. J. Immunol. 165: 4319-4328.
Hengartner, M. O. 2000. The biochemistry of apoptosis. Nature 407: 770-776.
Holttum, R. E. 1949. The Zingiberaceae of the Malay Peninsula. Biol. Rev. Camb. Philos. Soc. 24: 267-296.
Hsieh, C. L., Yen, G. C. and Chen, H. Y. 2005. Antioxidant activities of phenolic acids on ultraviolet radiation-induced erythrocyte and low density lipoprotein oxidation. J. Agric. Food Chem. 53: 6151-6155.
Hsu, C. L. and Yen, G. C. 2006. Induction of cell apoptosis in 3T3-L1 pre-adipocytes by flavonoids is associated with their antioxidant activity. Mol. Nutr. Food Res. 50: 1072-1079.
Hsu, C. L., Huang, S. L. and Yen, G. C. 2006. Inhibitory effect of phenolic acids on the proliferation of 3T3-L1 preadipocytes in relation to their antioxidant activity. J. Agric. Food Chem. 54: 4191-4197.
Hsu, C. L., Lo, W. H. and Yen, G. C. 2007. Gallic acid induces apoptosis in 3T3-L1 pre-adipocytes via a Fas- and mitochondrial-mediated pathway. J. Agric. Food Chem. 55: 7359-7365.
Hu, W. and Kavanagh, J. J. 2003. Anticancer therapy targeting the apoptotic pathway. Lancet Oncol. 4: 721-729.
Huang, S. L., Hsu, C. L. and Yen, G. C. 2006. Growth inhibitory effect of quercetin on SW 872 human liposarcoma cells. Life Sci. 79: 203-209.
Hulthe, J. and Fagerberg, B. 2002. Circulating oxidized LDL is associated with subclinical atherosclerosis development and inflammatory cytokines (AIR Study). Arterioscler. Thromb. Vasc. Biol. 22: 1162-1167.
Hwang, D., Jang, B. C., Yu, G. and Boudreau, M. 1997. Expression of mitogen-inducible cyclooxygenase induced by lipopolysaccharide. Biochem. Pharmacol. 54: 87-96.
Ialenti, A., Monocada, S. and Di Rosa, M. 1993. Modulation of adjuvant by endogenous nitric oxide. Br. J. Pharmacol. 110: 701-706.
Inami, S., Takano, M., Yamamoto, M., Murakami, D., Tajika, K., Yodogawa, K., Yokoyama, S., Ohno, N., Ohba, T., Sano, J., Ibuki, C., Seino, Y. and Mizuno, K. 2007. Tea catechin consumption reduces circulating oxidized low-density lipoprotein. Int. Heart J. 48: 725-732.
Inoue, H., Yokoyama, C., Hara, S., Tone, Y. and Tanabe, T. 1995. Transcriptional regulation of human prostaglandin-endoperoxide synthase-2 gene by lipopolysaccharide and phorbol ester in vascular endothelial cells. Involvement of both nuclear factor for interleukin-6 expression site and cAMP response element. J. Biol. Chem. 270: 24965-24971.
Israf, D. A., Khaizurin, T. A., Syahida, A., Lajis, N. H. and Khozirah, S. Cardamonin inhibits COX and iNOS expression via inhibition of p65NF-kappaB nuclear translocation and Ikappa-B phosphorylation in RAW 264.7 macrophage cells. Mol. Immunol. 44: 673-679.
Jäättelä, M. 2002. Programmed cell death: many ways for cells to die decently. Ann. Med. 34: 480-488.
Janbaz, K. H., Saeed, S. A. and Gilani, A. H. 2004. Studies on the protective effects of caffeic acid and quercetin on chemical-induced hepatotoxicity in rodents. Phytomedicine 11: 424-430.
Janeska, B., Stefova, M. and Alipieva, K. 2007. Assay of flavonoid aglycones from the species of genus Sideritis (Lamiaceae) from Macedonia with HPLC-UV DAD. Acta. Pharm. 57: 371-377.
Jang, H. D., Chang, K. S., Huang, Y. S., Hsu, C. L., Lee, S. H. and Su, M. S. 2007. Principal phenolic phytochemicals and antioxidant activeities of three Chinese medicinal plants. Food Chem. 103: 749-756.
Jenner, P. 2003. Oxidative stress in Parkinson’s disease. Ann. Neurol. 53: S26-S36.
Johnson, D. G. and Walker, C. L. 1999. Cyclins and cell cycle checkpoints. Annu. Rev. Pharmacol. Toxicol. 39: 295- 312.
Kabe, Y., Ando, K., Hirao, S., Yoshida, M. and Handa, H. 2005. Redox regulation of NF-κB activation: distinct redox regulation between the cytoplasm and the nucleus. Antioxid. Redox Signal. 7: 395-403.
Kanno, S., Shouji, A., Tomizawa, A., Hiura, T., Osanai, Y., Ujibe, M., Obara, Y., Nakahata, N. and Ishikawa, M. 2006. Inhibitory effect of naringin on lipopolysaccharide (LPS)-induced endotoxin shock in mice and nitric oxide production in RAW 264.7 macrophages. Life Sci. 78: 673-681.
Kasparova, S., Brezova,V.,Valko, M., Horecky, J., Mlynarik,V., Liptaj, T., Vancová, O., Ulicná, O. and Dobrota. D. 2005. Study of the oxidative stress in a rat model of chronic brain hypoperfusion. Neurochem. Int. 46: 601-611.
Kavurma, M. M. and Khachigian, J. M. 2003. Signaling and transcriptional control of Fas ligand gene expression. Cell Death Differ. 10: 36-44.
Kerr, J. F., Wyllie, A. H. and Currie, A. R. 1972. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26: 239-257.
Kim, E. J., Jin, H. K., Kim, Y. K., Lee, H. Y., Lee, S. Y., Lee, K. R., Zee, O. P., Han, J. W. and Lee, H. W. 2001. Suppression by a sesquiterpene lactone from Carpesium divaricatum of inducible nitric oxide synthase by inhibiting nuclear factor-kappaB activation. Biochem. Pharmacol. 61: 903-910.
Kim, J. H., Kim, D. H., Baek, S. H., Lee, H. J., Kim, M. R., Kwon, H. J. and Lee, C. H. 2006. Rengyolone inhibits inducible nitric oxide synthase expression and nitric oxide production by down-regulation of NF-kappaB and p38 MAP kinase activity in LPS-stimulated RAW 264.7 cells. Biochem. Pharmacol. 71: 1198-1205.
Kluck, R. M., Bossy-Wetzel, E., Green, D. R. and Newmeyer, D. D. 1997. The release of cytochrome c from mitochondria: a primary site fro Bcl-2 regulation of apoptosis. Science 275: 1132-1136.
Korsmeyer, S. J., Wei, M. C., Saito, M., Weiler, S., Oh, K. J. and Schlesinger, P. H. 2000. Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ. 7: 1166-1173.
Kovacic, P. and Jacintho, J. D. 2001. Mechanisms of carcinogenesis: Focus on oxidative stress and electron transfer. Curr. Med. Chem. 8: 773-796.
Kovacic, P., Pozos, R. S., Somanathan, R., Shangari, N. and O’Brien, P. J. 2005. Mechanism of mitochondrial uncouplers, inhibitors, and toxins: Focus on electron transfer, free radicals, and structure-activity relationships. Curr. Med. Chem. 12: 2601-2623.
Krammer, P. H. 2000. CD95’s deadly mission in the immune system. Nature 407: 789-795.
Kukreja, R. C. and Hess, M. L. 1992. The oxygen free-radical system-From equations through membrane-protein interactions to cardiovascular injury and protection. Cardiovasc. Res. 26: 641-655.
Kumar, M. A., Nair, M., Hema, P. S., Mohan, J. and Santhoshkumar, T. R. 2007. Pinocembrin triggers Bax-dependent mitochondrial apoptosis in colon cancer cells. Mol. Carcinog. 46: 231-241.
Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.
Lahlou, S., Interaminense, L. F., Leal-Cardoso, J. H. and Duarte, G. P. 2003. Antihypertensive effects of the essential oil of Alpinia zerumbet and its main constituent, terpinen-4-ol, in DOCA-salt hypertensive conscious rats. Fundam. Clin. Pharmacol. 17: 323-330.
Lankin, V. Z., Tikhaze, A. K., Kapel''ko, V. I., Shepel''kova, G. S., Shumaev, K. B., Panasenko, O. M., Konovalova, G. G. and Belenkov, Y. N. 2007. Mechanisms of oxidative modification of low density lipoproteins under conditions of oxidative and carbonyl stress. Biochemistry Mosc. 72: 1081-1090.
Lazou, A., Bogoyevitch, M. A., Clerk, A., Fuller, S. J., Marshall, C. J. and Sugden, P. H. 1994. Regulation of mitogen-activated protein kinase cas-cade in adult rat heart preparations in vitro. Circ. Res. 75: 932-941.
LeBlanc, R., Catley, L. P., Hideshima, T., Lentzsch, S., Mitsiades, C. S., Mitsiades, N., Neuberg, D., Goloubeva, O., Pien, C. S., Adams, J., Gupta, D., Richardson, P.G., Munshi, N. C. and Anderson, K. C. 2002. Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res. 62: 4996-5000.
Lee, C. P. and Yen, G. C. 2006. Antioxidant activity and bioactive compounds of tea seed (Camellia oleifera Abel.) oil. J. Agric. Food Chem. 54: 779-784.
Lee, H. J., Kim, J.S. and Ryu, J. H. 2006. Suppression of inducible nitric oxide synthase expression by diarylheptanoids from Alpinia officinarum. Planta Med.72: 68-71.
Lee, S. E., Shin, H. T., Hwang, H. J. and Kim, J. H. 2003. Antioxidant activity of extracts from Alpinia katsumadai seed. Phytother. Res. 17: 1041-1047.
Liang, Y. C., Huang, Y. T., Tsai, S. H., Lin-Shiau, S. Y., Chen, C. F. and Lin, J. K. 1999. Suppression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages. Carcinogenesis 20: 1945-1952.
Liao, Y. F., Hung, H. C., Hour, T. C., Hsu, P. C., Kao, M. C., Tsay, G. J. and Liu, G. Y. 2008. Curcumin induces apoptosis through an ornithine decarboxylase-dependent pathway in human promyelocytic leukemia HL-60 cells. Life Sci. 82: 367-375.
Libby, P. 2002. Inflammation in atherosclerosis. Nature 420:868-874.
Libby, P. 2005. Inflammation and cardiovascular disease mechanisms. Am. J. Clin. Nutr. 83: 456S-460S.
Lin, Y. L. and Lin, J. K. 1997. (-)-Epigallocatechin-3-gallate blocks the induction of nitric oxide synthase by down-regulating lipopolysaccharide-induced activity of transcription factor nuclear factor-kappaB. Mol. Pharmacol. 52: 465-472.
Liochev, S. I. and Fridovich, I. 2002. The Haber-Weiss cycle-70 years later: An alternative view. Redox Rep. 7: 55-57.
Liu, S. F. and Malik, A. B. 2006. NF-κB activation as a pathological mechanism of septic shock and inflammation. Am. J. Phsiol. Lung. Cell Mol. Physiol. 290: 622-645.
Lundberg, A. S. and Weiberg, R. A. 1999. Control of the cell cycle apoptosis. Eur. J. Cancer 35: 101-125.
MacMicking, J., Xie, Q. W. and Nathan, C. 1997. Nitric oxide and macrophage function. Annu. Rev. Immunol. 15: 323-350.
Marnett, L. J. 1999. Lipid peroxidation-DNA damage by malondialdehyde. Mut. Res. 424: 83-95.
Marnett, L. J. 2000. Oxyradicals and DNA damage. Carcinogenesis 21: 361-370.
Martel-Pelletier, J., Pelletier, J. P. and Fahmi, H. 2003. Cyclooxygenase-2 and prostaglandins in articular tissues. Semin. Arthritis Rheum. 33: 155-167.
Masuda, T., Mizuguchi, S., Tanaka, T., Iritani, K., Takeda, Y. and Yonemori, S. 2000. Isolation and structure determination of new antioxidative ferulic acid glucoside esters from the rhizome of Alpinia speciosa, a Zingiberaceae plant used in Okinawan food culture. J. Agric. Food Chem. 48: 1479-1484.
Matsuda, H., Ando, S., Kato, T., Morikawa, T. and Yoshikawa, M. 2006. Inhibitors from the rhizomes of Alpinia officeinarum on production of nitric oxide in lipopolysaccharide-activated macrophages and the structural requirements of diarylheptanoids for the activity. Bioorg. Med. Chem. 14: 138-142.
Matsuda, H., Morikawa, T., Managi, H. and Yoshikawa, M. 2003a. Antiallergic principles from Alpinia galanga: structural requirements of phenylpropanoids for inhibition of degranulation and release of TNF-alpha and IL-4 in RBL-2H3 cells. Bioorg. Med. Chem. Lett. 13: 3197-3202.
Matsuda, H., Pongpiriyadacha, Y., Morikawa, T., Ochi, M. and Yoshikawa, M. 2003b. Gastroprotective effects of phenylpropanoids from the rhizomes of Alpinia galanga in rats: structural requirements and mode of action. Eur. J. Pharmacol. 471: 59-67.
Maurice, M. M., Nakamura, H., van der Voort, E. A. M., van Vliet, A. I., Staal, F. J. T., Tak, P. P., Breedveld, F. C. and Verweij, C. L. 1997. Evidence for the role of an altered redox state in hyporesponsiveness of synovial T cells in rheumatoid arthritis. J. Immunol. 158: 1458-1465.
Mayer, B. and Hemmens, B. 1997. Biosynthesis and action of nitric oxide in mammalian cells. Trends. Biochem. Sci. 22: 477-481.
McCann, S. M., Mastronardi, C., de Laurentiis, A., Rettori, V. 2005. The nitric oxide theory of aging revisited. Ann. N. Y. Acad. Sci. 1057: 64-84.
Merry, D. E. and Korsmeyer, S. J. 1997. Bcl-2 gene family in the nervous system. Ann. Rev. Neurosci. 20: 245-267.
Mertens, A. and Holvoet, P. 2001. Oxidized LDL and HDL: antagonists in atherothrombosis. FASEB. 15: 2073-2084.
Mertens-Talcott, S. U., Talcott, S. T. and Percival, S. S. 2003. Low concentrations of quercetin and ellagic acid synergistically influence proliferation, cytotoxicity and apoptosis in MOLT-4 human leukemia cells. J. Nutr. 133: 2669-2674.
Middleton Jr, E., Kandaswami, C. and Theoharides, T. C. 2000. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 52: 673-751.
Miller, D. M., Buettner, G. R. and Aust, S. D. 1990. Transition metals as catalysts of “autoxidation” reactions. Free Radic. Biol. Med. 8: 95-108.
Mohamad, H., Abas, F., Permana, D., Lajis, N. H., Ali, A. M., Sukari, M. A., Hin, T. Y. Y., Kikuzaki, H and Nakatani, N. 2004. DPPH free radical scavenger components from the fruits of Alpinia rafflesiana Wall. ex. Bak. (Zingiberaceae). Z. Naturforsch. 59: 811-815.
Moreira, P. I., Siedlak, S. L., Aliev, G., Zhu, X., Cash, A. D., Smith, M. A. and Perry, G. 2005. Oxidative stress mechanisms and potential therapeutics in Alzheimer disease. J. Neural. Transm. 112, 7:921-932.
Nagata, S. and Golstein, P. 1995. The Fas death factor. Science 267: 1449-1456.
Nakamoto, T., Inagawa, H., Takagi, K. and Soma, G. 2000. A new method of antitumor therapy with a high dose of TNF perfusion for unresectable liver tumors. Anticancer Res. 20: 4087-4096.
Nathan, C. 2002. Points of control in inflammation. Nature 42: 846-852.
Niedowicz, D. M. and Daleke, D. L. 2005. The role of oxidative stress in diabetic complications. Cell Biochem. Biophys. 43: 289-330.
Ohshima, H. and Bartsch, H. 1994. Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat. Res. 305: 253-264.
Pan, M. H., Shiau, Lin-Shiau, S. Y. and Lin, J. K. 2000. Comparative studies on the suppression of nitric oxide synthase by curcumin and its hydrogenated metabolites through down-regulation of IκB kinase and NF-κB activation in macrophages. Biochem. Pharmacol. 60: 1665-1676.
Pastor, N., Weinstein, H., Jamison, E. and Brenowitz, M. 2000. A detailed interpretation of OH radical footprints in a TBPDNA complex reveals the role of dynamics in the mechanism of sequencespecific binding. J. Mol. Biol. 304: 55-68.
Paulovich, A. G., Toczyski, D. P. and Hartwell, L. H. 1997. When checkpoints fail. Cell 88: 315-321.
Podrez, E. A., Abu-Soud, H. M. and Hazen, S. L. 2000. Myeloperoxidase-generated oxidants and atherosclerosis. Free Radic. Biol. Med. 28: 1717-1725.
Quinn, M. T., Parthasarathy, S., Fong, L. G. and Steinberg, D. 1987. Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proc. Natl. Acad. Sci. USA 84: 2995-2998.
Quiroga, E. N., Sampietro, D. A., Soberón, J. R., Sgariglia, M. A. and Vattuone, M. A. 2006. Propolis from the northwest of Argentina as a source of antifungal principles. J. Appl. Microbiol. 101: 103-110.
Rafi, M. M. and Shafaie, Y. 2007. Dietary lutein modulates inducible nitric oxide synthase (iNOS) gene and protein expression in mouse macrophage cells (RAW 264.7). Mol. Nutr. Food Res. 51: 333-340.
Rajavashisth, T., Qiao, J. H., Tripathi, S., Tripathi, J., Mishra, N., Hua, M., Wang, X. P., Loussararian, A., Clinton, S., Libby, P. and Lusis, A. 1998. Heterozygous osteopetrotic (op) mutation reduces atherosclerosis in LDL receptor-deficient mice. J. Clin. Invest. 101: 2702-2710.
Reddivari, L., Vanamala, J., Chintharlapalli, S., Safe, S. H. and Miller, J. C. Jr. 2007. Anthocyanin fraction from potato extracts is cytotoxic to prostate cancer cells through activation of caspase-dependent and caspase-independent pathways. Carcinogenesis 28: 2227-2235.
Reed, J. C., Miyashita, T., Takayama, S., Wang, H. G., Sato, T., Krajewski, S., Aimé-Sempé, C., Bodrug, S., Kitada, S. and Hanada, M. 1996. BCL-2 family proteins: regulators of cell death involved in the pathogenesis of cancer and resistance to therapy. J. Cell Biochem. 60: 23-32.
Ridnour, L. A., Isenberg, J. S., Espey, M. G., Thomas, D. D., Roberts, D. D. and Wink, D. A. 2005. Nitric oxide regulates angiogenesis through a functional switch involving thrombospondin-1. Proc. Natl. Acad. Sci. USA 102: 13147-13152.
Romanovsky, A. A., Ivanov, A. I. and Petresen, S. R. 2006. Microsomal prostaglandin E synthase-1, ephrins, and ephrin kinases as suspected therapeutic targets in arthritis. Ann. N. Y. Acad. Sci. 1069: 183-194.
Roos, W. P. and Kaina, B. 2006. DNA damage-induced cell death by apoptosis. Trends. Mol. Med. 12: 440-450.
Rosenson, R. S. 2004. Statins in therosclerosis: lipid-lowering agents with antioxidant capabilities. Atherosclerosis 173: 1-12.
Sakahira, H., Enari, M., Ohsawa, Y., Uchiyama, Y. and Nagata, S. 1999. Apoptotic nuclear morphological change without DNA fragmentation. Curr. Biol. 9: 543-546.
Sala, A., Recio, M. C., Schinella, G. R., Máñez, S., Giner, R., Cerdá-Nicolás, M. and Ríos, J. L. 2003. Assessment of the anti-inflammatory activity and free radical scavenger activity of tiliroside. Eur. J. Pharmcol. 461: 53-61.
Sayre, L. M., Smith, M. A. and Perry, G. 2001. Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr. Med. Chem. 8: 721-738.
Schieber, A., Keller, P. and Carle, R. 2001. Determination of phenolic acids and flavonoids of apple and pear by high-performance liquid chromatography. J. Chromatogr. A. 910: 265-273.
Schmezer, P., Rajaee-Behbahani, N., Risch, A., Thiel, S., Rittgen, W., Drings, P., Dienemann, H., Kayser, K. W., Schulz, V. and Bartsch, H. 2001. Rapid screening assay for mutagen sensitivity and DNA repair capacity in human peripheral blood lymphocytes. Mutagenesis 16: 25-30.
Schreck, R., Rieber, P. and Baeuerle, P. A. 1991. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kB transcription factor and HIV-1. EMBO J. 10: 2247-2258.
Schulze-Osthoff, K., Ferrari, D., Los, M., Wesselborg, S. and Peter, M. E. 1998. Apoptosis signaling by death receptors. Eur. J. Biochem. 254: 439-459.
Seeram, N. P. 2008. Berry fruits for cancer prevention: current status and future prospects. J. Agric. Food Chem. 56: 630-635.
Seeram, N. P., Adams, L. S., Henning, S. M., Niu, Y., Zhang, Y., Nair, M. G. and Heber, D. 2005. In vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice. J. Nutr. Biochem. 16 : 360-367.
Semenza, G. L. 2007. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem. J. 405: 1-9.
Shen, S. C., Chen, Y. C., Hsu, F. L. and Lee, W. R. 2003. Differential apoptosis-inducing effect of quercetin and its glycosides in human promyeloleukemic HL-60 cells by alternative activation of the caspase 3 cascade. J. Cell Biochem. 89: 1044-1055.
Shih, P. H., Yeh, C. T. and Yen, G. C. 2005. Effects of anthocyanidin on the inhibition of proliferation and induction of apoptosis in human gastric adenocarcinoma cells. Food Chem. Toxicol. 43: 1557-1566.
Smith, J. D., Trogan, E., Ginsberg, M., Grigaux, C., Tian, J. and Miyata, M. 1995. Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc. Natl. Acad. Sci. USA 92: 8264-8268.
Soares de Moura, R., Emiliano, A. F., Marins de Carvalho, L. C., Souza, M. A., Guedes, D. C., Tano, T. and Resende, A. C. 2005. Antihypertensive effects of the essential oil of Alpinia zerumbet and its main constituent, terpinen-4-ol, in DOCA-salt hypertensive conscious rats. J. Cardiovasc. Pharmacol. 3: 288-294.
Srinivasan, M. Rukkumani, R. Ram Sudheer, A. and Menon, V. P. 2005. Ferulic acid, a natural protector against carbon tetrachloride-induced toxicity. Fundam. Clin. Pharmacol. 19: 491-496.
Srivastava, R. K., Chen, Q., Siddiqui, I., Sarva, K. and Shankar, S. 2007. Linkage of curcumin-induced cell cycle arrest and apoptosis by cyclin-dependent kinase inhibitor p21(/WAF1/CIP1). Cell Cycle 6: 2953-2961.
Stopper, H., Schupp, N., Bahner, U., Sebekova, K., Klassen, A. and Heidland, A. 2004. Genomic damage in end-stage renal failure: potential involvement of advanced glycation end products and carbonyl stress. Semin. Nephrol. 24: 474-478.
Strimpakos, A. S. and Sharma, R. A. 2008. Curcumin: preventive and therapeutic properties in laboratory studies and clinical trials. Antioxid. Redox. Signal. 10: 511-545.
Surh, Y. J., Chun, K. S., Cha, H. H., Han, S. S., Keum, Y. S., Park, K. K. and Lee, S. S. 2001. Molecular mechanisms underlying chemopreventive activeities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-κB activation. Mutat. Res. 480-481: 243-268.
Szabó C. 1998. Role of nitric oxide in endotoxic shock. An overview of recent advances. Ann. N. Y. Acad. Sci. 851: 422-435.
Szabó, C. 1995. Alterations in nitric oxide production in various forms of circulatory shock. New Horiz. 3: 2-32.
Taga, M. S., Miller, E. E. and Pratt, D. E. 1984. Chia seed as a source of natural lipid antioxidants. J. Am. Oil Chem. Soc. 61: 928-931
Tan, T. W., Tsai, H. R., Lu, H. F., Lin, H. L., Tsou, M. F., Lin, Y. T., Tsai, H. Y., Chen, Y. F. and Chung, J. G. 2006. Curcumin-induced cell cycle arrest and apoptosis in human acute promyelocytic leukemia HL-60 cells via MMP changes and caspase-3 activation. Anticancer Res. 26: 4361-4371.
Teng, C. M., Hsu, S. Y., Lin, C. H., Yu, S. M., Wang, K. J., Lin, M. H. and Chen, C. F. 1990. Antiplatelet action of dehydrokawain derivatives isolated from Alpinia speciosa rhizoma. Chin. J. Physiol. 33: 41-48.
Thornberry, N. A. and Lazebnik, Y. 1998. Caspases: Enemies within. Science 281: 1312-1316.
Tolcher, A. W. 2001. Preliminary phase I results of G3139 (bcl-2 antisense oligonucleotide) therapy in combination with docetaxel in hormone-refractory prostate cancer. Semin. Oncol. 28: 67-70.
Toshima, S., Hasegawa, A., Kurabayashi, M., Itabe, H., Takano, T., Sugano, J., Shimamura, K., Kimura, J., Michishita, I., Suzuki, T. and Nagai, R. 2000. Circulating oxidized low density lipoprotein levels. A biochemical risk marker for coronary heart disease. Arterioscler. Thromb. Vasc. Biol. 20: 2243-2247.
Tuchinda, P., Reutrakul, V., Claeson, P., Pongprayoon, U., Sematong, T., Santisuk, T. and Taylor, W. C. 2002. Anti-inflammatory cyclohexenyl chalcone derivatives in Boesenbergia pandurata. Phytochemistry 59: 169-173.
Valko, M., Izakovic, M., Mazur, M., Rhodes, C. J. and Telser, J. 2004. Role of oxygen radicals in DNA damage and cancer incidence. Mol. Cell. Biochem. 266: 37-56.
Valko, M., Leibfritz, D., Monocol, J., Cronin, M. T., Mazur, M. and Telser, J. 2007. Free radicals and antioxdants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39: 44-84.
Valko, M., Morris, H., Mazur, M., Rapta, P. and Bilton, R. F. 2001. Oxygen free radical generating mechanisms in the colon: Do the semiquinones of Vitamin K play a role in the aetiology of colon cancer? Biochim. Biophys. Acta 1527: 161-166.
Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M. and Mazur,M. 2006. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 160: 1-40.
Valko, M., Morris, H. and Cronin, M. T. D. 2005. Metals, toxicity and oxidative stress. Curr. Med. Chem. 12: 1161-1208.
Van Duyn, M. A. and Pivonka, E. 2000. Overview of the health benefits of fruit and vegetable consumption for the dietetics professional: selected literature. J. Am. Diet Assoc. 100: 1511-1521.
Varfolomeev, E. E., Schuchmann, M., Luria, V., Chiannilkulchai, N., Beckmann, J. S., Mett, I. L., Rebrikov, D., Brodianski, V. M., Kemper, O. C., Kollet, O., Lapidot, T., Soffer, D., Sobe, T., Avraham, K. B., Goncharov, T., Holtmann, H., Lonai, P., Wallach, D., 1998. Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity. 9: 267-276.
Vargo, M. A., Voss, O. H., Poustka, F., Cardounel, A. J., Grotewold, E. and Doseff, A. I. 2006. Apigenin-induced-apoptosis is mediated by the activation of PKCdelta and caspases in leukemia cells. Biochem. Pharmacol. 72: 681-692.
Vasankari, T., Ahotupa, M., Toikka, J., Mikkola, J., Irjala, K., Pasanen, P., Neuconen, K., Raitakari, O. and Viikari, J. 2001. Oxidized LDL and thickness of carotid intima-media are associated with coronary atherosclerosis in middle-aged men: lower levels of oxidized LDL with statin therapy. Atherosclerosis 155: 403-412.
Vermes, I., Haanen, C., Steffens-Nakken, H. and Reutelingsperger, C. 1995. A novel assay for apoptosis flow cytometric detection of phosphatidy- lserine expression on early apoptotic cells using fluorescein labeled Annexin V. J. Immuno. Methods 184: 39-51.
Wang, H. Q. and Smart, R. C. 1999. Overexpression of protein kinase C-alpha in the epidermis of transgenic mice results in striking alterations in phorbol ester-induced inflammation and COX-2, MIP-2 and TNF-alpha expression but not tumor promotion. J. Cell Sci. 112: 3497-3506.
Wei, M. C., Zong, W. X., Cheng, E. H., Lindsten, T., Panoutsakopoulou, V., Ross, A. J., Roth, K. A., MacGregor, G. R., Thompson, C. B. and Korsmeyer, S. J. 2001. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292: 727-730.
Witztum, J. L. 2005. You are right too! J. Clin. Invest. 115: 2072-2075.
Wolfe, K. L. and Liu, R. H. 2007. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J. Agric. Food Chem. 55: 8896-8907.
Wyllie, A. H., Kerr, J. F. and Currie, A. R. 1980. Cell death: The significance of apoptosis. Int. Rev. Cytol. 68: 251-306.
Yamanaka, N., Oda, O. and Nagao, S. 1997. Green tea catechins such as (-)-epicatechin and (-)-epigallocatechin accelerate Cu2+-induced low density lipoprotein oxidation in propagation phase. FEBS Lett. 401: 230-234.
Yang, C. S., Landau, L. M., Huang, M. T. and Newmark, H. L. 2001. Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu. Rev. Nutr. 21: 381-406.
Yasukawa, K., Sun, Y., Kitanaka, S., Tomizawa, N., Miura, M. and Motohashi, S. 2008. Inhibitory effect of the rhizomes of Alpinia officinarum on TPA-induced inflammation and tumor promotion in two-stage carcinogenesis in mouse skin. Nat. Med. (Tokyo) 62: 374-378.
Yen, G. C., Duh, P. D., Huang, D. W., Hsu, C. L. and Fu, T. Y. 2008. Protective effect of pine (Pinus morrisonicola Hay.) needle on LDL oxidation and its anti-inflammatory action by modulation of iNOS and COX-2 expression in LPS-stimulated RAW 264.7 macrophages. Food Chem. Toxicol. 46: 175-185.
Yen, G. C., Ju, J. W. and Wu, C. H. 2004. Modulation of tea and tea polyphenols on benzo(a)pyrene-induced DNA damage in Chang liver cells. Free Radic. Res. 38: 193-200.
Yun, H. Y., Dawson, V. L. and Dawson, T. M. 1996. Neurobiology of nitric oxide. Crit. Rev. Neurobiol. 10: 291-316.
Zmijewski, J. W., Landar, A., Watanabe, N., Dickinson, D. A., Noguchi, N. and Darley-Usmar, V. M. 2005. Cell signaling by oxidized lipids and the role of reactive oxygen species in the endothelium. Biochem. Soc. Trans. 33: 1385-1389.
Zmijewski, J. W., Moellering, D. R., Le Goffe, C., Landar, A., Ramachandran, A. and Darley-Usmar, V. M. 2005. Oxidized LDL induces mitochondrially associated reactive oxygen/nitrogen species formation in endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 289: 852-861.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top