跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/06 00:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高苾瑜
研究生(外文):Bi-Yu Kao
論文名稱:第一型重組抗凍蛋白質類似物之生產與其於食品工業之應用
論文名稱(外文):Food industry production and application on of a novel recombinant type I antifreeze protein analogue
指導教授:葉娟美
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:122
中文關鍵詞:第一型抗凍蛋白類似物枯草桿菌乳酸鏈球菌生物安全級培養基冷凍麵糰菌體存活率液滴損失
外文關鍵詞:recombinant type I AFP (rAFP)Bacillus subtilisLactococcus lactisDrip lossFrozen doughSurvival Ratebio-safety culture
相關次數:
  • 被引用被引用:3
  • 點閱點閱:388
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
冷凍食品為食品工業主要項目之一,在冷凍運輸過程中常因反覆冷凍解凍對品質造成極大影響,是冷凍食品需克服的重要問題。抗凍蛋白質(antifreeze proteins,AFPs)也稱做冰結構蛋白(Ice Structuring Proteins,ISPs),存在於某些寒帶或極地生物體內,具有降低凍結點及抑制冰晶再結晶的特性,可應用於冷凍食品之品質保持或細胞、組織之冷凍保存上。
枯草桿菌 (Bacillus subtilis)及乳酸鏈球菌 (Lactococcus lactis) 均屬於GRAS (generally recognized as safe) 級之菌種,常被運用於發酵工業。故以其作為異源蛋白質之表現宿主具有應用於食品工業上之潛力。本實驗室先前已成功建立枯草桿菌及乳酸鏈球菌分泌表現重組蛋白質 (recombinant antifreeze proteins ; rAFP) 之系統,並利用人工合成的方式,成功將來自於魚類之第一型重組抗凍蛋白質類似物表現於Escherichia coli、B.subtilis及L. lactis中。
首先探討抗生素的存在對於帶有質體之枯草桿菌及乳酸鏈球菌的表現是否有影響,結果顯示抗生素的添加與否對於枯草桿菌及乳酸鏈球菌表現分泌rAFP 之產量無顯著影響,以植物性氮源培養基取代動物性氮源之生物安全性培養基,對於枯草桿菌及乳酸鏈球菌菌體密度提升有益,且不影響B. subtilis分泌表現rAFP 之產量,而對乳酸菌分泌表現rAFP有提升。
重組抗凍蛋白質類似物在食品工業上之應用性部分,冷凍麵糰是應用抗凍蛋白質具有抑制冰晶再結晶之功能,使麵筋網狀結構在冷凍過程中所受到的破壞降到最低,使所製成之麵團發酵體積狀態可優於無添加抗凍蛋白質之組別,且所烘培的麵包在品質上能與非冷凍麵團所製成的相當。使用於冷凍肉片方面,則是應用抗凍蛋白具有修飾結晶之功能,肉片只須藉由簡單的浸渍處理就可在冷凍數日後尚能維持一定品質,結果顯示在解凍液滴損失上可得到改善,並降低冷凍過程冰晶對於肉品組織的破壞。菌體保護部份將重組抗凍蛋白質類似物配合其他保護劑可提高菌體於冷凍儲存時的存活率。
中文摘要----------------------------------------------------------------------------------i
英文摘要----------------------------------------------------------------------------------ii
壹、前言-----------------------------------------------------------------------------------1
一、食品冷凍加工------------------------------------------------------------------------1
(一)冷凍食品概述--------------------------------------------------------------1
(二)凍結作用對食品組織之影響--------------------------------------------1
(三)食品組織的凍結變化-----------------------------------------------------1
1.組織結構的變化---------------------------------------------------------2
(1)機械損傷說---------------------------------------------------2
(2)細胞損傷說---------------------------------------------------2
2.解凍後流出液的發生及組織變化----------------------------------2
(1)流出液形成原因-----------------------------------------------3
(2)流出液的發生量-----------------------------------------------3
(3)解凍後組織變化-----------------------------------------------4
(四)冷凍保護劑----------------------------------------------------------4
(五)冷凍麵糰介紹-------------------------------------------------------4
1.開發的背景和現狀-----------------------------------------------5
2.冷凍麵糰的製造流程和主要技術問題-----------------------5
二、抗凍蛋白介紹------------------------------------------------------------------------6
(一)抗凍蛋白的特性-------------------------------------------------------------7
1.熱遲滯效應---------------------------------------------------------------7
2.改變冰晶的形態---------------------------------------------------------7
3.抑制冰的再結晶(防止小的冰晶凝結成更大的冰晶)-----------8
4.抗凍作用的非依數性---------------------------------------------------8
(二)來源分類與特性-----------------------------------------------------------8
1.魚類抗凍蛋白質---------------------------------------------------------8
2.昆蟲中的抗凍蛋白質---------------------------------------------------9
3.植物抗凍蛋白質---------------------------------------------------------10
(三)抗凍機制--------------------------------------------------------------------11
三、抗凍蛋白在食品工業中的應用---------------------------------------------------12
(一)食品加工的原料-----------------------------------------------------------12
(二)食品運輸和貯藏-----------------------------------------------------------14
(三)應用於肉類食品的冷凍--------------------------------------------------14
(四)在冷凍乳製品中的應用--------------------------------------------------15
四、重組抗凍蛋白類似物生產系統介紹--------------------------------------------16
(一)枯草桿菌系統---------------------------------------------------------------16
1.枯草桿菌特性與應用---------------------------------------------------16
2.枯草桿菌分泌系統------------------------------------------------------16
(1)分泌系統機制------------------------------------------------17
(2)訊息胜肽------------------------------------------------------17
(3)抗凍蛋白質表現系統------------------------------------------18
(二)乳酸菌系統--------------------------------------------------------------------19
1.乳酸菌特性、發展及其應用--------------------------------------------19
2.乳酸菌分泌表現相關研究----------------------------------------------20
3.抗凍蛋白質表現系統------------------------------------------------------20
貳、實驗緣起與目的--------------------------------------------------------------------38
參、實驗策略---------------------------------------------------------------------------39肆、材料與方法---------------------------------------------------------------------------------40
一、菌種與質體---------------------------------------------------------40
(一)菌種--------------------------------------------------------------------------40
(二)質體---------------------------------------------------------------------------40
二、材料與藥品試劑--------------------------------------------------------------------41
三、重組抗凍蛋白質類似物於不同宿主中之表現與偵測-----------------------41 (一)生長曲線之測定及蛋白質樣品之取得-------------------------------------41
(二)蛋白質樣品之製備------------------------------------------------------------------42
(三)Tricine-聚丙烯醯胺膠體電泳(Tricine-SDS PAGE)----------------------42
四、探討抗生素添加重組抗凍蛋白質類似物對表現之影響--------------------42
(一)枯草桿菌部分----------------------------------------------------------------42
(二)乳酸鏈球菌部分-------------------------------------------------------------42
五、探討不同培養基組成重組抗凍蛋白質類似物對表現之影響----------------43
(一)枯草桿菌部分----------------------------------------------------------------43
(二)乳酸鏈球菌部分-------------------------------------------------------------43
六、自不同宿主中獲得重組抗凍蛋白質類似物----------------------------------43
(一)枯草桿菌培養條件----------------------------------------------------------43
(二)乳酸鏈球菌培養條件-------------------------------------------------------43
(三)親合性樹脂純化濃縮之步驟----------------------------------------------43
(四)真空冷凍乾燥之步驟-------------------------------------------------------44
(五)蛋白質定量-------------------------------------------------------------------44
七、蛋白質分析軟體----------------------------------------------------------------------45
八、蛋白質分析軟體和蛋白質定量試劑之結果比較-------------------------------45
九、重組抗凍蛋白類似物活性分析----------------------------------------------------45
(一)重組抗凍蛋白質纇似物修飾冰晶構形能力之測試-------------------45
(二)重組抗凍蛋白質類似物抑制冰晶再結晶特性之測試----------------45
(三)重組抗凍蛋白熱類似物熱安定性分析----------------------------------45
(四)重組抗凍蛋白類似物pH值安定性分析---------------------------------46
(五)抗凍蛋白類似物最小抑制濃度(minimal inhibition concentration)
之分析方法--------------------------------------------------------------------------46
十、重組抗凍蛋白質之應用-冷凍肉片品質維持------------------------------------46
(一)實驗樣品制備----------------------------------------------------------------46
(二)抗凍液配置-------------------------------------------------------------------47
(三)實驗肉片浸泡方式----------------------------------------------------------47
(四)冷凍解凍實驗----------------------------------------------------------------47
(五)解凍液滴損失分析方式----------------------------------------------------47
(六)解凍液滴蛋白質含量測定方法-------------------------------------------47
十一、重組抗凍蛋白質之應用-維持冷凍麵糰品質------------------------------47
(一)冷凍麵團製作方法----------------------------------------------------------47
(二)酵母菌添加量評估試驗----------------------------------------------------48
(三)凍乾乳酸菌粉末添加量評估試驗---------------------------------------48
(四)添加抗凍保護劑對維持冷凍麵糰品質效果實驗----------------------48
(五)冷凍麵團解凍方法---------------------------------------------------------48
(六)冷凍麵團焙烤方法---------------------------------------------------------48
(七)麵團發酵體積測量方法----------------------------------------------------48
(八)麵包體積測量方法----------------------------------------------------------49
(九)麵包比重測量方法----------------------------------------------------------49
十二、重組抗凍蛋白質之應用-益生菌保護---------------------------------------49
(一)實驗菌株活化與保存-------------------------------------------------------49
(二)實驗菌體收集---------------------------------------------------------------49
(三)保護劑製備------------------------------------------------------------------49
(四)實驗菌體懸浮液製備------------------------------------------------------50
(五)反覆冷凍解凍實驗----------------------------------------------------------50
(六)菌數計算---------------------------------------------------------------------50
十三、消費者型品評試驗------------------------------------------------------------50
(一)冷凍肉片---------------------------------------------------------------------50
(二)冷凍麵糰麵包---------------------------------------------------------------51
十四、數據分析--------------------------------------------------------------------------51
伍、結果與討論---------------------------------------------------------------------------------63
一、探討抗生素添加與否對重組抗凍蛋白質類似物表現之影響---------------63
(一)不添加抗生素培養基對B. subtilis WB800轉型株生長及rAFP之探討---63
(二)不添加抗生素培養基對L. lactis NZ9000轉型株生長及rAFP之探討----63
二、探討培養基成分對菌體生長及重組抗凍蛋白質類似物表現量之影響---64
(一)探討培養基成分對於B. subtilis WB800轉型株菌體密度和分泌表現之影響----------------------------------------------------------------64
(二)L. lactis NZ9000 最適化培養基之探討-------------------------------65
三、不同來源之重組抗凍蛋白質類似物之取得------------------------------------66
四、探討不同重複胺基酸單元之重組抗凍蛋白質類似物在pH穩定性和熱穩定性上之差異--------------------------------------------------------------------66
五、應用重組抗凍蛋白質類似物於冷凍肉片品質之維持------------------------67
(一)浸泡時間對液滴損失之影響----------------------------------------------67
(二)浸泡時間對液滴中蛋白質含量之影響----------------------------------67
(三)浸泡液種類對液滴損失之影響------------------------------------------68
(四)浸泡液種類對液滴中蛋白質含量之影響-------------------------------68
(五)浸漬處理對冷凍肉片品質之影響----------------------------------------68
(六)抗凍蛋白類似物添加量對冷凍肉片製品品質之影響----------------68
六、應用重組抗凍蛋白質類似物於冷凍麵團之品質維持-----------------------69
(一)最適酵母添加量和最適抗凍蛋白類似物添加量探討----------------70
(二)抗凍蛋白類似物添加量對麵團發酵體積之影響---------------------70
(三)抗凍蛋白類似物添加量對麵包成品質量之影響----------------------71
七、應用重組抗凍蛋白質類似物於益生菌保護-----------------------------------73
(一)抗凍蛋白質添加量對菌體存活率之影響------------------------------73
(二)保護劑種類對菌體存活率之影響----------------------------------------73
陸、結論-----------------------------------------------------------------------------------110
柒、參考文獻---------------------------------------------------------------------------111
捌、附錄一---------------------------------------------------------------------------------122
附錄二---------------------------------------------------------------------------------------129
附錄二---------------------------------------------------------------------------130
加藤舜郎. 1967. 食肉の低溫處理. 東京書肆珠式會社。東京。日本。
徐有財。1995。冷凍食品學. 修訂第三版. 復文書局。台南。台灣。
蔡英傑。1998 年。乳酸菌與益生菌。生物產業。9: 98-104。
鍾忠勇。1997。冷凍食品之原理與加工。食品工業研究所。新竹。台灣。223-226。
王志鵬。2007年。開發枯草桿菌持續型及誘導型表現系統已應用於自體同源及異源蛋白之表現暨建立芽孢桿菌益生菌表現系統。國立中興大學食品暨應用生物科技學系博士論文。
彭宣融。2006年。開發重組乳酸鏈球菌口服疫苗。國立中興大學食品暨應用生物科技學系碩士論文。
蘇芳仙。2000年。最佳σA啟動子及多重啟動子之構築及其於枯草桿菌中的表現。國立中興大學食品科學系碩士論文。
蘇政蕙。2005年。挑選持續型強力啟動子並表現重組抗凍蛋白類似物於乳酸鏈球菌與乳酸桿菌中。國立中興大學食品科學系碩士論文。
黃馨慧。2007。第一型重組抗凍蛋白質類似物於乳酸鏈球菌之分泌增進及食品級表現。國立中興大學食品暨應用生物科技學系碩士論文。
區少梅。1997。台灣感官品評的應用,感官品評與研究開發研討會,台北。
陳弘文。2006。冷凍麵糰配方與加工條件對麵包品質的影響。國立臺灣海洋大學食品科學系碩士論文
Akita, M., Sasaki, S., Matsuyama, S., & Mizushima, S. (1990). SecA interacts with secretory proteins by recognizing the positive charge at the amino terminus of the signal peptide in escherichia coli. The Journal of Biological Chemistry, 265(14), 8164-8169.
Autio‚ K., & Sinda, E. (1992). frozen doughs:rheological changes and yeast viability. Cereal Chemistry. 69(4), 409-413.
Autio‚ K., & Laurikainen, T. (1997). Relationship between flour/dough microstructure and doughhandling and baking properties. Trends in Food Science and Technology, 8(6), 181-185.
Arnaud, M., Vary, P., Zagorec, M., Klier, A., Debarbouille, M., & Postma, P. (1992). Regulation of the sacPA operon of bacillus subtilis: Identification of phosphotransferase system components involved in SacT activity. Journal of Bacteriology, 174(10), 3161-3170.
Baardsnes, J., & Davies, P. L. (2002). Contribution of hydrophobic residues to ice binding by fish type III antifreeze protein. Biochimica Et Biophysica Acta, 1601(1), 49-54.
Berny, J.F., Hennebert, G.L.(1991) Viability and stability of yeast cells and filamentous fungus spores during freeze-drying: effects of protectants and cooling rates Mycologia ,83(6) ,805-815
Beninati, C., Oggioni, M., Mancuso, G., Midiri, A., Polonelli, L., Pozzi, G., et al. (2001). Anti-idiotypic vaccination against group B streptococci. International Reviews of Immunology, 20(2), 263-273.
Beninati, C., Oggioni, M. R., Boccanera, M., Spinosa, M. R., Maggi, T., Conti, S., et al. (2000). Therapy of mucosal candidiasis by expression of an anti-idiotype in human commensal bacteria. Nature Biotechnology, 18(10), 1060-1064.
Bernasconi, E., Germond, J. E., Delley, M., Fritsche, R., & Corthesy, B. (2002). Lactobacillus bulgaricus proteinase expressed in lactococcus lactis is a powerful carrier for cell wall-associated and secreted bovine beta-lactoglobulin fusion proteins. Applied and Environmental Microbiology, 68(6), 2917-2923.
Bolhuis, A., Broekhuizen, C. P., Sorokin, A., van Roosmalen, M. L., Venema, G., & Bron, S. (1998). SecDF of bacillus subtilis, a molecular siamese twin required for the efficient secretion of proteins. The Journal of Biological Chemistry, 273(33), 21217-21224.
Breitling, R., & Dubnau, D. (1990). A membrane protein with similarity to N-methylphenylalanine pilins is essential for DNA binding by competent bacillus subtilis. Journal of Bacteriology, 172(3), 1499-1508
Briggs, M. S., & Gierasch, L. M. (1986). Molecular mechanisms of protein secretion: The role of the signal sequence. Advances in Protein Chemistry, 38, 109-180.
Carpenter, J. F., & Hansen, T. N. (1992). Antifreeze protein modulates cell survival during cryopreservation: Mediation through influence on ice crystal growth. Proceedings of the National Academy of Sciences of the United States of America, 89(19), 8953-8957
Carvalho, A. S., Silva, J., Ho, P., Teixeira, P., Malcata, F. X., &Gibbs, P.(2002). Survial of freeze-dried Lactobacillus plantarum and Lactobacillus rhamnosus during storage in the presence of protectants. Biotechnology Letters 24(19): 1587-1591.
Carvalho, A. S., Silva, J., Ho, P., Teixeira, P., Malcata, F. X., & Gibbs, P. (2004). Effects of various sugars added to growth and drying media upon thermotolerance and survival throughout storage of freeze-dried lactobacillus delbrueckii ssp. bulgaricus. Biotechnology Progress, 20(1), 248-254.
Chakrabartty, A., Ananthanarayanan, V. S., & Hew, C. L. (1989). Structure-function relationships in a winter flounder antifreeze polypeptide. I. stabilization of an alpha-helical antifreeze polypeptide by charged-group and hydrophobic interactions. The Journal of Biological Chemistry, 264(19), 11307-11312.
Chakrabartty A., Hew C. L., Shears M. & Fletcher G. L. (1988). Primary structures of the alanine rich antifreeze polypeptides from grubby sculpin (Myoxocephalus aenaeus). Canadian journal of zoology,66(2), 403–408.
Chao, H., Hodges, R. S., Kay, C. M., Gauthier, S. Y., & Davies, P. L. (1996). A natural variant of type I antifreeze protein with four ice-binding repeats is a particularly potent antifreeze. Protein Science : A Publication of the Protein Society, 5(6), 1150-1156.
Chao, H., Sonnichsen, F. D., DeLuca, C. I., Sykes, B. D., & Davies,P. L. (1994). Structure-function relationship in the globular type III antifreeze protein: Identification of a cluster of surface residues required for binding to ice. Protein Science : A Publication of the Protein Society, 3(10), 1760-1769.
Chatel, J. M., Langella, P., Adel-Patient, K., Commissaire, J., Wal, J. M., & Corthier, G. (2001). Induction of mucosal immune response after intranasal or oral inoculation of mice with lactococcus lactis producing bovine beta-lactoglobulin. Clinical and Diagnostic Laboratory Immunology, 8(3), 545-551.
Cheng, Y., Yang, Z., Tan, H., Liu, R., Chen, G., & Jia, Z. (2002). Analysis of ice-binding sites in fish type II antifreeze protein by quantum mechanics. Biophysical Journal, 83(4), 2202-2210.
Curic, M., Stuer-Lauridsen, B., Renault, P., & Nilsson, D. (1999). A general method for selection of alpha-acetolactate decarboxylase-deficient lactococcus lactis mutants to improve diacetyl formation. Applied and Environmental Microbiology, 65(3), 1202-1206.
Daley, M. E., & Sykes, B. D. (2003). The role of side chain conformational flexibility in surface recognition by tenebrio molitor antifreeze protein. Protein Science : A Publication of the Protein Society, 12 (7), 1323-1331.
Davies, P. L., Baardsnes, J., Kuiper, M. J., & Walker, V. K. (2002). Structure and function of antifreeze proteins. Philosophical Transactions of the Royal Society B: Biological Sciences ,357 (1426), 927-935.
Davies, P. L., & Hew, C. L. (1990). Biochemistry of fish antifreeze proteins. The FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 4(8), 2460-2468.
Davies, P. L., Roach, A. H., & Hew, C. L. (1982). DNA sequence coding for an antifreeze protein precursor from winter flounder. Proceedings of the National Academy of Sciences of the United States of America, 79(2), 335-339.
Deng, G., Andrews, D. W., & Laursen, R. A. (1997). Amino acid sequence of a new type of antifreeze protein, from the longhorn sculpin myoxocephalus octodecimspinosis. FEBS Letters, 402(1), 17-20
De Ruyter, P. G., Kuipers, O. P., Meijer, W. C., & de Vos, W. M. (1997). Food-grade controlled lysis of lactococcus lactis for accelerated cheese ripening. Nature Biotechnology, 15(10), 976-979.
DeVries, A. L. (1986). Antifreeze glycopeptides and peptides: Interactions with ice and water. Methods in Enzymology, 127, 293-303.
Deuerling, E., Mogk, A., Richter, C., Purucker, M., & Schumann, W. (1997). The ftsH gene of bacillus subtilis is involved in major cellular processes such as sporulation, stress adaptation and secretion. Molecular Microbiology, 23(5), 921-933.
Dhaese, P., Hussey, C., & Van Montagu, M. (1984). Thermo-inducible gene expression in bacillus subtilis using transcriptional regulatory elements from temperate phage phi 105. Gene, 32(1-2), 181-194.
Di Fabio, S., Medaglini, D., Rush, C. M., Corrias, F., Panzini, G. L., Pace, M., et al. (1998). Vaginal immunization of cynomolgus monkeys with streptococcus gordonii expressing HIV-1 and HPV 16 antigens. Vaccine, 16(5), 485-492.
Dion, M., Rapoport, G., & Doly, J. (1989). Expression of the MuIFN alpha 7 gene in bacillus subtilis using the levansucrase system. Biochimie, 71(6), 747-755.
Du, N., Liu, X. Y., & Hew, C. L. (2003). Ice nucleation inhibition: Mechanism of antifreeze by antifreeze protein. The Journal of Biological Chemistry, 278(38), 36000-36004.
Deng, G., Andrews, D. W., & Laursen, R. A. (1997). Amino acid sequence of a new type of antifreeze protein, from the longhorn sculpin myoxocephalus octodecimspinosis. FEBS Letters, 402(1), 17-20.
Deng, G., & Laursen, R. A. (1998). Isolation and characterization of an antifreeze protein from the longhorn sculpin, myoxocephalus octodecimspinosis. Biochimica Et Biophysica Acta, 1388(2), 305-314.
Drouault, S., Corthier, G., Ehrlich, S. D., & Renault, P. (2000). Expression of the staphylococcus hyicus lipase in lactococcus lactis. Applied and Environmental Microbiology, 66(2), 588-598
Drouault, S., Juste, C., Marteau, P., Renault, P., & Corthier, G. (2002). Oral treatment with lactococcus lactis expressing staphylococcus hyicus lipase enhances lipid digestion in pigs with induced pancreatic insufficiency. Applied and Environmental Microbiology, 68(6), 3166-3168.
Duman, J. G., & DeVries, A. L. (1974). The effects of temperature and photoperoid on antifreeze production in cold water fishes. The Journal of Experimental Zoology, 190(1), 89-98.
Duman, J. G., Li, N., Verleye, D., Goetz, F. W., Wu, D. W., Andorfer, C. A., et al. (1998). Molecular characterization and sequencing of antifreeze proteins from larvae of the beetle dendroides canadensis. Journal of Comparative Physiology.B, Biochemical, Systemic, and Environmental Physiology, 168(3), 225-232.
Duman, J.G. (1994). Purification and characterization of a thermal hysteresis protein from a plant, the bittersweet nightshade Solanum dulcamara. Biochimica Et Biophysica Acta, 1206(1), 129-135.
Edelman, A., Joliff,G., Klier,A., Rapoport ,G .(1988) A system for the inducible secretion of proteins from Bacillus subtilis during logarithmic growth FEMS Microbiology Letters, 52 (1-2) , 117-120
Enouf, V., Langella, P., Commissaire, J., Cohen, J., & Corthier, G. (2001). Bovine rotavirus nonstructural protein 4 produced by lactococcus lactis is antigenic and immunogenic. Applied and Environmental Microbiology, 67(4), 1423-1428.
Evans, R. P., & Fletcher, G. L. (2001). Isolation and characterization of type I antifreeze proteins from atlantic snailfish (liparis atlanticus) and dusky snailfish (liparis gibbus). Biochimica Et Biophysica Acta, 1547(2), 235-244.
Ewart, K. V., & Fletcher, G. L. (1993). Herring antifreeze protein: Primary structure and evidence for a C-type lectin evolutionary origin. Molecular Marine Biology and Biotechnology, 2(1), 20-27.
Ewart, K. V., Lin, Q., & Hew, C. L. (1999). Structure, function and evolution of antifreeze proteins. Cellular and Molecular Life Sciences : CMLS,55(2), 271-283.
Ewart, K. V., Rubinsky, B., & Fletcher, G. L. (1992). Structural and functional similarity between fish antifreeze proteins and calcium-dependent lectins. Biochemical and Biophysical Research Communications, 185(1), 335-340.
Fairley, K., Westman, B. J., Pham, L. H., Haymet, A. D., Harding, M. M., & Mackay, J. P. (2002). Type I shorthorn sculpin antifreeze protein: Recombinant synthesis, solution conformation, and ice growth inhibition studies. The Journal of Biological Chemistry, 277(27), 24073-24080.
Feeney, R. E., & Yeh, Y. (1998). Antifreeze proteins: Current status and possible food uses. Trends in Food Science and Technology 9(3), 102-106.
Franks, F. (1975) Water, ice and solutions of simple molecules. In: R.B. Duckworth, Editor, Water relations of foods, Academic Press, London, 3–22.
Feeney, R. E., Osuga, D. T. & Yeh, Y. (1996).Antifreeze Proteins: From Purely Scientific Interest to Possible Uses in Agriculture, Fish Culture, Foods, and Medicine. in Comments Agric. Food Chem. 3, pp. 155–174.
Fletcher, G.L., Addison, R.F. Slaughter, D., & Hew,C.L.(1982) Antifreeze Proteins in the Arctic Shorthorn Sculpin (Myoxocephalus scorpius).Arctic.35 (2) 302-306.
Fu, L.L., Xu,Z.R., Li, W.F., Shuai, J.B., Lu, P., Hu, C.X. 2007. Protein secretion pathways in Bacillus subtilis: implication for optimization of heterologous protein secretion. Biotechnol.201Adv. 25: 1-12.
Gauthier, S. Y., Marshall, C. B., Fletcher, G. L., & Davies, P. L. (2005). Hyperactive antifreeze protein in flounder species. the sole freeze protectant in american plaice. The FEBS Journal, 272(17), 4439-4449.
Georges, F., Saleem, M., & Cutler, A. J. (1990). Design and cloning of a synthetic gene for the flounder antifreeze protein and its expression in plant cells. Gene, 91(2), 159-165.
Giannou, V., Kessoglou, V. & Tzia, C. (2003). Quality and safety characteristics of bread made from frozen dough. Trends in Food Science & Technology, 14(3), 99-108.
Gilbert, C., Robinson, K., Le Page, R. W., & Wells, J. M. (2000). Heterologous expression of an immunogenic pneumococcal type 3 capsular polysaccharide in lactococcus lactis. Infection and Immunity, 68(6), 3251-3260.
Gomez, T. M., & Calvelo, A. (1982). On the ice growth mechanisms during beef freezing. In Proceedings of the Meeting of Commissions C2, D1, D2 and D3 of the I.I.F., Hamilton, New Zealand, 83-91
Gong, Z., Ewart, K. V., Hu, Z., Fletcher, G. L., & Hew, C. L. (1996). Skin antifreeze protein genes of the winter flounder, pleuronectes americanus, encode distinct and active polypeptides without the secretory signal and prosequences. The Journal of Biological Chemistry, 271(8), 4106-4112.
Grangette, C., Muller-Alouf, H., Goudercourt, D., Geoffroy, M. C., Turneer, M., & Mercenier, A. (2001). Mucosal immune responses and protection against tetanus toxin after intranasal immunization with recombinant lactobacillus plantarum. Infection and Immunity, 69(3), 1547-1553.
Graether, S.P.(1999). The Structure of Type III andSpruce Budworm Antifreeze Proteins:Globular versus β-Helix Folds.Ph.D.thesis, Department of Biochemistry, Queen’s University
Grangette, C., Muller-Alouf, H., Goudercourt, D., Geoffroy, M. C., Turneer, M., & Mercenier, A. (2001). Mucosal immune responses and protection against tetanus toxin after intranasal immunization with recombinant lactobacillus plantarum. Infection and Immunity, 69(3), 1547-1553.
Graham, L. A., Liou, Y. C., Walker, V. K., & Davies, P. L. (1997). Hyperactive antifreeze protein from beetles. Nature, 388(6644), 727-728.
Griffith, M., Ala, P., Yang, D. S., Hon, W. C., & Moffatt, B. A. (1992). Antifreeze protein produced endogenously in winter rye leaves. Plant Physiology, 100(2), 593-596.
Griffith, M., & Ewart, K. V. (1995). Antifreeze proteins and their potential use in frozen foods. Biotechnology Advances, 13(3), 375-402.
Harding, M. M., Anderberg, P. I., & Haymet, A. D. (2003). ''Antifreeze'' glycoproteins from polar fish. European Journal of Biochemistry FEBS, 270(7), 1381-1392.
Hashiba, H., Takiguchi, R., Jyoho, K., & Aoyama, K. (1992). Establishment of a host-vector system in lactobacillus helveticus with beta-galactosidase activity as a selection marker. Bioscience, Biotechnology, and Biochemistry, 56(2), 190-194.
Hew, C. L., Fletcher, G. L., & Ananthanarayanan, V. S. (1980). Antifreeze proteins from the shorthorn sculpin, myoxocephalus scorpius: Isolation and characterization. Canadian Journal of Biochemistry, 58(5), 377-383.
Hew, C. L., Joshi, S., Wang, N. C., Kao, M. H., & Ananthanarayanan, V. S. (1985). Structures of shorthorn sculpin antifreeze polypeptides. European Journal of Biochemistry / FEBS, 151(1), 167-172.
Hightower, R., Baden, C., Penzes, E., Lund, P., & Dunsmuir, P. (1991). Expression of antifreeze proteins in transgenic plants. Plant Molecular Biology, 17(5), 1013-1021.
Hols, P., Slos, P., Dutot, P., Reymund, J., Chabot, P., Delplace, B., et al. (1997). Efficient secretion of the model antigen M6-gp41E in lactobacillus plantarum NCIMB 8826. Microbiology (Reading, England), 143 ( Pt 8)(Pt 8), 2733-2741.
Hols, P., Kleerebezem, M., Schanck, A. N., Ferain, T., Hugenholtz, J., Delcour, J., et al. (1999). Conversion of lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering. Nature Biotechnology, 17(6), 588-592
Hon, W.C., Griffith, M., Mlynarz, A., Zhang, J. and Yang, D.S.C. 1994b. The dual role of antifreeze proteins in winter rye. Abstracts, Fourth Internafl. Congr. Plant. Mol. Biol., p. 6-10.
Hon, W. C., Griffith, M., Mlynarz, A., Kwok, Y. C., & Yang, D. S. (1995). Antifreeze proteins in winter rye are similar to pathogenesis-related proteins. Plant Physiology, 109(3), 879-889.
Hottinger, H., Mignot, O., & Mollet, B. (1992). Yogurt contenant des microorganismes vivants. Eur Patent Appl 0518096.
Hoseney, R.C. (1994). Bread baking. Cereal Food World, 39, 180-183.
Hugenholtz, J., & de Veer, G. J. C. M. (1991). Application of nisin A and nisin Z in dairy technology. In: Nisin and novel lantibiotics. pp. 440-447. (Jung, G., and Sahl, H. G., eds.). The Netherlands: ESCOM, Leiden.
Izawa, S., Ikeda, K., Takahashi, N., & Inoue, Y. (2007). Improvement of tolerance to freeze-thaw stress of baker''s yeast by cultivation with soy peptides. Applied Microbiology and Biotechnology, 75(3), 533-537.
Jeong, D. W., Lee, J. H., Kim, K. H., & Lee, H. J. (2006). A food-grade expression/secretion vector for lactococcus lactis that uses an alpha-galactosidase gene as a selection marker. Food Microbiology, 23(5), 468-475
Joliff, G., Edelman, A., Klier, A., & Rapoport, G. (1989). Inducible secretion of a cellulase from clostridium thermocellum in bacillus subtilis. Applied and Environmental Microbiology, 55(11), 2739-2744
Johnson, T. R., &Case, C. L. 1995. Laboratory experiments inmicrobiology. The Benjamin / Cummings Publoshing Co. Inc.
Kazazis, J. (1981). Cereal Technology Π (Technology of bakery products)(pp. 353-391). Organization for student books publication (in Greek).
Klaenhammer, T. R., Azcarate-Peril, M. A., Altermann, E., & Barrangou, R. (2007). Influence of the dairy environment on gene expression and substrate utilization in lactic acid bacteria. The Journal of Nutrition, 137(3 Suppl 2), 748S-50S.
Knight, C. A., Cheng, C. C., & DeVries, A. L. (1991). Adsorption of alpha-helical antifreeze peptides on specific ice crystal surface planes. Biophysical Journal, 59(2), 409-418
Knight, C. A., DeVries, A. L., & Oolman, L. D. (1984). Fish antifreeze protein and the freezing and recrystallization of ice. Nature, 308(5956), 295-296.
Langella, P., & Le Loir, Y. (1999). Heterologous protein secretion in lactococcus lactis: A novel antigen delivery system. Brazilian Journal of Medical and Biological Research = Revista Brasileira De Pesquisas Medicas e Biologicas / Sociedade Brasileira De Biofisica ...[Et Al.], 32(2), 191-198.
Le Grice, S. F., Beuck, V., & Mous, J. (1987). Expression of biologically active human T-cell lymphotropic virus type III reverse transcriptase in bacillus subtilis. Gene, 55(1), 95-103.
Lee, M. H., Roussel, Y., Wilks, M., & Tabaqchali, S. (2001). Expression of helicobacter pylori urease subunit B gene in lactococcus lactis MG1363 and its use as a vaccine delivery system against H. pylori infection in mice. Vaccine, 19(28-29), 3927-3935.
Lehninger, A. L., Nelson, D. L., & Cox, M. M. (2000). Lehninger principles of biochemistry, 3rd edn. New York: Worth Publishers.
Leinala, E. K., Davies, P. L., Doucet, D., Tyshenko, M. G., Walker, V. K., & Jia, Z. (2002). A beta-helical antifreeze protein isoform with increased activity. structural and functional insights. The Journal of Biological Chemistry, 277(36), 33349-33352
Le Loir, Y., Azevedo, V., Oliveira, S. C., Freitas, D. A., Miyoshi, A., Bermudez-Humaran, L. G., et al. (2005). Protein secretion in lactococcus lactis : An efficient way to increase the overall heterologous protein production. Microbial Cell Factories, 4(1), 2.
Leroy, F., & Vuyst, L. D.(2004) Lactic acid bacteria as functional starter cultures for the food fermentation industry Trends in Food Science & Technology,
15(2)67-78
Lewin, B. (2004). Genes VIII. Upper Saddle River, NJ: Pearson Prentice Hall.
Li, N., Andorfer, C. A., & Duman, J. G. (1998). Enhancement of insect antifreeze protein activity by solutes of low molecular mass. The Journal of Experimental Biology, 201(Pt 15), 2243-2251.
Li, N., Kendrick, B. S., Manning, M. C., Carpenter, J. F., & Duman, J. G. (1998). Secondary structure of antifreeze proteins from overwintering larvae of the beetle dendroides canadensis. Archives of Biochemistry and Biophysics, 360(1), 25-32
Li, X. M., Trinh, K. Y., Hew, C. L., Buettner, B., Baenziger, J., & Davies, P. L. (1985). Structure of an antifreeze polypeptide and its precursor from the ocean pout, macrozoarces americanus. The Journal of Biological Chemistry, 260(24), 12904-12909.
Li, X. M., Trinh, K. Y., & Hew, C. L. (1991). Expression and characterization of an active and thermally more stable recombinant antifreeze polypeptide from ocean pout, macrozoarces americanus, in escherichia coli: Improved expression by the modification of the secondary structure of the mRNA. Protein Engineering, 4(8), 995-1002.
Li, Y., Gong, H., & Park, H. Y. (2000). Purification and partial characterization of thermal hysteresis proteins from overwintering larvae of pine needle gall midge, thecodiplosis japonensis (diptera: Cecidomiidae). Cryo Letters, 21(2), 117-124.
Ling Lin, F., Zi Rong, X., Wei Fen, L., Jiang Bing, S., Ping, L., & Chun Xia, H. (2007). Protein secretion pathways in bacillus subtilis: Implication for optimization of heterologous protein secretion. Biotechnology Advances, 25(1), 1-12.
Liou, Y. C., Tocilj, A., Davies, P. L., & Jia, Z. (2000). Mimicry of ice structure by surface hydroxyls and water of a beta-helix antifreeze protein. Nature, 406(6793), 322-324.
Low, W. K., Miao, M., Ewart, K. V., Yang, D. S., Fletcher, G. L., & Hew, C. L. (1998). Skin-type antifreeze protein from the shorthorn sculpin, myoxocephalus scorpius. expression and characterization of a mr 9, 700 recombinant protein. The Journal of Biological Chemistry, 273(36), 23098-23103.
Marentes, E., Griffith, M., Mlynarz, A. and Brush, R.A. (1993). Proteins accumulate in the apoplastof winter rye leaves during cold acclimation. Physiol Plant. 87: 499-507.
Martino, M. and Zaritzky, N. (1988). Ice crystal size modifications during frozen beef storage. Journal of Food Science, 53(6), 1631-1637
McGarry, A., Law, J., Coffey, A., Daly, C., Fox, P. F., & Fitzgerald, G. F. (1994). Effect of genetically modifying the lactococcal proteolytic system on ripening and flavor development in cheddar cheese. Applied and Environmental Microbiology, 60(12), 4226-4233.
McKown, R. L., & Warren, G. J. (1991). Enhanced survival of yeast expressing an antifreeze gene analogue after freezing. Cryobiology, 28(5), 474-482
Méric, L.‚ Lambert-Guilous, S.‚ Neyreneuf, O.‚ & Richard-Molard, D. (1997). Cryoresistance of baker’s yeast Saccharomyces cerevisiae in frozen dough:contribution of cellular trehalose. Cereal Chemistry, 72(6)‚609-615.
Medaglini, D., Oggioni, M. R., & Pozzi, G. (1998). Vaginal immunization with recombinant gram-positive bacteria. American Journal of Reproductive Immunology (New York, N.Y.: 1989), 39(3), 199-208.
Medaglini, D., Pozzi, G., King, T.P., & Fischetti ,V.A. (1995). Mucosal and systemic immune responses to a recombinant protein expressed on the surface of the oral commensal bacterium Streptococcus gordonii after oral colonization. Proceedings of the National Academy of Sciences of the United States of America,92(15), 6868-6872.
Meilgaard, M., Civille, G. V. & Carr B. T. (1991) Sensory Evaluation Techniques, 2nd Ed., CRC Press, Ann Arbor,MI.
Miller ,A. J., Ackerman, S. A., & Palumbo, S. A. (1980) EFFECTS OF FROZEN STORAGE ON FUNCTIONALITY OF MEAT FOR PROCESSING. Journal of Food Science,45(6), 1466-1471.
Nauta, A., van den Burg, B., Karsens, H., Venema, G., & Kok, J. (1997). Design of thermolabile bacteriophage repressor mutants by comparative molecular modeling. Nature Biotechnology, 15(10), 980-983
Neyreneuf‚ O.‚& Delpuech, B. (1993) Freezing experiments on yeasted dough slabs. Effect of cryogenic temperatures on the baking performance. Cereal Chemistry, 70(1)‚109-111.
Ng, N. F., Trinh, K. Y., & Hew, C. L. (1986). Structure of an antifreeze polypeptide precursor from the sea raven, hemitripterus americanus. The Journal of Biological Chemistry, 261(33), 15690-15695.
Noguchi, S.( 1974) The control of denaturation of fish muscle proyeins during frozen stroage. Doctoral Dissertation. Sophia University, Tokyo, Japan.
Norton, P. M., Brown, H. W., Wells, J. M., Macpherson, A. M., Wilson, P. W., & Le Page, R. W. (1996). Factors affecting the immunogenicity of tetanus toxin fragment C expressed in lactococcus lactis. FEMS Immunology and Medical Microbiology, 14(2-3), 167-177.
Norton, P. M., Wells, J. M., Brown, H. W., Macpherson, A. M., & Le Page, R. W. (1997). Protection against tetanus toxin in mice nasally immunized with recombinant lactococcus lactis expressing tetanus toxin fragment C. Vaccine, 15(6-7), 616-619.
Nouaille, S., Morello, E., Cortez-Peres, N., Le Loir, Y., Commissaire, J., Gratadoux, J. J., et al. (2006). Complementation of the lactococcus lactis secretion machinery with bacillus subtilis SecDF improves secretion of staphylococcal nuclease. Applied and Environmental Microbiology, 72(3), 2272-2279.
Oggioni, M. R., Medaglini, D., Romano, L., Peruzzi, F., Maggi, T., Lozzi, L., et al. (1999). Antigenicity and immunogenicity of the V3 domain of HIV type 1 glycoprotein 120 expressed on the surface of streptococcus gordonii. AIDS Research and Human Retroviruses, 15(5), 451-459.
Qin, W., Doucet, D., Tyshenko, M. G., & Walker, V. K. (2007). Transcription of antifreeze protein genes in choristoneura fumiferana. Insect Molecular Biology, 16(4), 423-434.
Payne, S. R., Sandford, D., Harris, A. & Young, 0. A. (1994). The effects
of antifreeze proteins on chilled and frozen meat. Meat Science, 37(3), 429-438.
Payne, S. R., Young, 0. A. (1995).Effects of pre-slaughter administration of antifreeze proteins on frozen meat quality. Meat Scienc, 41(2),147-155.
Phakaski-Maunsbach, K.,Griffith, M.,Antikainen,M., Maunsbach, A.B.(1996) Immunogold localization of glucanase-like antifreeze protein in cold acclimated winter rye .Protoplasama,191 (3) :115-125
Pickett, M., Scott, G., Davies, P., Wang, N., Joshi, S., & Hew, C. (1984). Sequence of an antifreeze protein precursor. European Journal of Biochemistry / FEBS, 143(1), 35-38.
Potts, M. (1994). Desiccation tolerance of prokaryotes. Microbiological Reviews, 58(4), 755-805
Pragai, Z., Tjalsma, H., Bolhuis, A., van Dijl, J. M., Venema, G., & Bron, S. (1997). The signal peptidase II (isp) gene of bacillus subtilis. Microbiology (Reading, England), 143 ( Pt 4)(Pt 4), 1327-1333
Pudney, P. D., Buckley, S. L., Sidebottom, C. M., Twigg, S. N., Sevilla, M. P., Holt, C. B., et al. (2003). The physico-chemical characterization of a boiling stable antifreeze protein from a perennial grass (lolium perenne). Archives of Biochemistry and Biophysics, 410(2), 238-245.
Pummi, T., Leskela, S., Wahlstrom, E., Gerth, U., Tjalsma, H., Hecker, M., et al. (2002). ClpXP protease regulates the signal peptide cleavage of secretory preproteins in bacillus subtilis with a mechanism distinct from that of the ecs ABC transporter. Journal of Bacteriology, 184(4), 1010-1018.
Qin, W., Doucet, D., Tyshenko, M. G., & Walker, V. K. (2007). Transcription of antifreeze protein genes in choristoneura fumiferana. Insect Molecular Biology, 16(4), 423-434
Regand, A., & Goff, H. D. (2006). Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass. Journal of Dairy Science, 89(1), 49-57.
Reisman, H.M., Fletcher, G.L., Kao, M.H., & Shears, M.A.. (1987) Antifreeze proteins in the grubby sculpin, Myoxocephalus aenaeus and the tomcod, Microgadus tomcod: comparisons of seasonal cycles Environ Biol. Fishes, 18(4) 295-301.
Renault, P. (2002). Genetically modified lactic acid bacteria: Applications to food or health and risk assessment. Biochimie, 84(11), 1073-1087.
Reveneau, N., Geoffroy, M. C., Locht, C., Chagnaud, P., & Mercenier, A. (2002). Comparison of the immune responses induced by local immunizations with recombinant lactobacillus plantarum producing tetanus toxin fragment C in different cellular locations. Vaccine, 20(13-14), 1769-1777.
Ribeiro, L. A., Azevedo, V., Le Loir, Y., Oliveira, S. C., Dieye, Y., Piard, J. C., et al. (2002). Production and targeting of the brucella abortus antigen L7/L12 in lactococcus lactis: A first step towards food-grade live vaccines against brucellosis. Applied and Environmental Microbiology, 68(2), 910-916
Ribotta, P. D., Leon, A. E., & Anon, M. C. (2001). Effect of freezing and frozen storage of doughs on bread quality. Journal of Agricultural and Food Chemistry, 49(2), 913-918.
Ribotta‚ P.‚ León‚ A.‚ & Añón M. C. (2003). Effect of freezing and storage on the gelatinization and retrogadation of amylopectin in bread doughs. An calorimetric analysis. Food Research International‚ 36(4)‚357-363.
Robinson, K., Chamberlain, L. M., Schofield, K. M., Wells, J. M., & Le Page, R. W. (1997). Oral vaccination of mice against tetanus with recombinant lactococcus lactis. Nature Biotechnology, 15(7), 653-657.
Scott, G. K., Davies, P. L., Shears, M. A., & Fletcher, G. L. (1987). Structural variations in the alanine-rich antifreeze proteins of the pleuronectinae. European Journal of Biochemistry / FEBS, 168(3), 629-633.
Scott, G. K., Hayes, P. H., Fletcher, G. L., & Davies, P. L. (1988). Wolffish antifreeze protein genes are primarily organized as tandem repeats that each contain two genes in inverted orientation. Molecular and Cellular Biology, 8(9), 3670-3675.
Sidebottom, C., Buckley, S., Pudney, P., Twigg, S., Jarman, C., Holt, C., et al. (2000). Heat-stable antifreeze protein from grass. Nature, 406(6793), 256.
Sikorski, Z., Olley, J., & Kostuch, S. (1976). Protein changes in frozen fish. CRC Critical Reviews in Food Science and Nutrition, 8(1), 97-129.
Smallwood, M., Worrall, D., Byass, L., Elias, L., Ashford, D., Doucet, C. J., (1999). Isolation and characterization of a novel antifreeze protein from carrot (daucus carota). The Biochemical Journal, 340 (Pt 2), 385-391.
Slos, P., Dutot, P., Reymund, J., Kleinpeter, P., Prozzi, D., Kieny, M. P., et al. (1998). Production of cholera toxin B subunit in lactobacillus. FEMS Microbiology Letters, 169(1), 29-36
Steidler, L. (2001). Microbiological and immunological strategies for treatment of inflammatory bowel disease. Microbes and Infection / Institut Pasteur, 3(13), 1157-1166.
Steidler, L., Hans, W., Schotte, L., Neirynck, S., Obermeier, F., Falk, W., et al. (2000). Treatment of murine colitis by lactococcus lactis secreting interleukin-10. Science (New York, N.Y.), 289(5483), 1352-1355.
Steidler, L., Robinson, K., Chamberlain, L., Schofield, K. M., Remaut, E., Le Page, R. W., et al. (1998). Mucosal delivery of murine interleukin-2 (IL-2) and IL-6 by recombinant strains of lactococcus lactis coexpressing antigen and cytokine. Infection and Immunity, 66(7), 3183-3189.
Steidler, L., Viaene, J., Fiers, W., & Remaut, E. (1998). Functional display of a heterologous protein on the surface of lactococcus lactis by means of the cell wall anchor of staphylococcus aureus protein A. Applied and Environmental Microbiology, 64(1), 342-345.
Stintzi, A., Heitz, T., Prasad, V., Wiedemann-Merdinoglu, S., Kauffmann, S., Geoffroy, P., et al. (1993). Plant ''pathogenesis-related'' proteins and their role in defense against pathogens. Biochimie, 75(8), 687-706
Speck M. L., Dobrogosz W. J., Casas I. A.( 1993). Lactobacillus reuteri in food supplementation. Food technology, 47 (7), 90-94.
Tjalsma, H., Bolhuis, A., Jongbloed, J. D., Bron, S., & van Dijl, J. M. (2000). Signal peptide-dependent protein transport in bacillus subtilis: A genome-based survey of the secretome. Microbiology and Molecular Biology Reviews : MMBR, 64(3), 515-547.
Tjalsma, H., Bolhuis, A., van Roosmalen, M. L., Wiegert, T., Schumann, W., Broekhuizen, C. P., et al. (1998). Functional analysis of the secretory precursor processing machinery of bacillus subtilis: Identification of a eubacterial homolog of archaeal and eukaryotic signal peptidases. Genes & Development, 12(15), 2318-2331.
Tyshenko, M. G., Doucet, D., Davies, P. L., & Walker, V. K. (1997). The antifreeze potential of the spruce budworm thermal hysteresis protein. Nature Biotechnology, 15(9), 887-890
Van den Berg, L., Lentz, C. P. (1958). Factors affecting freezing rate and appearance of eviscerated poultry frozen in air. Food Technology 12(4):183-185.
van Asseldonk, M., Rutten, G., Oteman, M., Siezen, R. J., de Vos, W. M., & Simons, G. (1990). Cloning of usp45, a gene encoding a secreted protein from lactococcus lactis subsp. lactis MG1363. Gene, 95(1), 155-160.
Urrutia, M. E., Duman, J. G., & Knight, C. A. (1992). Plant thermal hysteresis proteins. Biochimica Et Biophysica Acta, 1121(1-2), 199-206.
van Dijl, J. M., de Jong, A., Vehmaanpera, J., Venema, G., & Bron, S. (1992). Signal peptidase I of bacillus subtilis: Patterns of conserved amino acids in prokaryotic and eukaryotic type I signal peptidases. The EMBO Journal, 11(8), 2819-2828.
Wallis, J. G., Wang, H., & Guerra, D. J. (1997). Expression of a synthetic antifreeze protein in potato reduces electrolyte release at freezing temperatures. Plant Molecular Biology, 35(3), 323-330.
Warren, G. J., Hague, C. M., Corotto, L. V., & Mueller, G. M. (1993). Properties of engineered antifreeze peptides. FEBS Letters, 321(2-3), 116-120.
Wells, J. M., Wilson, P. W., Norton, P. M., Gasson, M. J., & Le Page, R. W. (1993). Lactococcus lactis: High-level expression of tetanus toxin fragment C and protection against lethal challenge. Molecular Microbiology, 8(6), 1155-1162.
Westers, L., Westers, H., & Quax, W. J. (2004). Bacillus subtilis as cell factory for pharmaceutical proteins: A biotechnological approach to optimize the host organism. Biochimica Et Biophysica Acta, 1694(1-3), 299-310.
Wisniewski, M., Webb, R., Balsamo, R., Close, T.J., Yu, X.-M.,Griffith, M.(1999)Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60:A dehydrin from peach (Prunus persica) Physiologia Plantarum, 105(2) 600-608. ,
Wong, S. L. (1989). Development of an inducible and enhancible expression and secretion system in bacillus subtilis. Gene, 83(2), 215-223
Worrall, D., Elias, L., Ashford, D., Smallwood, M., Sidebottom, C., Lillford, P., et al. (1998). A carrot leucine-rich-repeat protein that inhibits ice recrystallization. Science (New York, N.Y.), 282(5386), 115-117.
Wood, B. J. B., & Warner, P. J. (2003). Genetics of lactic acid bacteria. New York: Kluwer Academic/Plenum Publishers.
Yang, D. S., Sax, M., Chakrabartty, A., & Hew, C. L. (1988). Crystal structure of an antifreeze polypeptide and its mechanistic implications. Nature, 333(6170), 232-237.
Yansura, D. G., & Henner, D. J. (1984). Use of the escherichia coli lac repressor and operator to control gene expression in Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America, 81(2), 439-443
Yeh, Y., Feeney , R. E., McKown, C. J., & Warren R. L. (1994) Measurement of grain growth in the recrystallization of rapidly frozen solutions of antifreeze glycoproteins Biopolymers 34( 11), 1495 – 1504
Yeh, Y., & Feeney, R. E. (1996). Antifreeze proteins: Structures and mechanisms of function. Chemical Reviews, 96(2), 601-618.
Zayed, G., Roos., Y.H. (2004) Influence of trehalose and moisture content on survival of Lactobacillus salivarius subjected to freeze-drying and storage
Process Biochemistry
Zhang, C., Zhang, H., & Wang, L. (2007). Effect of carrot (daucus carota) antifreeze proteins on the fermentation capacity of frozen dough. Food Research International, 40(6), 763-769.
Zhang, C., Zhang, H., Wang, L., Gao, H., Guo, X. N., & Yao, H. Y. (2007). Improvement of texture properties and flavor of frozen dough by carrot (daucus carota) antifreeze protein supplementation. Journal of Agricultural and Food Chemistry, 55(23), 9620-9626.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top