跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/07/30 09:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張芳瑜
研究生(外文):Fang-Yu Chang
論文名稱:利用微化處理改善木耳特性及調節血脂功效之研究
論文名稱(外文):An enhancement of the characteristics and lipid-lowering activity of Auricularia polytricha using micronization treatment
指導教授:周志輝
指導教授(外文):Chi-Fai Chau
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:89
中文關鍵詞:微化處理木耳膳食纖維理化性質生理活性保健
外文關鍵詞:micronizationAuricularia polytricha (ear mushroom)dietary fiberphysicochemical propertyphysiological functionhealth benefits
相關次數:
  • 被引用被引用:2
  • 點閱點閱:600
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
木耳(Auricularia polytricha)在台灣是普遍的食用膠質菇類之一。本研究針對富含纖維的木耳作為樣品,並以纖維素作為對照組,探討微化處理對木耳粉末的粒徑、組成分、理化性質、及體內調節血脂功效之影響和變化。研究結果顯示透過球磨微化處理能有效破壞木耳的結構,木耳粉末的粒徑可顯著(p < 0.05)下降至30μm以下,此時木耳微粉中的膳食纖維會有重新分配的現象,非水溶性膳食纖維會轉化為水溶性膳食纖維,且溶解度明顯(p < 0.05)提高。在理化性質方面,隨著木耳粉末粒徑的下降,總體密度大幅(p < 0.05)的降低;其膨潤力、保水性與黏度等特性亦獲得顯著(p < 0.05)的提高,顯示微化處理可大幅度的提升和改善木耳粉末的理化性質。
本研究進一步以動物實驗評估微化處理對木耳粉末調節體內血脂能力之影響,實驗結果顯示倉鼠攝食微化木耳粉體(< 30 μm)(佔膳食量5%)共30天後,可明顯(p < 0.05)增加每日的糞便排出量與水分含量,並有效(p < 0.05)抑制糞便中黏液素酉每的活性,增加腸道的保護作用。此外,攝食微化木耳粉體能有效(p < 0.05)降低血清與肝臟中的三酸甘油酯與膽固醇濃度,並透過增加膽酸的排泄以加速體內膽固醇的代謝,藉此達到降低膽固醇的功效。
整體而言,實驗結果證實木耳富含膳食纖維且脂質含量低,透過微化處理能有效改善木耳粉末的理化性質,以及提高木耳本身的降血脂和膽固醇效果,同時可增加糞便中膽酸的排出量,推測食用充足的木耳及微化木耳粉體能有助預防心血管疾病的發生。本研究期望能為食品的微化技術和應用性提供參考,有助開發微化木耳粉體成為高附加價值和具有生理活性功能的保健食品原料。
Auricularia polytricha is one of the common edible jelly mushrooms in Taiwan. The present study was to investigate the effects of micronization treatment on the particle size, composition, physicochemical properties, as well as the in vivo hypocholesterolemic and hypolipidemic effects of fiber-rich A. polytricha relative to cellulose. The results demonstrated that ball-milling could pulverize the structure of A. polytricha, and effectively (p < 0.05) reduce its particle size to less than 30 μm. Meanwhile, the fiber solubility was significantly (p < 0.05) elevated and there was a redistribution of fiber components from insoluble to soluble dietary fiber. Furthermore, as the particle size A. polytricha powder was reduced, its bulk density was significantly (p < 0.05) decreased, and its physicochemical properties (e.g., water-holding capacity, swelling capacity and viscosity) were effectively (p < 0.05) improved by micronization.
The in vivo cholesterol-lowering effect of the micronized A. polytricha powder was evaluated using hamsters as an animal model. After 30 days of feeding, it was found that the administration of hypercholesterolemic diet containing micronized A. polytricha powder (< 30 μm) at 5 g/100 g level could obviously (p < 0.05) increase daily fecal output and fecal moisture content as well as reduce the fecal mucinase activity, suggesting a better protection of mucin layer in intestine. In addition, the consumption of micronized A. polytricha powder relative to cellulose could effectively (p < 0.05) decrease the levels of serum triglyceride, serum total cholesterol, liver lipids and liver cholesterol, and also increase the levels of bile acids in stool. The marked cholesterol- and lipid-lowering effects of micronized A. polytricha powder might be partly attributed to the promoted excretion of bile acids hence resulted in decreasing cholesterol absorption.
Overall, the results confirmed that A. polytricha is rich in dietary fiber and low in lipid content. Micronization treatment could effectively improve the physicochemical properties and enhance the cholesterol- and lipid-lowering effects of A. polytricha powder, as well as increase the excretion of bile acids via feces. The results implied that the adequate consumption of micronized A. polytricha powder is beneficial to a lower risk of coronary heart disease. These findings could be useful for understanding the potential applications of micronization treatments in food industry, and exploring the micronized A. polytricha powder into high value-added functional ingredient providing physiological functions.
目錄 i
表次 v
圖次 vi
中文摘要 vii
英文摘要 viii

目錄
1. 緒論 1
1.1 木耳 1
1.1.1 命名與分類 1
1.1.2 型態特徵 2
1.1.3 生活史 2
1.1.4 生產與產銷現況 3
1.1.5 化學組成分及營養價值 4
1.1.6 一般食用情形與規範 6
1.1.7 生理活性 7
1.2 膳食纖維 9
1.2.1 背景與定義 9
1.2.2 來源 10
1.2.3 分類 10
1.2.4 分析方法 11
1.2.5 物理化學性質 12
1.2.6 生理活性 15
1.3 奈微米技術 17
1.3.1 背景與定義 17
1.3.2 在食品上之應用 18
2. 研究目的 21
3. 材料與方法 22
3.1 實驗材料 22
3.2 樣品製備 22
3.2.1 樣品前處理 22
3.2.2 微化處理 22
3.3 基本組成分分析 22
3.3.1 水分 22
3.3.2 灰分 24
3.3.3 粗蛋白質 24
3.3.4 粗脂質 24
3.3.5 膳食纖維含量測定 24
3.3.5.1 非水溶性膳食纖維含量 25
3.3.5.2 水溶性膳食纖維含量 26
3.3.5.3 總膳食纖維含量 26
3.3.6 碳水化合物 26
3.4 粒徑及顯微鏡分析 26
3.4.1 雷射粒徑儀分析 26
3.4.2 相位差顯微鏡分析 26
3.4.3 場發射掃描式電子顯微鏡分析 27
3.5 溶解度測定 27
3.5.1 溶解度 27
3.5.2 可溶性蛋白 27
3.6 理化性質測定 28
3.6.1 總體密度 28
3.6.2 保油性 28
3.6.3 保水性 28
3.6.4 膨潤力 28
3.6.5 黏度 29
3.7 生理活性 29
3.7.1 木耳粉體樣品製備 29
3.7.2 動物飼料製備 29
3.7.3 實驗動物飼養 32
3.7.4 動物犧牲取樣 33
3.7.5 糞便中水分含量之測定 33
3.7.6 糞便黏液素酉每活性之測定 33
3.7.6.1 糞便均質處理 33
3.7.6.2 黏液素酉每活性之測定 34
3.7.6.3 糞便蛋白質之定量 34
3.7.7 血清生化值之分析 35
3.7.7.1 血清中三酸甘油酯之測定 35
3.7.7.2 血清中總膽固醇之測定 35
3.7.7.3 血清中高密度脂蛋白膽固醇之測定 36
3.7.7.4 血清中低密度脂蛋白膽固醇之計算 36
3.7.8 肝臟膽固醇與總脂質之測定 37
3.7.8.1 肝臟中膽固醇之測定 37
3.7.8.2 肝臟中總脂質之測定 38
3.7.9 糞便膽固醇與總脂質之測定 38
3.7.9.1 糞便中膽固醇之測定 38
3.7.9.2 糞便中總脂質之測定 38
3.7.10 糞便中膽酸之測定 38
3.8 統計分析 40
4. 結果與討論 41
4.1 木耳之基本組成分 41
4.2 微化處理對樣品粒徑之影響 41
4.3 微化處理對木耳粉體表面結構之影響 45
4.4 微化處理對木耳微粉溶解度之影響 45
4.5 微化處理對木耳膳食纖維含量之影響 48
4.6 微化處理對木耳微粉的理化性質之影響 48
4.6.1 總體密度 53
4.6.2 保油性 53
4.6.3 保水性與膨潤力 53
4.6.4 黏度 54
4.7 微化處理對木耳生理活性之影響 56
4.7.1 倉鼠之體重、攝食量與生長情形 56
4.7.2 微化木耳粉體對倉鼠糞便排出量及水分含量之影響 59
4.7.3 微化木耳粉體對倉鼠糞便黏液素酉每活性之影響 61
4.7.4 微化木耳粉體對倉鼠血清三酸甘油酯及膽固醇濃度之影響 61
4.7.5 微化木耳粉體對倉鼠肝臟相對重量、膽固醇及總脂質之影響 66
4.7.6 微化木耳粉體對倉鼠糞便膽固醇、總脂質與膽酸之影響 66
5. 總結論 70
6. 參考文獻 71

表次
表1-1. 膳食纖維之化學組成分分類 13
表3-1. 實驗飼料之配方 31
表4-1. 木耳與纖維素之基本組成分分析 42
表4-2. 微化處理對木耳與纖維素平均粒徑(μm)之影響 44
表4-3. 粒徑大小對木耳之溶解度及可溶性蛋白之影響 47
表4-4. 粒徑大小對木耳之膳食纖維組成分之影響 49
表4-5. 粒徑大小對纖維素之膳食纖維組成分之影響 50
表4-6. 粒徑大小對木耳的理化性質之影響 51
表4-7. 粒徑大小對纖維素的理化性質之影響 52
表4-8. 微化木耳粉體飼料對倉鼠體重及攝食量之影響 57
表4-9. 微化木耳粉體飼料對倉鼠各器官組織的相對重量之影響 58
表4-10. 微化木耳粉體飼料對倉鼠糞便粒數、濕重、乾重與水分含量之影響 60
表4-11. 微化木耳粉體飼料對倉鼠糞便黏液素酉每活性之影響 62
表4-12. 微化木耳粉體飼料對倉鼠血清中三酸甘油酯及膽固醇濃度之影響 63
表4-13. 微化木耳粉體飼料對倉鼠血清中膽固醇比例之影響 65
表4-14. 微化木耳粉體飼料對倉鼠肝臟重量與肝臟中膽固醇及總脂質之影響 67
表4-15. 微化木耳粉體飼料對倉鼠糞便膽固醇、總脂質及膽酸之影響 68

圖次
圖1-1. 木耳太空包栽培流程圖 5
圖1-2. 奈米技術在食品科技上之應用潛力 20
圖3-1. 實驗架構圖 23
圖3-2. 木耳乾燥子實體外觀與未經微化及經過微化處理之粉末樣品外觀 30
圖4-1. 球磨破碎時間(h)對木耳與纖維素粒徑(μm)之影響 43
圖4-2. 相位差顯微鏡與場發射掃描式電子顯微鏡觀察木耳未經或經過微化處理之粉末樣品立體結構 46
圖4-3. 木耳微粉體(< 30 μm)之膨潤力(完全懸浮) 55
王心芬。2004。五種黑色食品與其複方組合對血脂及LDL氧化之影響。碩士論文。國立臺灣大學。
中醫藥資訊網。2005。神農本草經。(http://www.ccmp.gov.tw/public/public.asp?selno=714&relno=714&level=C)
中醫藥資訊網。2006。衛生署公告可同時提供食品使用之中藥材之增列品項。(http://www.ccmp.gov.tw/public/public.asp?selno=1151&relno=1151&level=C)
行政院農業委員會。2005。台灣主要菇蕈類生產概況。(http://www.coa.gov.tw/htmlarea_file/web_articles/2779/farmer138p5969a.pdf)
行政院衛生署。2008a。衛生署核發健康食品許可證一覽表。(http://www.doh.gov.tw/CHT2006/DM/DM2_p01.aspx?class_no=3&now_fod_list_no=131&level_no=2&doc_no=10702)
行政院衛生署。2008b。可供食品使用原料一覽表。(http://www.doh.gov.tw/CHT2006/DM/DM2.aspx?now_fod_list_no=4085&class_no=3&level_no=1)
杜金池與鄭燮。1975。台灣之木耳類。中國園藝。21: 227-233。
李茂祥。2006。利用微化處理提升膳食纖維調節血脂和改善腸道功能之研究。碩士論文。國立中興大學。
吳妮蓉。2007。以體外模式探討毛木耳多醣對葡萄糖與脂質消化吸收之效應。碩士論文。國立嘉義大學。
吳炫慧。2006a。研究台灣與國際間可供食品使用之藥用植物及奈米食品之管理規範。碩士論文。國立中興大學。
吳寬澤。2005。台灣農家要覽。行政院農業委員會。611-615。
吳聲華、周文能與王也珍。2002。台灣高等真菌-子囊菌與擔子菌的認識。國立自然科學博物館。193。
吳聲華。2006b。食用菌的模範生,木耳。國立自然科學博物館。(http://digiku.nmns.edu.tw/fungi_web/FungiUnit/2007-001.html)
俞小平與黃志杰。2003。本草綱目白話精解全書(中冊)。薪傳出版社。872-873。
食品工業研究所。2007。生物資源保存及研究中心-台灣潛在食藥用真菌知識庫。(http://www.bcrc.firdi.org.tw/mushroom/index.htm)
徐國財與張立德。2002。納米複合材料。化學工業出版社:北京。
國立自然科學博物館。2006。台灣真菌名錄。(http://web2.nmns.edu.tw/TFungi/chinese/fungi1.php)
黃郁芸。2006。CAS生鮮菇。台灣優良農產品CAS雙月報。2: 18-19。
邱富靖。2006。毛木耳多醣流變性及改善type 2糖尿病患血糖與血脂之研究。碩士論文。國立嘉義大學。
趙桂蓉。2001。木耳類之抗氧化性質及其多醣理化分析。碩士論文。國立中興大學。
劉伯康。1996。數種傳統食用植物抗氧化性之研究。碩士論文。國立中興大學。
陳昇明。2003。真菌實驗室。國立中興大學。(http://web.nchu.edu.tw/~smtschen/)
薛增泉。2002。納米科技探索。清華大學出版社:北京。
蘇正元。2002。五種黑色食品與其複方組合於體外試驗之抗氧化能力。碩士論文。國立臺灣大學。
Aletor, A. A., Compositional studies on edible tropical species of mushrooms. Food Chem. 1995, 54, 265-268.
American Association of Cereal Chemists. The definition of dietary fibre. Report of the dietary fibre definition committee to the board of directors of the AAC 2001, 1, 10.
Anderson, J. W., Hanna, T. J., Impact of nondigestible carbohydrates on serum lipoproteins and risk for cardiovascular disease. J. Nutr. 1999, 129, 1457-1466.
Anderson, J. W., Smith, B. M., Gustafson, N. J., Health benefits and practical aspects of high-fiber diets. Am. J. Clin. Nutr. 1994, 59, 1242-1247.
AOAC, Official Methods of Analysis, 17th ed., Association of Official Analytical Chemists, Gaithersburg, MD 2000.
Asatiani, M. D., Elisashvili, V. I., Wasser, S. P., Reznick, A. Z., Nevo, E., Free-radical scavenging activity of submerged mycelium extracts from higher basidiomycetes mushrooms. Biosci. Biotechnol. Biochem. 2007, 71, 3090-3092.
Asp, N. G., Schweizer, T. F., Southgate, D. A. T., Theander, O., Dietary fibre analysis, in: Schweizer T. F., Edwards, C. A. (Eds.), Dietary Fibre-A Component of Food, Springer, London 1992, pp. 57-101.
Aspinall, G. O., Carbohydrate polymers of plant cell walls, in: Loewas, F. (Ed.), Biogensis of Plant Cell Wall Polysaccharides. Academic Press, New York 1973, pp. 95-115.
Barter, P. J., Rye, K. A., High density lipoproteins and coronary heart disease. Atherosclerosis 1996, 121, 1-12.
Bartnicki-Garcia, S., Cell wall chemistry, morphogenesis and taxonomy of fungi. Ann. Rev. Microbiol. 1968, 22, 87-108.
Beher, W. T., Stradnieks, S., Lin, G. J., Sanfield, J., Rapid analysis of human fecal bile acids. Steroids 1981, 37, 281-295.
Berger, M., Venhaus, A., Dietary fibre in the prevention and treatment of diabetes mellitus, in: Schweizer, T. F., Edwards, C. A. (Eds.), Dietary Fiber-A Component of Food Nutritional Function in Health and Disease, Springer-Verlag, London 1992, pp. 181-196.
Beynen, A. C., Lemmens, A. G., De Bruije, J. J., Katan, M. B., Van Zutphen, L. F. M., Interaction of dietary cholesterol with cholate in rats: effect of serum cholesterol, liver cholesterol and liver function. Nutr. Rep. Int. 1986, 34, 557-563.
Bor, J. Y., Chen, H. Y., Yen, G. C., Evaluation of antioxidant activity and inhibitory effect on nitric oxide production of some common vegetables. J. Agric. Food Chem. 2006, 54, 1680-1686.
Brennan, C. S., Dietary fibre, glycaemic response, and diabetes. Mol. Nutr. Food Res. 2005, 49, 560-570.
Bruchez M. Jr., Moronne, M., Gin, P., Weiss, S., Alivisators, A. P., Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013-2016.
Carr, T. P., Wood, K. J., Hassel, C. A., Bahl, R., Gallaher, D. D., Raising intestinal contents viscosity leads to greater excretion of neutral steroids but not bile acids in hamsters and rats. Nutr. Res. 2003, 23, 91-102.
Chang, R., Functional properties of edible mushrooms. Nutr. Rev. 1996, 54, 91-93.
Chang, S. T., Buswell, J. A., Chiu, S. W., Mushroom biology and mushroom products. Mycologia 1994, 86, 721.
Chau, C. F., Nutritional values of three leguminous seeds and functional properties of their protein and fiber fractions. Ph. D. Dissertation, The Chinese University of Hong Kong, Hong Kong, 1998.
Chau, C. F., Cheung, P. C. K., Wong, Y. S., Functional properties of protein concentrates from three Chinese indigenous legume seeds. J. Agric. Food Chem. 1997, 45, 2500-2503.
Chau, C. F., Cheung, P. C. K., Effects of physico-chemical properties of legume fibres on the cholesterol absorption in hamsters. Nutr. Res. 1999, 19, 257-265.
Chau, C. F., Huang, Y. L., Comparison of the chemical composition and physicochemical properties of different fibers prepared from the peel of Citrus sinensis L. cv. Liucheng. J. Agric. Food Chem. 2003, 51, 2615-2618.
Chau, C. F., Huang, Y. L., Effects of the insoluble fiber derived from Passiflora edulis seed on plasma and hepatic lipids and fecal output. Mol. Nutr. Food Res. 2005, 49, 786-790.
Chau, C. F., Wen, Y. L., Wang, Y. T., Effects of micronisation on the characteristics and physicochemical properties of insoluble fibres. J. Sci. Food Agric. 2006a, 86, 2380-2386.
Chau, C. F., Wen, Y. L., Wang, Y. T., Improvement of the functionality of a potential fruit insoluble fibre by micron technology. Int. J. Food Sci. Technol. 2006b, 41, 1054-1060.
Chau, C. F., Wang, Y. T., Wen, Y. L., Different micronization methods significantly improve the functionality of carrot insoluble fibre. Food Chem. 2007a, 100, 1402-1408.
Chau, C. F., Wu, S. C., Lee, M. H., Physicochemical changes upon micronization process positively improve the intestinal health-enhancement ability of carrot insoluble fibre. Food Chem. 2007b, 104, 1569-1574.
Chen, J., Song, W., Redinger, R. N., Effects of dietary cholesterol on hepatic production of lipids and lipoproteins in isolated hamster liver. Hepatology 1996, 24, 424-434.
Cheung, P. C. K., The hypocholesterolemic effect of two edible mushroom: Auricularia auricula (tree-ear) and Tremella fuciformis (white-jelly leaf) in hypercholesterolemic rats. Nutr. Res. 1996, 16, 1721-1725.
Cheung, P. C. K., Dietary fibre content and composition of some edible fungi determined by two methods of analysis. J. Sci. Food Agric. 1997, 73, 255-260.
Cheung, P. C. K., Plasma and hepatic cholesterol levels and fecal neutral sterol excretion are altered in hamsters fed straw mushroom diets. J. Nutr. 1998, 128, 1512-1516.
Cheung, P. C. K., Chau, C. F., Changes in the dietary fiber (resistant starch and nonstarch polysaccharides) content of cooked flours prepared from three Chinese indigenous legume seeds J. Agric. Food Chem. 1998, 46, 262-265.
Davignon, J., Cohn, J. S., Triglycerides: a risk factor for coronary heart disease. Atherosclerosis 1996, 124, 57-64.
Deng, G. Y., Liu, Y. W., He, G. Z., Jiang, Z. M., Dietary fiber protection on intestinal barrier function. Asian J. Surg. 2000, 23, 90-96.
Dufour-Lescoat, C., Le Coz, Y., Andrieux, C., Szylit, O., Effects of nature, size and level of incorporation of dietary fibers on colonic functions in germ-free rats and in heteroxenic rats inoculated with a human flora. Food hydrocolloids 1995, 9, 9-15.
Eastwood, M. A., Morris, E. R., Physical properties of dietary fiber that influence physiological function: a model for polymers along the gastrointestinal tract. Am. J. Clin. Nutr. 1992, 55, 436-442.
Ebihara, K., Schneeman, B. O., Interaction of bile acids, phospholipids, cholesterol and triglyceride with dietary fibers in the small intestine of rats. J. Nutr. 1989, 119, 1100-1106.
Englyst, H. N., Quigley, M. E., Hudson, G. J., Determination of dietary fiber as non-starch polysaccharide with gas-liquid chromatographic, high-performance liquid chromatographyic or spectrophotometric measurement of constituent sugars. Analyst 1994, 119, 1497-1509.
Englyst, H. N., Trowell, H., Southgate, D. A. T., Cummings, J. H., Dietary fiber and resistant starch. Am. J. Clin. Nutr. 1987, 46, 873-874.
Erkkila, A. T., Sarkkinen, E. S., Lehto, S., Pyorala, K., Uusitupa, M. I. J., Dietary associates of serum total, LDL and HDL cholesterol and triglycerides in patients with coronary heart disease. Prev. Med. 1999, 28, 558-565.
Falch, B. H., Espevik, T., Ryan, L., Stokke, B. T., The cytokine stimulating activity of (1-3)-β-D-glucans is dependent on the triple helix conformation. Carbohydr. Res. 2000, 329, 587-596.
FDA (2007). Nnanotechnology task force report. (http://www.fda.gov/nanotechnology/taskforce/report2007.html)
Fleury, N., Lahaye, M., Chemical and physicochemical characterization of fibres from Laminaria digitata (kombu breton): a physiological approach. J. Sci. Food Agric. 1991, 55, 389-400.
Folch, J., Lees, M., Stanley, G. H. S., A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497-509.
Friedwald, W. T., Levy, R. I., Fredrickson, D. S., Estimation of the concentration of low density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 419-503.
Garcia-Diez, F., Garcia-Mediavilla, V., Bayon, J. E., Gonzalez-Gallego, J., Pectin feeding influences fecal bile acid excretion, hepatic bile acid and cholesterol synthesis and serum cholesterol in rats. J. Nutr. 1996, 126, 1766-1771.
Glore, S. R., Van Treek, D., Knehans, A. W., Guild, M., Soluble fiber and serum lipids: a literature review. J. Am. Diet. Assoc. 1994, 94, 425-436.
Goldin, B. R., Gorbach, S. L., The relationship between diet and rat fecal bacterial enzymes implicated in colon cancer. J. Natl. Cancer Inst. 1976, 57, 371-375.
Gordon, D. T., Functional properties vs. physiological action of total dietary fibre. Cereal Foods World 1989, 34, 517-525.
Gourgue, C. M. P., Champ, M. M. J., Lozano, Y., Delort-Laval, J., Dietary fiber from mango byproducts: Characterization and hypoglycemic effects determined by in vitro methods. J. Agric. Food Chem. 1992, 40, 1864-1868.
Guillon, F., Champ, M., Structural and physical properties of dietary fibers, and consequences of processing on human physiology. Food Res. Int. 2000, 33, 233-245.
Hill, M. J., Cereals, dietary fiber and cancer. Nutr. Res. 1998, 18, 653-659.
Hokama, Y., Hokama, J. L., In vitro inhibition of platelet aggregation with low dalton compounds from aqueous dialysates of edible fungi. Res. Commun. Chem. Pathol. Pharmacol. 1981, 31, 177-180.
Hsu, P. K., Chien, P. J., Chau, C. F., An exploitation of the antimicrobial potential of a fruit insoluble fibre by micronization. Eur. Food Res. Technol. 2007, 225, 199-204.
Hsu, P. K., Chien, P. J., Chau, C. F., Micronization increases vitamin E carrying and releasing abilities of insoluble fiber. J. Agric. Food Chem. 2008, 56, 2170-2174.
Huang, C. M., Dural, N. H., Adsorption of bile acids on cereal type food fibers. J. Food Process. Eng. 1995, 18, 243-266.
Huang, Y. L., Sheu, F., Lee, M. H., Chau, C. F., Effects of particle size reduction of insoluble fibres by micron technology on various caecal and faecal indices. J. Sci. Food Agric. 2007, 88, 435-411.
Hughes, J. S., Potential contribution of dry bean dietary fiber to health. Food Technol. 1991, 9, 122-126.
Ikeda, I., Tomari, Y., Sugano, M., Interrelated effects of dietary fiber and fat on lymphatic cholesterol and triglyceride absorption in rats. J. Nutr. 1989, 119, 1383-1387.
Ikekawa, T., Uehara, N., Maeda, Y., Nakanishi, M., Fukuoka, F., Antitumor activity of aqueous extracts of edible mushrooms. Cancer Res. 1969, 29, 734-735.
Kaneda, T., Tokuda, S., Effects of various mushroom preparations on cholesterol levels in rats. J. Nutr. 1966, 90, 371-376.
Kay, R. M., Dietary fiber. J. Lipid Res. 1982, 23, 221-242.
Keys, A., Alpha lipoprotein (HDL) cholesterol in the serum and the risk of coronary heart disease and death. Lancet 1986, 2, 603-606.
Kinsella, J. E., Functional properties of protein in foods: A survey. J. Food Sci. Nutr. 1976, 7, 219-280.
Knopp, R. H., Superko, H. S., Davidson, M., Insull, W., Dujovne, C. A., Kwiterovich, P. O., Zavoral, J. H., Graham, K., O''Connor, R. R., Edelman, D. A., Long-term blood cholesterol-lowering effects of a dietary fiber supplement. Am. J. Prev. Med. 1999, 17, 18-23.
Kritchevsky, D., Dietary fiber and atherosclerosis, in: Vahouny, G. V., Kritchevsky, D. (Eds.), Dietary fiber, Basic and Clinical Aspects, Plenum Press, New York 1984, pp. 265-274.
Kurasawa, S. I., Sugahara, T., Hayashi, J., Studies on dietary fibre of mushrooms and edible wild plants. Nutr. Rep. Int. 1982, 26, 167-173.
Lairon, D., Dietary fibers and dietary lipids, in: McCleary, B. V., Prosky, L. (Eds.), Advanced Dietary Fiber Technology, Blackwell Science, Oxford 2001, pp. 177-185.
Lam, W. Y., Mechanism of the hypocholesterolemic effect of water-soluble non-starch polysaccharides from jelly mushroom. Master Thesis, The Chinese University of Hong Kong, Hong Kong, 2006.
Larrauri, J. A., New approaches in the preparation of high dietary fiber powders from fruit by-products. Trends Food Sci. Technol. 1999, 10, 3-8.
Lee, S. C., Prosky, L., DeVries, J. W., Determination of total, soluble, and insoluble, dietary fiber in foods-enzymatic-gravimetric method, MES-TRIS buffer: Collaborative study. J. Assoc. Off. Anal. Chem. 1992, 75, 395-416.
Leontowicz, M., Gorinstein, S., Bartnikowska, E., Leontowicz, H., Kulasek, G., Trakhtenberg, S., Sugar beet pulp and apple pomace dietary fibres improve lipid metabolism in rats fed cholesterol. Food Chem. 2001, 72, 73-78.
Levrat-Verny, M. A., Behr, S., Mustad, V., Remesy, C., Demigne, C., Low levels of viscous hydrocolloids lower plasma cholesterol in rats primarily by impairing cholesterol absorption. J. Nutr. 2000, 130, 243-248.
Liang, W. P., Liu, M. H., Guo, G. L., Microemulsions, in: Wang, Z. L., Liu, Y., Zhang, Z. (Eds.), Handbook of Nanophase and Nanostructed Materials–Synthesis, Kluwer Academic/Plenum Publishers, New York 2002, pp. 1-25.
Lim, C. C., Ferguson, L. R., Tannock, G. W., Dietary fibres as "prebiotics": implications for colorectal cancer. Mol. Nutr. Food Res. 2005, 49, 609-619.
Liu, F., Ooi, V. E., Chang, S. T., Free radical scavenging activities of mushroom polysaccharide extracts. Life Sci. 1997, 60, 763-771.
Lo, G. S., Gordon, D. T., Moore, W. R., Physical effects and functional properties of dietary fibre sources, in: Goldberg, I., Williams, R. (Eds.), Biotechnology and food ingredients, Van Nonstrand Reinhold, New York 1991, pp. 153-191.
Lowy, B., A morphological basis for classifying the species of Auricularia. Mycologia 1951, 43, 351-358.
Lowy, B., The genus Auricularia. Mycologia 1952, 44, 656-692.
Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J., Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265-275.
Malaspina, J. P., Bussiere, H., Calve, G. L., The total cholesterol/HDL cholesterol ratio: a suitable atherogenesis index. Atherosclerosis 1981, 40, 373-375.
Manzi, P., Pizzoferrato, L., Beta-glucans in edible mushrooms. Food Chem. 2000, 68, 315-318.
Markhija, A. N., Bailley, J. M., Identification of the antiplatelet substance in Chinese black tree fungus. N. Engl. J. Med. 1981, 304, 175.
Marlett, J. A., Dietary fiber and cardiovascular disease, in: Cho, S. S., Dreher, M. L. (Eds.), Handbook of Dietary Fiber, Marcel Dekker, New York 2001, pp. 17-30.
Masciangioli, T., Zhang, W. X., Environmental technologies at the nanoscale. Environ. Sci. Technol. 2003, 3, 102-108.
Mattila, P., Suonpaa, K., Piironen, V., Functional properties of edible mushrooms. Nutrition 2000, 16, 694-696.
Mau, J. L., Chao, G. R., Wu, K. T., Antioxidant properties of methanolic extracts from several ear mushrooms. J. Agric. Food Chem. 2001, 49, 5461-5467.
Mazur, A., Remesy, C., Gueux, E., Levrat, M. A., Demigne, C., Effects of diets rich in fermentable carbohydrates on plasma lipoprotein levels and on lipoprotein catabolism in rats. J. Nutr. 1990, 120, 1037-1045.
McDougall, G. J., Morrison, I. M., Stewart, D., Hillman, J. R., Plant cell walls as dietary fiber: Range, structure, processing and function. J. Sci. Food Agric. 1996, 70, 133-150.
Meyer, P. D., Nondigestible oligosaccharides as dietary fiber. J. AOAC Int. 2004, 87, 718-726.
Miettinen, T. A., Dietary fiber and lipids. Am. J. Clin. Nutr. 1987, 45, 1237-1242.
Miller, R. S., Hoskins, L. C., Mucin degradation in human colon ecosystems. Fecal population densities of mucin-degrading bacteria estimated by a "most probable number" method. Gastroenterology 1981, 81, 759-765.
Misaki, A., Kakuta, M., Kikurage (tree-ear) and Shirokikurage (white jelly-leaf): Auricularia auricula and Tremella fuciformis. Food Rev. Int. 1995, 11, 211-218.
Misaki, A., Kakuta, M., Sasaki, T., Tanaka, M., Miyaji, H., Studies on interrelation of structure and antitumor effects of polysaccharides: antitumor action of periodate-modified, branched (1 goes to 3)-beta-D-glucan of Auricularia auricula-judae, and other polysaccharides containing (1 goes to 3)-glycosidic linkages. Carbohydr. Res. 1981, 92, 115-129.
Moraru, C. I., Panchapakesan, C. P., Huang, Q., Takhistov, P., Liu, S., Kokini, J. L., Nanotechnology: a new frontier in food science. Food Technol. 2003, 57, 24-29.
Mykkanen, H., Laiho, K., Salminen, S., Variations in faecal bacterial enzyme activities and associations with bowel function and diet in elderly subjects. J. Applied Microbiol. 1998, 85, 37-41.
Nishimune, T., Yakushiji, T., Sumimoto, T., Taguchi, S., Konishi, Y., Nakahara, S., Ichikawa, T., Kunita, N., Glycemic response and fiber content of some foods. Am. J. Clin. Nutr. 1991, 54, 414-419.
Nistor, A., Bulla, A., Filip, D. A., Radu, A., The hyperlipidemic hamster as a model of experimental atherosclerosis. Atherosclerosis 1987, 68, 159-173.
NNI (2001). History. (http://www. nano.gov/html/about/history.html)
Normand, F. L., Ory, R. L., Mod, R. R., Binding of bile acids and trace minerals by soluble hemicelluloses of rice. Food Technol. 1987, 2, 86-90.
Ou, S. Y., Kwok, K. C., Li, Y., Fu, L., In vitro study of possible role of dietary fiber in lowering postprandial serum glucose. J. Agric. Food Chem. 2001, 49, 1026-1029.
Ogawa, S., Decker, E. A., McClements, D. J., Production and characterization of o/w emulsions containing cationic droplets stabilized by lecithin-chitosan membranes. J. Agric. Food Chem. 2003, 51, 2806-2812.
Park, H. S., Choi, J. S., Kim, K. H., Docosahexaenoic acid-rich fish oil and pectin have a hypolipidemic effect, but pectin increases risk factor for colon cancer in rats. Nutr. Res. 2000, 20, 1783-1794.
Prosky, L., Asp, N. G., Schweizer, T. F., DeVries, J. W., Furda, I., Determination of insoluble, soluble, and total dietary fibre in foods and food products: Interlaboratory study. J. Assoc. Off. Anal. Chem. 1988, 71, 1017-1023.
Prosky, L., Asp, N. G., Schweizer, T. F., DeVries, J. W., Furda, I., Determination of insoluble and soluble dietary fiber in foods and food products: Collaborative study. J. Assoc. Off. Anal. Chem. 1992, 75, 360-367.
Ralet, M. C., Della Valle, G., Thibault, J. F., Raw and extruded fiber from pea hulls. Part I: composition and physicochemical properties. Carbohydr. Polym. 1993, 20, 17-23.
Reeves, P. G., Nielsen, F. H., Fahey, G. C. Jr., AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 1993, 123, 1939-1951.
Renard, C. M. G. C., Crepeau, M. J., Thibault, J. F., Influence of ionic strength, pH and dielectric constant on hydration properties of native and modified fibers from sugar-beet and wheat bran. Ind. Crop Prod. 1994, 3, 75-84.
Roberfroid, M., Dietary fiber, inulin, and oligofructose: a review comparing their physiological effect. Crit. Rev. Food Sci. Nutr. 1993, 33, 103-148.
Robertson, J. A., Eastwood, M. A., An examination of factors which may affect the water-holding capacity of dietary fibre. Br. J. Nutr. 1981, 45, 83-88.
Rodriguez, R., Jimenez, A., Fernandez-Bolanos, J., Guillen, R., Heredia, A., Dietary fibre from vegetable products as source of functional ingredients. Trends Food Sci. Technol. 2006, 17, 3-15.
Roehring, K. L., The physiological effects of dietary fiber–a review. Food hydrocolloids 1988, 2, 1-18.
Rosamond, W. D., Dietary fiber and prevention of cardiovascular disease. J. Am. Coll. Cardiol. 2002, 39, 57-59.
Roy, S., Vega-Lopez, S., Fernandez, M. L., Gender and hormonal status affects the hypolipidemic mechanisms of dietary soluble fiber in guinea pigs. J. Nutr. 2000, 130, 600-607.
Sangnark, A., Noomhorm, A., Effect of particle sizes on functional properties of dietary fibre prepared from sugarcane bagasse. Food Chem. 2003, 80, 221-229.
Satchithanandam, S., Klurfeld, D. M., Calvert, R. J., Cassidy, M. M., Effects of dietary fibers on gastrointestinal mucin in rats. Nutr. Res. 1996, 16, 1163-1177.
Saura-Calixto, F., Antioxidant dietary fiber product: A new concept and a potential food ingredient. J. Agric. Food Chem. 1998, 46, 4303-4306.
Schneeman, B. O., Dietary fiber: physical and chemical properties, methods of analysis, and physiological effects. Food Technol. 1986, 40, 104-110.
Schneeman, B. O., Soluble and insoluble fiber-different physiological response. Food Technol. 1987, 41, 81-82.
Schwartz, S. R., Levine, R. A., Singh, A., Scheidecker, J. R., Track, N. S., Sustained pectin ingestion delays gastric emptying. Gastroenterology. 1982, 83, 812-817.
Searcy, R. L., Bergquist, L. M., A new color reaction for the quantitation of serum cholesterol. Clinica. Chimica. Acta 1960, 5, 192-199.
Shankardass, K., Chuchmach, S., Chelswick, K., Stefanovich, C., Spurr, S., Brooks, J., Tsai, M., Saibil, F. G., Cohen, L. B., Edington, J. D., Bowel function of long-term tube-fed patients consuming formulae with and without dietary fiber. J. Parenteral. Enteral. Nutr. 1990, 14, 508-512.
Sheu, F., Chien, P. J., Chien, A. L., Chen, Y. F., Chin, K. L., Isolation and characterization of an immunomodulatory protein (APP) from the Jew’s Ear mushroom Auricularia polytricha. Food Chem. 2004, 87, 593-600.
Shiau, S. Y., Chang, G. W., Effects of dietary fiber on fecal mucinase and β-glucuronidase activity in rats. J. Nutr. 1983, 113, 138-144.
Shorey, R. L., Day, P. J., Willis, R. A., Lo, G. S., Steinke, F. H., Effects of soybean polysaccharide on plasma lipids. J. Am. Dietetic. Assoc. 1985, 85, 1461-1465.
Sone, Y., Kakuta, M., Misaki, A., Isolation and characterization of polysaccharides of "Kikurage", fruit body of Auricularia auricula-judae. Agric. Biol. Chem. 1978, 42, 417-425.
Soppimath, K. S., Aminabhavi, T. M., Kulkarni, A. R., Rudzinski, W. E., Biodegradable polymeric nanoparticles as drug delivery devices. J. Controlled Release 2001, 70, 1-20.
Southgate, D. A. T., The non-starch polysaccharide methods, in: Southgate, D. A. T., (Ed.), Dietary Fiber Analysis, Royal Society of Chemistry, Cambridge 1995, pp. 87-118.
Spady, D. K., Stange, E. F., Bilhartz, L. E., Dietschy, J. M., Bile acids regulate hepatic low density lipoprotein receptor activity in hamster by altering cholesterol flux across the liver. Proc. Natl. Acad. Sci. 1986, 83, 1916-1920.
Stephen, A. M., Cummings, J. H., The microbial contribution to human faecal mass. J. Med. Microbiol. 1980, 13, 45-56.
Story, J. A., Dietary fiber and lipid metabolism. Proc. Soc. Exp. Biol. Med. 1985, 180, 447-452.
Suraj, G., Iyer, C. S. P., Rugmini, S., Lalithambika, M., The effect of micronization on kaolinites and their sorption behaviour. Appl. Clay Sci. 1997, 12, 111-130.
Takashi, S., Tamate, H., Light and electron microscopic observation of the forestomach mucosa in the golden hamster. Tohoku J. Agrie. Res. 1976, 27, 26-39.
Tall, A. R., Plasma high density lipoproteins. Metabolism and relationship to atherogenesis. J. Clin. Invest. 1990, 86, 379-384.
Tao, Y., Zhang, L., Cheung, P. C., Physicochemical properties and antitumor activities of water-soluble native and sulfated hyperbranched mushroom polysaccharides. Carbohydr. Res. 2006, 341, 2261-2269.
Terpstra, A. H. M., Lapre, J. A., de Vries, H. T., Beynen, A. C., Dietary pectin with high viscosity lowers plasma and liver cholesterol concentration and plasma cholesteryl ester transfer protein activity in hamsters. J. Nutr. 1998, 128, 1944-1949.
Thomas, M., Crepeau, M. J., Rumpunen, K., Thibault, J. F., Dietary fibre and cell-wall polysaccharides in the fruits of Japanese quince (Chaenomeles japonica). Lebensm. Wiss. Technol. 2000, 33, 124-131.
Trowell, H. C., Definition of dietary fiber and hypotheses that it is a protective factor in certain diseases. Am. J. Clin. Nutr. 1976, 29, 417-427.
Trowell, H. C., Southgate, D., Wolever, T., Leeds, A., Gassull, M., Jenkins, D., Dietary fiber re-defined. Lancet 1976, 1, 967.
Trowell, H., Burkitt, D., Heaton, K., Definitions of dietary fibre and fibre-depleted foods, in: Spiller, G. A. (Ed.), Dietary fibre, Fibre-depleted Foods and Disease. Academic Press, London 1985, pp. 21-30.
Tungland, B. C., Meyer, D., Nondigestible oligo- and polysaccharides (dietary fiber): Their physiology and role in human health and food. Comp. Rev. Food Sci. Food Saf. 2002, 3, 72-77.
Turley, S. D., Dietschy, J. M., Re-evaluation of the α-hydroxysteroid dehydrogenase assay for total bile acids in bile. J. lipid Res. 1978, 19, 924-928.
Turley, S. D., Dietschy, J. M., Mechanisms of LDL-cholesterol lowering action of psyllium hydrophilic mucilloid in the hamster. Biochim. Biophys. Acta 1995, 1225, 177-184.
Uberoi, S. K., Vadjera, S., Soni, G. L., Role of dietary fiber from pulses and cereals as hypocholesterolemic and hypolipidemic agent. J. Food Sci. Technol. 1992, 29, 281-283.
Vahouny, G. V., Tombes, R., Cassidy, M. M., Kritchevsky, D., Gallo, L. L., Dietary fibers: binding of bile salts, phospholipids and cholesterol from mixed micelles by bile acid sequestrants and dietary fiber. Lipids 1980, 15, 1012-1018.
Wasser, S. P., Weis, A. L., Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: a modern perspective. Crit. Rev. Immunol. 1999, 19, 65-96.
Whittaker, R. H., New concepts of kingdoms or organisms. Evolutionary relations are better represented by new classifications than by the traditional two kingdoms. Science 1969, 163, 150-160.
Wood P. J., Relationships between solution properties of cereal β-glucans and physiological effects. Trends Food Sci. Technol. 2004, 15, 313-320.
Wu, S. C., Chien, P. J., Lee, M. H., Chau, C. F., Particle size reduction effectively enhances the intestinal health-promotion ability of an orange insoluble fiber in hamsters. J. Food Sci. 2007, 72, 618-621.
Yu, M., Ma, B., Luo, X., Zheng, L., Xu, X., Yang, Z., Molecular diversity of Auricularia polytricha revealed by inter-simple sequence repeat and sequence-related amplified polymorphism markers. Curr. Microbiol. 2008, 56, 240-245.
Yuan, Z., He, P., Cui, J., Takeuchi, H., Hypoglycemic effect of water-soluble polysaccharide from Auricularia auricula-judae Quel. on genetically diabetic KK-Ay mice. Biosci. Biotechnol. Biochem. 1998, 62, 1898-1903.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊