跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/06 11:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳至潔
研究生(外文):Chih-Chieh Chen
論文名稱:細胞固定化對嗜酸乳桿菌冷凍乾燥及控低溫真空乾燥的影響:以褐藻酸鈣作為包埋固定化基質的探討
論文名稱(外文):Effects of Cell Immobilization on the Freeze-drying and Controlled Low-temperature Vacuum Dehydration of Lactobacillus acidophilus: Studies on the Application of Calcium Alginate as the Entrapment Immobilization Matrix
指導教授:金安兒金安兒引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:101
中文關鍵詞:遠紅外線冷凍乾燥控低溫真空乾燥細胞固定化技術低溫保護劑
外文關鍵詞:Far-infrared radiationfreeze-dryingcontrolled low-temperature vacuum dehydrationcell immobilization techniquecryoprotectant
相關次數:
  • 被引用被引用:2
  • 點閱點閱:594
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
Lactobacillus acidophilus對於人體生理具有多項保健功效,常添加於市售飲食補給的乾燥產品中。但是在乾燥狀態下,菌株存活率及安定性並不佳,且傳統所使用之冷凍乾燥方法成本高且時間長,因此若能改善乾燥操作、縮短乾燥時間,並且提升菌株在乾燥後之存活率及安定性,則必定能夠更加具備競爭力。控低溫真空乾燥是將乾燥樣品保持在非凍結的低溫狀態下進行真空乾燥,樣品可以避免凍結傷害,且可得到類似於冷凍乾燥操作之高品質產品。遠紅外線輻射加熱具有傳熱效率高、裝置簡單、操作方便、成本低廉等優點,常被應用於乾燥操作,除此之外,間歇性加熱亦常被用於遠紅外線輻射加熱,以縮短乾燥所需時間、改善產品品質。另一方面,細胞固定化技術及冷凍保護劑可提供菌體保護作用,增強其對冷凍及乾燥操作的耐受性。本研究擬利用褐藻酸鈣配合不同保護劑一同固定化後的L. acidophilus來進行冷凍乾燥及控低溫真空乾燥操作,並使用不同間歇率的遠紅外線輻射作為乾燥熱源,探討乾燥後之菌體存活率、受傷程度及產酸能力等的差異。
結果顯示,L. acidophilus與脫脂乳粉及海藻糖的一同固定於褐藻酸鈣中,可有效提升菌體在冷凍乾燥或控低溫真空乾燥後的存活率,並降低菌體細胞膜之損傷,但無法提升菌體在AP test中的產酸能力。兩種乾燥方法中,以控低溫真空乾燥處理之菌體具有較高之存活率、較低的細胞損傷及較佳的產酸能力。
Lactobacillus acidophilus possesses lots of important physiological functions beneficial to human health and numerous dried products which containing it are now popular for use as dietary adjuncts for humans and animals. However, low numbers of active L. acidophilus cells were found in the dried products. The freeze-drying method traditionally used for cells dehydration is slow and needs high cost. Therefore, competitiveness could be enhanced by means of the improvement of the drying operation, such as reduction in drying time, and enhancement of the viability and stability after drying, etc. Controlled low-temperature vacuum dehydration is a method to dehydrate products as cold as possible without freezing. Freezing damage could be avoided and high quality products as those produced by freeze-drying might be manufactured. Far-infrared radiation possesses many advantages, such as high thermal transmission, simple design, easy operation, and low cost, etc., and is frequently used in dehydration operation. Besides, intermittent heating is also often used in far-infrared heating in order to reduce drying time and improve product quality. On the other hand, cell immobilization technique and cryoprotectants could provide protection to microbial cells and increase their tolerance to freezing and drying operation. In this study, L. acidophilus and different cryoprotectants were immobilized in Ca-alginate, and immobilized cells were processed by freeze-drying and controlled low-temperature vacuum dehydration. Far-infrared radiation at different intermittences was applied in two drying operations. The viability, degree of injury and acidification of dried cells were compared.
Results indicated that immobilizing L. acidophilus with non-fat dry milk solids and trehalose in Ca-alginate beads could increase the viability and decrease the injury of cells after freeze-drying or controlled low-temperature vacuum dehydration. However, immobilization could not enhance the acidification of dried cells in AP test. In a comparison between freeze-drying and controlled low-temperature vacuum dehydration, cells processed by controlled low-temperature vacuum dehydration have higher viability, lower damage and better acidification ability.
中文摘要…………………………………………………………i

英文摘要…………………………………………………………ii

壹、前言…………………………………………………………1
貳、文獻整理……………………………………………………3
一、益生菌(probiotics)簡介…………………………………3
(一)、益生菌之定義……………………………………………3
(二)、益生菌之特性……………………………………………3
(三)、嗜酸乳桿菌(Lactobacillus acidophilus)…………5
二、冷凍乾燥技術(freeze-drying)…………………………7
(一)、冷凍乾燥之原理…………………………………………7
(二)、冷凍乾燥之設備…………………………………………11
(三)、冷凍乾燥之優缺點………………………………………11
(四)、冷凍乾燥對微生物之影響………………………………16
三、控低溫真空乾燥(controlled low-temperature vacuum
dehydration)……………………………………………………17
(一)、控低溫真空乾燥之原理及操作條件……………………17
(二)、控低溫真空乾燥之優缺點………………………………17
四、遠紅外線(far-infrared radiation; FIR)……………18
(一)、遠紅外線介紹……………………………………………18
(二)、遠紅外線加熱之特徵……………………………………18
(三)、遠紅外線在食品工業上的應用…………………………20
五、間歇性乾燥…………………………………………………22
(一)、間歇性乾燥之定義及介紹………………………………22
(二)、間歇性乾燥的特性………………………………………23
六、細胞固定化(cell immobilization) ……………………24
(一)、固定化技術之定義………………………………………24
(二)、固定化技術之分類………………………………………24
(三)、細胞固定化應用於微生物之優點………………………25
(四)、褐藻膠(alginate) ………………………………………28
七、冷凍保護劑(cryoprotectant) ……………………………33
(一)、冷凍保護劑介紹…………………………………………33
(二)、冷凍保護劑之作用機制…………………………………36
(三)、脫脂乳粉…………………………………………………36
(四)、海藻糖(trehalose) ……………………………………38
(五)、山梨醇(sorbitol) ………………………………………40
參、研究目的……………………………………………………42
肆、材料與方法…………………………………………………43
一、試驗材料與儀器……………………………………………43
(一)、材料………………………………………………………43
(二)、儀器………………………………………………………44
二、試驗方法……………………………………………………47
(一)、實驗架構…………………………………………………47
(二)、實驗菌株的製備…………………………………………47
(三)、濃厚菌體懸浮液及固定化菌體製備……………………47
(四)、菌數及菌株受傷程度之測定……………………………49
(五)、乾燥實驗…………………………………………………50
(六)、乾燥後菌體存活率及菌體受傷程度之測定……………51
(七)、產酸能力試驗……………………………………………51
(八)、統計分析…………………………………………………53
伍、結果與討論…………………………………………………54
一、固定化技術及不同保護劑的添加對乾燥處理後菌株存活
率之影響…………………………………………………………54
(一)、L. acidophilus經冷凍乾燥後之菌體存活率比較……54
(二)、L. acidophilus經控低溫真空乾燥後之菌體存活率比較…………………………………………………………………57
二、固定化技術及不同保護劑的添加對乾燥處理後菌株受傷
程度之影響………………………………………………………59
(一)、L. acidophilus經冷凍乾燥後之受傷程度比較………60
(二)、L. acidophilus經控低溫真空乾燥後之受傷程度比較…64
三、固定化技術及不同保護劑的添加對乾燥處理後菌株產酸
能力之影響………………………………………………………69
(一)、L. acidophilus經冷凍乾燥後之產酸能力比較………70
(二)、L. acidophilus經控低溫真空乾燥後之產酸能力比較… 70
陸、結論…………………………………………………………87
柒、參考文獻……………………………………………………89
大森豐明 (1994) 電磁波ソ技術食品分野デソ應用。食品シ開發 28:6-11。

方繼、李根永、李清福、林建谷、林順富、范晉嘉、陳惠英、虞積凱、蔡國珍 (1999) 現代食品微生物學,pp.364-369。偉明圖書有限公司,台北。

白壽雄、陳惠蓉 (1997) 天然生物保存物質-海藻糖的特性、製造及其應用。生物產業 8(1):33-42.

佐原幸雄 (1989) 凍結乾燥ソ技術-乾燥ソ生ゆ立グシ裝置ソ變遷(3)。食品工業 32(24): 64-72.

李福臨 (1998) 乳酸菌之保存。食品工業 30(2):54-63.

杉山昌 (1986) 食品工業デソ遠赤外線加熱ソ利用。食品工業 29(10): 26-33.

林欣榜。1988。遠紅外線在食品工業上之應用。食品工業 20(4):10-16.

金安兒、林宇平 (2006) 控低溫之遠紅外線間歇性加熱真空乾燥裝置。中華民國發明專利 I252296號。

施坤河 (1998) 能降低甜度的糖-海藻糖。烘焙工業 79:57-59.

徐進財 (1977) 實用食品加工手冊,p.184。復文書局,台南。

張為憲、李敏雄、呂政義、張永和、陳昭雄、孫璐西、陳怡宏、張基郁、顏國欽、林志城、林慶文 (2004) 食品化學,pp.64-65。華香園出版社,台北。

陳美菁 (1999) 乳酸菌之冷凍乾燥。食品工業 31(10):52-62.

楊純華 (2007) 間歇性遠紅外線加熱應用於乳酸菌控低溫真空乾燥及冷凍乾燥的探討:Ⅱ. Lactobacillus acidophilus BCRC 10695。碩士論文。國立中興大學食品暨應用生物科技學系。

楊媛絢 (1996) Lactobacillus acidophilus之降膽固醇及抗癌性。食品工業 28(9):39-45.

鈴木徹 (1996) 食品中之玻璃態轉移。食品工業 28(12):38-48.

潘子明 (2003) 機能性發酵製品-糖醇。生物產業 14(4): 280-284.

蔡進文、蕭清松、鄭景諒 (1991) 多孔性陶瓷板紅外線加熱器。能源季刊 21(3):1-17.

賴滋漢、金安兒、柯文慶 (1999) 食品加工學(方法篇)。國立中興大學出版,台中。

龜和田光男 (1984) 食品工場сЯшヤю-最近ソ凍結乾燥技術ズコゆサ(ガソ1)。食品工業 27(10):56-63。

Abadias, M., Benabarre, A., Teixido, N., Usall, J., and Vinas, I. (2001) Effect of freeze drying and protectants on viability of the biocontrol yeast Candida sake. International Journal of Food Microbiology 65:173-182.

Afzal, T. M. and Abe, T. (1998) Diffusion in potato during far infrared radiation drying. Journal of Food Engineering 37:353-365.

Beney, L. and Gervais, P. (2001) Influence of the fluidity of the membrane on the response of microorganisms to environmental stresses. Applied Microbiology and Biotechnology 57:34-42.

Bozoglu, T. F. and Gurakan, G. C. (1989) Freeze-drying injury of Lactobacillus acidophilus. Journal of Food Protection 52:259-260.

Brennan, M., Wanismail, B., Johnson, M. C., and Ray, B. (1986) Cellular damage in dried Lactobacillus acidophilus. Journal of Food Protection 49:47-53.

Caro-Corrales, J. J., Zazueta-Niebla, J. A., Ordorica-Falomir, C. A., Zazueta-Morales, J. J., Gutierrez-Lopez, G. F., and Alamilla-Beltran, L. (2005) Controlled low-temperature vacuum dehydration and tunnel drying: a comparative study. International Journal of Food Properties 8: 529-542.

Carvalho, A. S., Silva, J., Ho, P., Teixeira, P., Malcata, F. X., and Gibbs, P. (2002) Survival of freeze-dried Lactobacillus plantarum and Lactobacillus rhamnosus during storage in the presence of protectants. Biotechnology Letters 24: 1587-1591.

Champagne, C. P., Morin, N., Couture, R., Gagnon, C., Jelen, P., and Lacroix, C. (1992) The potential of immobilized cell technology to produce freeze-dried, phage-protected cultures of Lactococcus lactis. Food Research International 25:419-427.

Chandramouli, V., Kailasapathy, K., Peiris, P., and Jones, M. (2004) An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. Journal of Microbiological Methods 56:27-35.

Chou, S. K., Chua, K. J., Mujumdar, A. S., Hawlader, M. N. A., and Ho, J. C. (2000) On the intermittent drying of an agricultural product. Food and Bioproducts Processing 78(C4): 193-203.

Chua, K. J., Mujumdar, A. S., and Chou, S. K. (2003) Intermittent drying of bioproduct-an overview. Bioresource Technology 90: 285-295.

Cihan, A. and Ece, M. C. (2001) Liquid diffusion model for intermittent drying of rough rice. Journal of Food Engineering 49: 327-331.

Coughlan, M. P. and Kierstan, M. P. J. (1988) Preparation and applications of immobilized microorganisms: a survey of recent reports. Journal of Microbiological Methods 8:51-90.

Crowe, L. M., Mouradian, R., Crowe, J. H., Jackson, S. A., and Womersley, C. (1984) Effects of carbohydrates on membrane stability at low water activities. Biochimica et Biophysica Acta- Biomembranes 769:141-150.

Crowe, L. M., Reid, D. S., and Crowe, J. H. (1996) Is trehalose special for preserving dry biomaterials? Biophysical Journal 71:2087-2093.

Denich, T. J., Beaudette, L. A., Lee, H., and Trevors, J. T. (2003) Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes. Journal of Microbiological Methods 52:149-182.

Dincer, İ. (2003) Refrigeration Systems and Applications, pp. 534-539. John Wiley & Sons, Ltd. (UK), Hoboken, NJ.

Draget, K. I., Skjak-Braek, G.., and Smidsrod, O. (1997) Alginate based new materials. International Journal of Biological Macromolecules 21:47-55.

Fan, C. C., Liaw, S. P., and Pan, B. S. (2003) Mathematical model for prediction of intermittent drying and pressing process of mullet roe. Journal of Food Science 68(3): 886-891.

FAO/WHO (2001) Evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Food and Agriculture Organization of the United Nations and World Health Organization Expert Consultation Report. Rome, FAO.

Fellows, P. (2000) Food Processing Technology: Principles and Practice. 2nd ed. pp. 441-451. Woodhead Publishing, Boca Raton, FL.

Franks, F. (1990) Freeze drying: From empiricism to predictability. Cryo-letters 11:93-110.

Fuller, R. (1989) Probiotics in man and animals. Journal of Applied Bacteriology 66:365-378.

Gacesa, P. (1988) Alginates. Carbohydrate Polymers 8:161-182.

Gatto, E. (1991) Acidification power: performance evaluation of dried yeast and bacteria starter cultures. S. App. Sc. (Hons) Thesis, University of South Australia.

Gatto, E., Peddie, F., and Andrews, S. (1993) Acidification power: performance evaluation of freeze-dried lactic acid bacteria. Food Australia 45(3): 124-128.

Gerbsch, N. and Buchholz, R. (1995) New processes and actual trends in biotechnology. FEMS Microbiology Reviews 16:259-269.

Goldin, B. R. and Gorbach, S. L (1984) The effect of milk and lactobacillus feeding on human intestinal bacterial enzyme activity. American Journal of Clinical Nutrition 39:756-761.

Hamoudi, L., Goulet, J., and Ratti, C. (2007) Effect of protective agents on the viability of Geotrichum candidum during freeze-drying and storage. Journal of Food Science 72:M45-49.

Hubalek, Z. (2003) Protectants used in the cryopreservation of microorganisms. Cryobiology 46:205-229.

Imeson, A. P., Ledward, D. A., and Mitchell, J. R. (1977) On the nature of the interaction between some anionic polysaccharides and proteins. Journal of the Science of Food and Agriculture 28:661-668.

Jen, A. C., Wake, M. C., and Mikos, A. G. (1996) Review: Hydrogels for cell immobilization. Biotechnology and Bioengineering 50:357-364.

Jumah, R. Y., Mujumdar, A. S., and Raghavan, G. S. V. (1996) A mathematical model for constant and intermittent batch drying of grains in a novel rotating jet spouted bed. In: Mathematical Modeling and Numerical Techniques in Drying Technology, Edited by Ⅰ. Turner, and A. S. Mujumdar, Marcel Dekker, New York. pp. 339-380.

Kailasapathy, K. and Sureeta, B. S. (2004) Effect of storage on shelf life and viability of freeze-dried and microencapsulated Lactobacillus acidophilus and Bifidobacterium infantis cultures. Australian Journal of Dairy Technology 59(3):204-208.

Kara, B. (1988) Predication of the fermentation performance of brewing yeast with the acidification power test. Journal of the Institute of Brewing 94: 153-158.

Kearney, L., Upton, M., and McLoughlin, A. (1990) Enhancing the viability of Lactobacillus plantarum inoculum by immobilizing the cells in calcium-alginate beads incorporating cryoprotectants. Applied and Environmental Microbiology 56:3112-3116.

Kim, H. S. and Gilliland, S. E. (1983) Lactobacillus acidophilus as a dietary adjunct for milk to aid lactose digestion in humans. Journal of Dairy Science 66:959-966.

King, V. A.-E., Zall, R. R., and Ludington, D. C. (1989) Controlled low-temperature vacuum dehydration – a new approach for low-temperature and low-pressure food drying. Journal of Food Science 54(6): 1573-1579, 1593.

King, V. A-E. and Su, J. T. (1993) Dehydration of Lactobacillus acidophilus. Process Biochemistry 28:47-52.

King, V. A.-E. and Lin, H.-J. (1995) Studies on the effect of protectants on Lactobacillus acidophilus strain dehydrated under controlled low-temperature vacuum dehydration and freeze-drying by using response surface methodology. Journal of the Science of Food and Agriculture 68: 191-195.

King, V. A. -E. and Chen, J. -F. (1998) Oxidation of controlled low-temperature vacuum dehydrated and freeze-dried beef and pork. Meat Science 48:11-19.

Krishnamurthy, K., Khurana, H. K., Jun, S., Irudayaraj, J., and Demirci, A. (2008) Infrared heating in food processing: an overview. Comprehensive Reviews in Food Science and Food Safety 7:2-13.

Lee, J. S., Cha, D. S., and Park, H. J. (2004) Survival of freeze-dried Lactobacillus bulgaricus KFRI 673 in chitosan-coated calcium alginate microparticles. Journal of Agricultural and Food Chemistry 56:7300-7305.

Leslie, S. B., Israeli, E., Lighthart, B., Crown, J. H., and Crown, L. M. (1995) Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Applied and Enviromental Microbiology 61(10): 3592-3597.

Lian, W. C., Hsiao, H. C., and Chou, C. C. (2003) Viability of microencapsulated bifidobacteria in simulated gastric juice and bile solution. International Journal of Food Microbiology 86:293-301.

Lilly, D. M. and Stillwell, R. H. (1965) Probiotics: growth-promoting factors produced by microorganism. Science 147:747-748.

Lin, Y. P., Tsen, J. H., and King, V. A.-E. (2005) Effects of far-infrared radiation on the freeze-drying of sweet potato. Journal of Food Engineering 68: 249-255.

Linders, L. J. M., de Jong, G. I. W., Meerdink, G., and van’t Riet, K. (1997) Carbohydrates and the dehydration inactivation of Lactobacillus plantarum: the role of moisture distribution and water activity. Journal of Food Engineering 31: 237-250.

Mallouchos, A., Komaitis, M., Koutinas, A., and Kanellaki, M. (2003) Wine fermentations by immobilized and free cells at different temperatures. Effect of immobilization and temperature on volatile by-products. Food Chemistry 82:353-360.

Marth, E. H. (1973) Behavior of food microorganisms during freeze-preservation. In: Low-Temperature Preservation of Food and Living Matter, O. R. Fennema, W. D. Powrie, and E. H. Marth, Ed, p. 386. Marcel Dekker, Inc., New York, USA.

Mattila-Sandholm, T., Myllarinen, P., Crittenden, R., Mogensen, G., Fonden, R., and Saarela, M. (2002) Technological challenges for future probiotic foods. International Dairy Journal 12:173-182.

Mazur, P. (1977) The role of intracellular freezing in the death of cells cooled at supraoptimal rates. Cryobiology 14:251-272.

Metchnikoff, E. (1907) Lactic acid as inhibiting intestinal putrefaction. In: The Prolongation of Life: Optimistic Studies, pp. 161-183. W. Heinemann, London, UK.

Modler, H.W. and Villa-Garcia L. (1993) The growth of Bifidobacterim longum in whey-based medium and viability of this organism in frozen yoghurt with low and high levels of developed acidity. Culture Dairy Products 28: 4-8.

Mongpreneet, S., Abe, T., and Tsurusaki, T. (2002) Accelerated drying of welsh onion by far infrared radiation under vacuum conditions. Journal of Food Engineering 55:147-156.

Morgan, C. A., Herman, N., White, P. A., and Vesey, G. (2006) Preservation of micro-organisms by drying; A review. Journal of Microbiological Methods 66:183-193.

Muthukumarasamy, P., Allan-Wojtas, P., and Holley, R. A. (2006) Stability of Lactobacillus reuteri in different types of microcapsules. Journal of food science 71:M20-M24.

Nigam, J. N. (2000) Continuous ethanol production from pineapple cannery waste using immobilized yeast cells. Journal of Biotechnology 80:189-193.

Nowak, D. and Levicki, P. P. (2004) Infrared drying of apple slices. Innovative Food Science and Emerging Technologies 5:353-360.

Opekarova, M. and Sigler, K. (1982) Acidification power: indicator of metabolic activity and autolytic changes in Saccharomyces cerevisiae. Folia Microbiology 27: 395-403.

Ouwehand, A. C., Salminen, S., and Isolauri, E. (2002) Probiotics: an overview of beneficial effects. Antonie van Leeuwenhoek 82:279-289.

Riis, S. B., Pedersen, H. M., Sorensen, N. K., and Jakobsen, M. (1995) Flow cytometry and acidification power test as rapid techniques for determination of the activity of starter cultures of Lactobacillus delbrueckii ssp. bulgaricus. Food Microbiology 12:245-250.

Rolfe, R. D. (2000) The role of probiotic cultures in the control of gastrointestinal health. Journal of Nutrition 130:396S-402S.

Saarela, M., Mogensen, G., Fonden, R., Matto, J., and Mattila-Sandholm, T. (2000) Probiotic bacteria: safety, functional and technological properties. Journal of Biotechnology 84:197-215.

Sanders, M. E. and Klaenhammer, T. R. (2001) The scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic. Journal of Dairy Science 84:319-331.

Sandu, C. (1986) Infrared radiative drying in food engineering: a process analysis. Biotechnology Progress 2:109-119.

Sharma, B. P., Bailey, L. F., and Messing, R. A. (1982) Immobilized biomaterials-techniques and applications. Angewandte Chemie International Edition in English 21:97-854.

Shei, H. J. and Chen, Y. L. (2002) Computer simulation on intermittent drying of rough rice. Drying Technology 20: 615-636.

Shen, H.-Y., Moonjai, N., Verstrepen, K. J., and Delvaux, F. R. (2003) Impact of attachment immobilization on yeast physiology and fermentation performance. Journal of the American Society of Brewing Chemists 61:79-87.

Sheu, T. Y. and Marshall, R. T. (1993) Microencapsulation of lactobacilli in calcium alginate gels. Journal of Food Science 54:557–561.

Sigler, K., Mikyska, A., Kosar, K., Gabriel, P., and Dienstbier, M. (2006) Factors affecting the outcome of the acidification power test of yeast quality: critical reappraisal. Folia Microbiology 51:525-534.

Simakachorn, N., Pichaipat, V., Rithipornpaisarn, P., Kongkaew, C., Tongpradit, P., and Varavithya, W. (2000) Clinical evaluation of the addition of lyophilized, heat-killed Lactobacillus acidophilus LB to oral rehydration therapy in the treatment of acute diarrhea in children. Journal of Pediatric Gastroenterology and Nutrition 30:68-72.

Simione, F. P. and Brown, E. M. (1991) ATCC preservation methods: freezing and freeze drying, 2nded. American Type Culture Collection, Rockville, MD, USA.

Swain, M. R., Kar, S., Sahoo A. K., and Ray, R. C. (2007) Ethanol fermentation of mahula (Madhuca latifolia L.) flowers using free and immobilized yeast Saccharomyces cerevisiae. Microbiological Research 162:93-98.

Tan, M., Chua, K. J., Mujumdar, A. S., and Chou, S. K. (2001) Effect of osmotic pre-treatment and infrared radiation on drying rate and color changes during drying of potato and pineapple. Drying Technology 19:2193-2207.

Tetteroo, F., De Bruijn, A. Y. , Henselmans, R., Wolkers, W. F., Van Aelst, A. C., and Hoekstra, F. A. (1996) Characterization of membrane properties in desiccation-tolerant and -intolerant carrot somatic embryos. Plant Physiology 111:403-412.

Tsen, J.-H., Lin, Y.-P., and King, V. A.-E. (2003) Banana puree fermentation by Lactobacillus acidophilus immobilized in Ca-alginate. Journal of General and Applied Microbiology 49:357-362.

Wolkersa, W. F., Tablinb, F., and Crowe, J. H. (2002) From anhydrobiosis to freeze-drying of eukaryotic cells. Comparative Biochemistry and Physiology Part A 131:535-543.

Wright, C. T. and Klaenhammer, T. R. (1981) Calcium-induced alteration of cellular morphology affecting the resistance of Lactobacillus acidophilus to freezing. Applied and Environmental Microbiology 41:807-815.

Yoo, B. and Lee, C. M. (1993) Thermoprotective effect of sorbitol on proteins during dehydration. Journal of Agricultural and Food Chemistry 41: 190- 192.

Zayed, G.. and Roos, Y. H. (2004) Influence of trehalose and moisture content on survival of Lactobacillus salivarius subjected to freeze-drying and storage. Process Biochemistry 39: 1081-1086.

Zhao, G. and Zhang, G. (2005) Effect of protective agents, freezing temperature, rehydration media on viability of malolactic bacteria subjected to freeze-drying. Journal of Applied Microbiology 99(2): 333-338.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top