跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 07:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖韋翔
研究生(外文):Wei-Siang Liao
論文名稱:探討乳鐵蛋白在動物體外及體內發炎實驗模式下之免疫調節功能
論文名稱(外文):Studies on immunomodulatory functions of lactoferrin under inflammatory stress in vitro and in vivo
指導教授:林金源林金源引用關係
指導教授(外文):Jin-Yuarn Lin
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:119
中文關鍵詞:牛乳鐵蛋白重組人類乳鐵蛋白脂多醣發炎免疫調節
外文關鍵詞:bovine lactoferrinrecombinant human lactoferrinlipopolysaccharideinflammationimmunodulatory
相關次數:
  • 被引用被引用:1
  • 點閱點閱:355
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
乳鐵蛋白是一種吸附鐵之醣蛋白,存在於哺乳動物的乳汁和外分泌腺中,研究指出乳鐵蛋白具有抗菌、抗癌、調節免疫…等多種生理活性。因此本篇研究以體外不同實驗模式下,探討重組人類乳鐵蛋白和牛乳鐵蛋白之免疫調節功效,並進一步以脂多醣 (lipopolysaccharide, LPS) 經腹腔注射誘發發炎之動物模式,探討牛乳鐵蛋白免疫調節功能。
在體外細胞培養實驗結果顯示,牛乳鐵蛋白在濃度31.3和125 μg/ml有顯著抑制脾臟細胞增生現象,但與乳鐵蛋白吸附鐵離子的能力無關。重組人類乳鐵蛋白在高濃度(1000及1250μg/ml)下,有增加腹腔細胞存活之趨勢,推測重組人類乳鐵蛋白能活化腹腔細胞。牛和重組人類乳鐵蛋白對發炎脾臟及腹腔細胞之增生與存活皆無顯著影響。在不同實驗模式下,重組人類乳鐵蛋白濃度在250 μg/ml下對發炎媒介物(IL-1β、IL-6、IL-10、TNF-α)有顯著增加,而牛乳鐵蛋白則無。
在體內實驗中,小鼠經餵食牛乳鐵蛋白4週後,結果顯示餵食高濃度(2.55 mg/mouse)乳鐵蛋白會降低小鼠血液中Ig A、Ig M和Ig G濃度,但增加Ig E濃度,推測餵食高濃度(2.55 mg/mouse)牛乳鐵蛋白4週可能使個體產生過敏傾向;但對腹腔注射LPS誘發發炎小鼠之腹腔及脾臟細胞所分泌的發炎媒介物則無顯著影響,由本實驗結果顯示在餵食牛乳鐵蛋白4週後,在腹腔注射LPS誘發發炎的動物實驗模式下,對小鼠的發炎情況無顯著改善作用。
Lactoferrin is an iron-binding glycoprotein which exists in milk as well as other exocrine secretion in mammals. In recent years the study has indicated that lactoferrin might have multiple physiological functions such as antimicrobial, anti-tumor and immunomodulatory activities.To evaluate the effects of immounmodulatory, bovine and recombinant lactoferrin were first chosen to subject to different in vitro experimental models in this study. In an in vivo test, bovine lactoferrin was further investigated its immunomodulatory effects on lipopolysaccharide (LPS)-induced (i.p.) inflammation of mouse model.
The results showed that bovine lactoferrin significantly inhibited splenocyte proliferation at concentrations of 31.3 and 125 μg/mL. However, the inhibitory function of lactoferrin was irrelevant to its iron absorption capacity. Recombinant human lactoferrin slightly increased cell viability of peritoneal cells at higher concentrations (1000 and 1250 μg/ml), suggesting that recombinant human lactoferrin might activate peritoneal cells. However, both bovine and recombinant human lactoferrin did not significantly affect the cell viability of inflamed splenocytes and peritoneal cells. Recombinant human lactoferrin (250 μg/ml) demonstrated a significant increased effect on inflammatory mediators (IL-1β、IL-6、IL-10、TNF-α) under different experimental models, but bovine lactoferrin did not.
The results from in vivo study showed that bovine lactoferrin administration for 4 weeks decreased serum Ig A, Ig M and Ig G levels, but increased Ig E level at high dose feeding group. The results suggest that feeding with high concentrations (2.55 mg/ mouse) of lactoferrin for long term may induce allergic tendencies in vivo. Bovine lactoferrin administration did not significantly affect peritoneal cells and splenocytes from LPS-induced inflammation mice. In conclusion, bovine lactoferrin administration showed no significant improvement effects on LPS-induced systemic inflammation.
表目錄…….........................................................................................................V
圖目錄………………………………………………………………………VII
縮寫對照表........................................................................................................IX
中文摘要.............................................................................................................X
Abstract ............................................................................................................ XI
第一章 緒言........................................................................................................1
第二章 文獻回顧...............................................................................................2
第一節 免疫系統介紹................................................................................2
壹、免疫系統(immune system) ...........................................................2
一、先天性免疫反應(innate immune response)........................................2
二、適應性免疫反應(adaptive immune response)....................................3
貳、細胞激素(cytokines) .....................................................................6
一、一般性質.............................................................................................6
二、各種細胞激素介紹.............................................................................6
參、發炎與C反應蛋白(C-reactive protein).........................................8
一、發炎.....................................................................................................8
二、C反應蛋白(C-reactive protein) .........................................................11
肆、抗體.............................................................................................11
第二節 內毒素..........................................................................................13
第三節 乳鐵蛋白......................................................................................14
壹、簡介.............................................................................................14
貳、結構.............................................................................................15
參、安全性.........................................................................................17
肆、重組蛋白.....................................................................................17
伍、乳鐵蛋白在免疫上角色.............................................................17
第四節 乳鐵蛋白生理活性......................................................................19
壹、抗病毒.........................................................................................19
貳、抗腫瘤.........................................................................................19
參、抗菌.............................................................................................20
肆、抗發炎.........................................................................................23
伍、免疫調節.....................................................................................23
第五節 研究動機及目的..........................................................................25
第三章 牛及重組人類乳鐵蛋白體外調節免疫之功能影響.........................27
第一節 前言..............................................................................................27
第二節 材料與方法..................................................................................28
壹 初代免疫細胞之取得及培養.....................................................28
貳、脾臟細胞增生與腹腔細胞存活活性分析.................................31
參、細胞激素測定.............................................................................32
肆、一氧化氮(NO)之測定.................................................................34
伍、統計分析.....................................................................................35
第三節 結果..............................................................................................36
壹、牛和重組人類乳鐵蛋白對BALB/c雌鼠脾臟細胞增生的影響
.............................................................................................................36
貳、牛和重組人類乳鐵蛋白對BALB/c雌鼠腹腔細胞存活的影響
.............................................................................................................36
参、牛和重組人類乳鐵蛋白對BALB/c雌鼠經LPS誘發的發炎脾臟
細胞增生的影響.................................................................................41
肆、牛和重組人類乳鐵蛋白對BALB/c雌鼠經LPS誘發的發炎腹腔
細胞存活的影響.................................................................................41
伍、牛和重組人類乳鐵蛋白在以LPS刺激的實驗模式下對BALB/c
雌鼠脾臟細胞TH1 和TH2 細胞激素分泌的影響..............................46
陸、牛和重組人類乳鐵蛋白在以LPS刺激的實驗模式下對BALB/c
雌鼠腹腔細胞發炎媒介物分泌的影響.............................................46
柒、不同濃度乳鐵蛋白下添加不同濃度鐵離子對脾臟細胞增生影
響.........................................................................................................56
捌、牛和重組人類乳鐵蛋白在不同濃度下對BALB/c 雌鼠脾臟細
胞對IL-2 分泌的影響.........................................................................56
第四節 討論..............................................................................................62
第五節 結論..............................................................................................63
第四章 小鼠經腹腔注射LPS誘發發炎狀態不同時間點之變化..................64
第一節 前言..............................................................................................64
第二節 材料與方法..................................................................................64
壹、實驗動物飼養.............................................................................64
貳、血清收集及分析.........................................................................64
參、細胞之取得及培養.....................................................................64
肆、細胞激素測定.............................................................................65
伍、一氧化氮(NO)之測定.................................................................65
陸、血清中急性發炎蛋白C反應蛋白測定(C-reactive protein) ......65
柒、統計分析.....................................................................................66
第三節 結果..............................................................................................67
壹、腹腔注射LPS對BALB/c雌鼠體重的影響................................67
貳、BALB/c小鼠經腹腔注射LPS後時間點之組織與相對組織重的
影響.....................................................................................................67
参、腹腔注射LPS對BALB/c雌鼠脾臟和腹腔細胞數的影響........67
肆、BALB/c小鼠經腹腔注射LPS後不同時間點對脾臟細胞分泌發
炎媒介物之影響.................................................................................72
伍、BALB/c小鼠經腹腔注射LPS後不同時間點對腹腔細胞分泌發
炎媒介物之影響.................................................................................72
陸、BALB/c小鼠經腹腔注射LPS後不同時間點對血清中急性發炎
蛋白與IL-6 之影響.............................................................................72
第四節 討論..............................................................................................83
第五節 結論..............................................................................................84
第五章 牛乳鐵蛋白對腹腔注射LPS誘發發炎BALB/c小鼠之免疫反應影響
...........................................................................................................................85
第一節前言................................................................................................85
第二節 材料與方法..................................................................................85
壹、實驗動物飼養.............................................................................85
貳、材料.............................................................................................85
參、實驗設計操作模式.....................................................................86
肆、血清收集及分析.........................................................................88
伍、細胞之取得及培養.....................................................................89
肆、細胞激素測定.............................................................................89
陸、一氧化氮(NO)之測定.................................................................89
柒、血清中急性發炎蛋白C反應蛋白測定(C-reactive protein,CRP)
.............................................................................................................89
捌、統計分析.....................................................................................90
第三節 結果..............................................................................................91
壹、餵食不同濃度牛乳鐵蛋白對BALB/c雌鼠體重變化...............91
貳、餵食不同濃度牛乳鐵蛋白對脂多醣腹腔注射BALB/c雌鼠腹腔
細胞之組織重及其相對重量的影響.................................................91
參、餵食不同濃度牛乳鐵蛋白對以脂多醣腹腔注射之BALB/c雌鼠
脾臟與腹腔細胞分泌發炎媒介物之影響.........................................91
肆、餵食不同濃度牛乳鐵蛋白以脂多醣腹腔注射之BALB/c雌鼠血
清中發炎媒介物之影響.....................................................................91
伍、餵食牛乳鐵蛋白對BALB/c雌鼠血清非特異性抗體濃度變化
.............................................................................................................98
陸、餵食不同濃度牛乳鐵蛋白對以脂多醣腹腔注射之BALB/c雌鼠
血清抗體之影響.................................................................................98
第四節 討論............................................................................................104
第五節 結論............................................................................................104
第六章 總結論................................................................................................106
第七章 參考文獻...........................................................................................107
吳安茹 (2006) 複方中草藥之安全性及免疫調節功能。 國立中興大學食品暨應用生物科技學系碩士論文。
邱俊佑 (2007) 以動物體外籍體內實驗模式評估植酸酶基因轉殖水稻(台農67號)之過敏可能性 。國立中興大學食品暨應用生物科技學系碩士論文。
謝文欽 (2004). 細胞與分子免疫學。合記圖書出版社。
傅麒玲 江伯倫 (2004) 調節性T細胞與免疫性疾病。台灣醫學雜誌第8卷第2期 214-222。
賴英淑 (2006) 蓮子新及其萃取物對免疫細胞及糖尿病誘發小鼠免疫調節功能之影響。國立中興大學食品暨應用生物科技學系碩士論文。
張文正 (1997). 免疫學. 合記圖書出版社.
Abbas, A. K., & Lichtman, A. H. (2004). Cellular and Molecular Immunology. 5th edition. Elsevier Science
Aguilera, O., Ostolaza, H., Quiros, L. M., & Fierro, J. F. (1999). Permeabilizing action of an antimicrobial lactoferricin-derived peptide on bacterial and artificial membranes. FEBS Lett, 462, 273-277.
Aisen, P., & Leibman, A. (1972). Lactoferrin and transferrin: a comparative study. Biochim Biophys Acta, 257, 314-323.
Andersen, J. H., Osbakk, S. A., Vorland, L. H., Traavik, T., & Gutteberg, T. J. (2001). Lactoferrin and cyclic lactoferricin inhibit the entry of human cytomegalovirus into human fibroblasts. Antiviral Res, 51, 141-149.
Anderson, B. F., Baker, H. M., Dodson, E. J., Norris, G. E., Rumball, S. V., Waters, J. M., & Baker, E. N. (1987). Structure of human lactoferrin at 3.2-A resolution. Proc Natl Acad Sci U S A, 84, 1769-1773.
Anderson, B. F., Baker, H. M., Norris, G. E., Rice, D. W., & Baker, E. N. (1989). Structure of human lactoferrin: crystallographic structure analysis and refinement at 2.8 A resolution. J Mol Biol, 209, 711-734.
Appelmelk, B. J., An, Y. Q., Geerts, M., Thijs, B. G., de Boer, H. A., MacLaren, D. M., de Graaff, J., & Nuijens, J. H. (1994). Lactoferrin is a lipid A-binding protein. Infect Immun, 62, 2628-2632.
Arnold, D., Di Biase, A. M., Marchetti, M., Pietrantoni, A., Valenti, P., Seganti, L., & Superti, F. (2002). Antiadenovirus activity of milk proteins: lactoferrin prevents viral infection. Antiviral Res, 53, 153-158.
Artym, J., Zimecki, M., Paprocka, M., & Kruzel, M. L. (2003). Orally administered lactoferrin restores humoral immune response in immunocompromised mice. Immunol Lett, 89, 9-15.
Baker, E. N. (1994). Structure and reactivity of transferrins. Adv. Inorg. Chem., 41, 389-463.
Baker, E. N., & Baker, H. M. (2005). Molecular structure, binding properties and dynamics of lactoferrin. Cell Mol Life Sci, 62, 2531-2539.
Baveye, S., Elass, E., Mazurier, J., & Legrand, D. (2000). Lactoferrin inhibits the binding of lipopolysaccharides to L-selectin and subsequent production of reactive oxygen species by neutrophils. FEBS Lett, 469, 5-8.
Baveye, S., Elass, E., Mazurier, J., Spik, G., & Legrand, D. (1999). Lactoferrin: a multifunctional glycoprotein involved in the modulation of the inflammatory process. Clin Chem Lab Med, 37, 281-286.
Baynes, R. D., & Bezwoda, W. R. (1994). Lactoferrin and the inflammatory response. Adv Exp Med Biol, 357, 133-141.
Bellamy, W., Takase, M., Wakabayashi, H., Kawase, K., & Tomita, M. (1992a). Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin. J Appl Bacteriol, 73, 472-479.
Bellamy, W., Takase, M., Yamauchi, K., Wakabayashi, H., Kawase, K., & Tomita, M. (1992b). Identification of the bactericidal domain of lactoferrin. Biochim Biophys Acta, 1121, 130-136.
Bethell, D. R., & Huang, J. (2004). Recombinant human lactoferrin treatment for global health issues: iron deficiency and acute diarrhea. Biometals, 17, 337-342.
Bhimani, R. S., Vendrov, Y., & Furmanski, P. (1999). Influence of lactoferrin feeding and injection against systemic staphylococcal infections in mice. J Appl Microbiol, 86, 135-144.
Blacklow, N. R., & Greenberg, H. B. (1991). Viral gastroenteritis. N Engl J Med, 325, 252-264.
Blondelle, S. E., Takahashi, E., Dinh, K. T., & Houghten, R. A. (1995). The antimicrobial activity of hexapeptides derived from synthetic combinatorial libraries. J Appl Bacteriol, 78, 39-46.
Boehm, U., Klamp, T., Groot, M., & Howard, J. C. (1997). Cellular responses to interferon-gamma. Annu Rev Immunol, 15, 749-795.
Bogdan, C., Rollinghoff, M., & Diefenbach, A. (2000). Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr Opin Immunol, 12, 64-76.
Brandenburg, K., Jurgens, G., Muller, M., Fukuoka, S., & Koch, M. H. (2001). Biophysical characterization of lipopolysaccharide and lipid A inactivation by lactoferrin. Biol Chem, 382, 1215-1225.
Brock, J. (1995). Lactoferrin: a multifunctional immunoregulatory protein? Immunol Today, 16, 417-419.
Brock, J. H. (2002). The physiology of lactoferrin. Biochem Cell Biol, 80, 1-6.
Caccavo, D., Afeltra, A., Pece, S., Giuliani, G., Freudenberg, M., Galanos, C., & Jirillo, E. (1999). Lactoferrin-lipid A-lipopolysaccharide interaction: inhibition by anti-human lactoferrin monoclonal antibody AGM 10.14. Infect Immun, 67, 4668-4672.
Chen, L. C., Noelken, M. E., & Nagase, H. (1993). Disruption of the cysteine-75 and zinc ion coordination is not sufficient to activate the precursor of human matrix metalloproteinase 3 (stromelysin 1). Biochemistry, 32, 10289-10295.
Crouch, S. P., Slater, K. J., & Fletcher, J. (1992). Regulation of cytokine release from mononuclear cells by the iron-binding protein lactoferrin. Blood, 80, 235-240.
Damiens, E., El Yazidi, I., Mazurier, J., Duthille, I., Spik, G., & Boilly-Marer, Y. (1999). Lactoferrin inhibits G1 cyclin-dependent kinases during growth arrest of human breast carcinoma cells. J Cell Biochem, 74, 486-498.
Damiens, E., Mazurier, J., el Yazidi, I., Masson, M., Duthille, I., Spik, G., & Boilly-Marer, Y. (1998). Effects of human lactoferrin on NK cell cytotoxicity against haematopoietic and epithelial tumour cells. Biochim Biophys Acta, 1402, 277-287.
Di Mario, F., Aragona, G., Dal Bo, N., Cavestro, G. M., Cavallaro, L., Iori, V., Comparato, G., Leandro, G., Pilotto, A., & Franze, A. (2003). Use of bovine lactoferrin for Helicobacter pylori eradication. Dig Liver Dis, 35, 706-710.
Dial, E. J., Hall, L. R., Serna, H., Romero, J. J., Fox, J. G., & Lichtenberger, L. M. (1998). Antibiotic properties of bovine lactoferrin on Helicobacter pylori. Dig Dis Sci, 43, 2750-2756.
Dial, E. J., Romero, J. J., Headon, D. R., & Lichtenberger, L. M. (2000). Recombinant human lactoferrin is effective in the treatment of Helicobacter felis-infected mice. J Pharm Pharmacol, 52, 1541-1546.
Elass-Rochard, E., Legrand, D., Salmon, V., Roseanu, A., Trif, M., Tobias, P. S., Mazurier, J., & Spik, G. (1998). Lactoferrin inhibits the endotoxin interaction with CD14 by competition with the lipopolysaccharide-binding protein. Infect Immun, 66, 486-491.
Elass-Rochard, E., Roseanu, A., Legrand, D., Trif, M., Salmon, V., Motas, C., Montreuil, J., & Spik, G. (1995). Lactoferrin-lipopolysaccharide interaction: involvement of the 28-34 loop region of human lactoferrin in the high-affinity binding to Escherichia coli 055B5 lipopolysaccharide. Biochem J, 312, 839-845.
Emery, P., & Salmon, M. (1991). The immune response. 2. Systemic mediators of inflammation. Br J Hosp Med, 45, 164-168.
Faber, H. R., Bland, T., Day, C. L., Norris, G. E., Tweedie, J. W., & Baker, E. N. (1996). Altered domain closure and iron binding in transferrins: the crystal structure of the Asp60Ser mutant of the amino-terminal half-molecule of human lactoferrin. J Mol Biol, 256, 352-363.
Fischer, R., Debbabi, H., Blais, A., Dubarry, M., Rautureau, M., Boyaka, P. N., & Tome, D. (2007). Uptake of ingested bovine lactoferrin and its accumulation in adult mouse tissues. Int Immunopharmacol, 7, 1387-1393.
Fujita, K., Ohnishi, T., Sekine, K., Iigo, M., & Tsuda, H. (2002). Down-regulation of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx)-induced CYP1A2 expression is associated with bovine lactoferrin inhibition of MeIQx-induced liver and colon carcinogenesis in rats. Jpn J Cancer Res, 93, 616-625.
Gewurz, H., Mold, C., Siegel, J., & Fiedel, B. (1982). C-reactive protein and the acute phase response. Adv Intern Med, 27, 345-372.
Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S., & Tannenbaum, S. R. (1982). Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem, 126, 131-138.
Groenink, J., Walgreen-Weterings, E., van ''t Hof, W., Veerman, E. C., & Nieuw Amerongen, A. V. (1999). Cationic amphipathic peptides, derived from bovine and human lactoferrins, with antimicrobial activity against oral pathogens. FEMS Microbiol Lett, 179, 217-222.
Gutteberg, T. J., Rokke, O., Jorgensen, T., & Andersen, O. (1988). Lactoferrin as an indicator of septicemia and endotoxemia in pigs. Scand J Infect Dis, 20, 659-666.
Haversen, L., Ohlsson, B. G., Hahn-Zoric, M., Hanson, L. A., & Mattsby-Baltzer, I. (2002). Lactoferrin down-regulates the LPS-induced cytokine production in monocytic cells via NF-kappa B. Cell Immunol, 220, 83-95.
Haversen, L. A., Engberg, I., Baltzer, L., Dolphin, G., Hanson, L. A., & Mattsby-Baltzer, I. (2000). Human lactoferrin and peptides derived from a surface-exposed helical region reduce experimental Escherichia coli urinary tract infection in mice. Infect Immun, 68, 5816-5823.
Hayes, T. G., Falchook, G. F., Varadhachary, G. R., Smith, D. P., Davis, L. D., Dhingra, H. M., Hayes, B. P., & Varadhachary, A. (2006). Phase I trial of oral talactoferrin alfa in refractory solid tumors. Invest New Drugs, 24, 233-240.
Heine, H., Rietschel, E. T., & Ulmer, A. J. (2001). The biology of endotoxin. Mol Biotechnol, 19, 279-296.
Huising, M. O., Stet, R. J., Savelkoul, H. F., & Verburg-van Kemenade, B. M. (2004). The molecular evolution of the interleukin-1 family of cytokines; IL-18 in teleost fish. Dev Comp Immunol, 28, 395-413.
Hwang, P. M., Zhou, N., Shan, X., Arrowsmith, C. H., & Vogel, H. J. (1998). Three-dimensional solution structure of lactoferricin B, an antimicrobial peptide derived from bovine lactoferrin. Biochemistry, 37, 4288-4298.
Iigo, M., Kuhara, T., Ushida, Y., Sekine, K., Moore, M. A., & Tsuda, H. (1999). Inhibitory effects of bovine lactoferrin on colon carcinoma 26 lung metastasis in mice. Clin Exp Metastasis, 17, 35-40.
Iyer, S., & Lonnerdal, B. (1993). Lactoferrin, lactoferrin receptors and iron metabolism. Eur J Clin Nutr, 47, 232-241.
Janeway, C. A., Travers, P., Walport, M., & Shlomchik, M. J. (2005). Immunobiology: The Immune System in Health and Disease 6th edition. Garland Publishing Inc.
Kang, J. H., Lee, M. K., Kim, K. L., & Hahm, K. S. (1996). Structure-biological activity relationships of 11-residue highly basic peptide segment of bovine lactoferrin. Int J Pept Protein Res, 48, 357-363.
Kishimoto, T., Akira, S., & Taga, T. (1992). IL-6 receptor and mechanism of signal transduction. Int J Immunopharmacol, 14, 431-438.
Kruzel, M. L., Harari, Y., Chen, C. Y., & Castro, G. A. (2000). Lactoferrin protects gut mucosal integrity during endotoxemia induced by lipopolysaccharide in mice. Inflammation, 24, 33-44.
Kruzel, M. L., Harari, Y., Mailman, D., Actor, J. K., & Zimecki, M. (2002). Differential effects of prophylactic, concurrent and therapeutic lactoferrin treatment on LPS-induced inflammatory responses in mice. Clin Exp Immunol, 130, 25-31.
Ku, N. O., & Mortensen, R. F. (1993). The mouse C-reactive protein (CRP) gene is expressed in response to IL-1 but not IL-6. Cytokine, 5, 319-326.
Kuby, J. (1997). Immunology 3rd edition W H Freeman and company.
Lee, W. J., Farmer, J. L., Hilty, M., & Kim, Y. B. (1998). The protective effects of lactoferrin feeding against endotoxin lethal shock in germfree piglets. Infect Immun, 66, 1421-1426.
Legrand, D., Elass, E., Carpentier, M., & Mazurier, J. (2006). Interactions of lactoferrin with cells involved in immune function. Biochem Cell Biol, 84, 282-290.
Levay, P. F., & Viljoen, M. (1995). Lactoferrin: a general review. Haematologica, 80, 252-267.
Lin, J. Y., Lai, Y. S., Liu, C. J., & Wu, A. R. (2007). Effects of lotus plumule supplementation before and following systemic administration of lipopolysaccharide on the splenocyte responses of BALB/c mice. Food Chem Toxicol, 45, 486-493.
Lonnerdal, B., & Iyer, S. (1995). Lactoferrin: molecular structure and biological function. Annu Rev Nutr, 15, 93-110.
Marchetti, M., Pisani, S., Antonini, G., Valenti, P., Seganti, L., & Orsi, N. (1998). Metal complexes of bovine lactoferrin inhibit in vitro replication of herpes simplex virus type 1 and 2. Biometals, 11, 89-94.
Marchetti, M., Superti, F., Ammendolia, M. G., Rossi, P., Valenti, P., & Seganti, L. (1999). Inhibition of poliovirus type 1 infection by iron-, manganese- and zinc-saturated lactoferrin. Med Microbiol Immunol, 187, 199-204.
Martin-Fontecha, A., Thomsen, L. L., Brett, S., Gerard, C., Lipp, M., Lanzavecchia, A., & Sallusto, F. (2004). Induced recruitment of NK cells to lymph nodes provides IFN-gamma for TH1 priming. Nat Immunol, 5, 1260-1265.
Masson, P. L., Heremans, J. F., & Schonne, E. (1969). Lactoferrin, an iron-binding protein in neutrophilic leukocytes. J Exp Med, 130, 643-658.
Masuda, C., Wanibuchi, H., Sekine, K., Yano, Y., Otani, S., Kishimoto, T., Tsuda, H., & Fukushima, S. (2000). Chemopreventive effects of bovine lactoferrin on N-butyl-N-(4-hydroxybutyl)nitrosamine-induced rat bladder carcinogenesis. Jpn J Cancer Res, 91, 582-588.
Mattsby-Baltzer, I., Roseanu, A., Motas, C., Elverfors, J., Engberg, I., & Hanson, L. A. (1996). Lactoferrin or a fragment thereof inhibits the endotoxin-induced interleukin-6 response in human monocytic cells. Pediatr Res, 40, 257-262.
Metz-Boutigue, M. H., Jolles, J., Mazurier, J., Schoentgen, F., Legrand, D., Spik, G., Montreuil, J., & Jolles, P. (1984). Human lactotransferrin: amino acid sequence and structural comparisons with other transferrins. Eur J Biochem, 145, 659-676.
Miyazawa, K., Mantel, C., Lu, L., Morrison, D. C., & Broxmeyer, H. E. (1991). Lactoferrin-lipopolysaccharide interactions. Effect on lactoferrin binding to monocyte/macrophage-differentiated HL-60 cells. J Immunol, 146, 723-729.
Moed, H., Stoof, T. J., Boorsma, D. M., von Blomberg, B. M., Gibbs, S., Bruynzeel, D. P., Scheper, R. J., & Rustemeyer, T. (2004). Identification of anti-inflammatory drugs according to their capacity to suppress type-1 and type-2 T cell profiles. Clin Exp Allergy, 34, 1868-1875.
Mold, C., Gewurz, H., & Du Clos, T. W. (1999). Regulation of complement activation by C-reactive protein. Immunopharmacology, 42, 23-30.
Montreuil, J., Tonnelat, J., & Mullet, S. (1960). [Preparation and properties of lactosiderophilin (lactotransferrin) of human milk.]. Biochim Biophys Acta, 45, 413-421.
Morrison, D. C., & Ryan, J. L. (1987). Endotoxins and disease mechanisms. Annu Rev Med, 38, 417-432.
Murray, P. R., Rosenthal, K. S., Kobayashi, G., & Pfaller, M. A. (1998). Medical Microbiology 3rd edition. Mosby Elsevier Health Science.
Na, Y. J., Han, S. B., Kang, J. S., Yoon, Y. D., Park, S. K., Kim, H. M., Yang, K. H., & Joe, C. O. (2004). Lactoferrin works as a new LPS-binding protein in inflammatory activation of macrophages. Int Immunopharmacol, 4, 1187-1199.
Nicholson, H., Anderson, B. F., Bland, T., Shewry, S. C., Tweedie, J. W., & Baker, E. N. (1997). Mutagenesis of the histidine ligand in human lactoferrin: iron binding properties and crystal structure of the histidine-253-->methionine mutant. Biochemistry, 36, 341-346.
Norrby, K., Mattsby-Baltzer, I., Innocenti, M., & Tuneberg, S. (2001). Orally administered bovine lactoferrin systemically inhibits VEGF(165)-mediated angiogenesis in the rat. Int J Cancer, 91, 236-240.
Petersen, A. M., & Pedersen, B. K. (2005). The anti-inflammatory effect of exercise. J Appl Physiol, 98, 1154-1162.
Pierce, A., Colavizza, D., Benaissa, M., Maes, P., Tartar, A., Montreuil, J., & Spik, G. (1991). Molecular cloning and sequence analysis of bovine lactotransferrin. Eur J Biochem, 196, 177-184.
Pullan, C. R., Toms, G. L., Martin, A. J., Gardner, P. S., Webb, J. K., & Appleton, D. R. (1980). Breast-feeding and respiratory syncytial virus infection. Br Med J, 281, 1034-1036.
Rabb, H. (2002). The T cell as a bridge between innate and adaptive immune systems: implications for the kidney. Kidney Int, 61, 1935-1946.
Rietschel, E. T., & Brade, H. (1992). Bacterial endotoxins. Sci Am, 267, 54-61.
Rietschel, E. T., Brade, H., Holst, O., Brade, L., Muller-Loennies, S., Mamat, U., Zahringer, U., Beckmann, F., Seydel, U., Brandenburg, K., Ulmer, A. J., Mattern, T., Heine, H., Schletter, J., Loppnow, H., Schonbeck, U., Flad, H. D., Hauschildt, S., Schade, U. F., Di Padova, F., Kusumoto, S., & Schumann, R. R. (1996). Bacterial endotoxin: Chemical constitution, biological recognition, host response, and immunological detoxification. Curr Top Microbiol Immunol, 216, 39-81.
Salmon, V., Legrand, D., Slomianny, M. C., el Yazidi, I., Spik, G., Gruber, V., Bournat, P., Olagnier, B., Mison, D., Theisen, M., & Merot, B. (1998). Production of human lactoferrin in transgenic tobacco plants. Protein Expr Purif, 13, 127-135.
Sasagawa, T., Hlaing, M., & Akaike, T. (2000). Synergistic induction of apoptosis in murine hepatoma Hepa1-6 cells by IFN-gamma and TNF-alpha. Biochem Biophys Res Commun, 272, 674-680.
Sasaki, Y., Otsuki, K., Hasegawa, A., Sawada, M., Chiba, H., Negishi, M., Nagatsuka, M., & Okai, T. (2004). Preventive effect of recombinant human lactoferrin on lipopolysaccharide-induced preterm delivery in mice. Acta Obstet Gynecol Scand, 83, 1035-1038.
Schibli, D. J., Hwang, P. M., & Vogel, H. J. (1999). The structure of the antimicrobial active center of lactoferricin B bound to sodium dodecyl sulfate micelles. FEBS Lett, 446, 213-217.
Sekine, K., Ushida, Y., Kuhara, T., Iigo, M., Baba-Toriyama, H., Moore, M. A., Murakoshi, M., Satomi, Y., Nishino, H., Kakizoe, T., & Tsuda, H. (1997a). Inhibition of initiation and early stage development of aberrant crypt foci and enhanced natural killer activity in male rats administered bovine lactoferrin concomitantly with azoxymethane. Cancer Lett, 121, 211-216.
Sekine, K., Watanabe, E., Nakamura, J., Takasuka, N., Kim, D. J., Asamoto, M., Krutovskikh, V., Baba-Toriyama, H., Ota, T., Moore, M. A., Masuda, M., Sugimoto, H., Nishino, H., Kakizoe, T., & Tsuda, H. (1997b). Inhibition of azoxymethane-initiated colon tumor by bovine lactoferrin administration in F344 rats. Jpn J Cancer Res, 88, 523-526.
Shin, K., Wakabayashi, H., Yamauchi, K., Teraguchi, S., Tamura, Y., Kurokawa, M., & Shiraki, K. (2005). Effects of orally administered bovine lactoferrin and lactoperoxidase on influenza virus infection in mice. J Med Microbiol, 54, 717-723.
Slater, K., & Fletcher, J. (1987). Lactoferrin derived from neutrophils inhibits the mixed lymphocyte reaction. Blood, 69, 1328-1333.
Sorimachi, K., Akimoto, K., Hattori, Y., Ieiri, T., & Niwa, A. (1997). Activation of macrophages by lactoferrin: secretion of TNF-alpha, IL-8 and NO. Biochem Mol Biol Int, 43, 79-87.
Superti, F., Ammendolia, M. G., Valenti, P., & Seganti, L. (1997). Antirotaviral activity of milk proteins: lactoferrin prevents rotavirus infection in the enterocyte-like cell line HT-29. Med Microbiol Immunol, 186, 83-91.
Suzuki, Y. A., Kelleher, S. L., Yalda, D., Wu, L., Huang, J., Huang, N., & Lonnerdal, B. (2003). Expression, characterization, and biologic activity of recombinant human lactoferrin in rice. J Pediatr Gastroenterol Nutr, 36, 190-199.
Szabo, S. J., Sullivan, B. M., Peng, S. L., & Glimcher, L. H. (2003). Molecular mechanisms regulating Th1 immune responses. Annu Rev Immunol, 21, 713-758.
Szabo, S. J., Sullivan, B. M., Stemmann, C., Satoskar, A. R., Sleckman, B. P., & Glimcher, L. H. (2002). Distinct effects of T-bet in TH1 lineage commitment and IFN-gamma production in CD4 and CD8 T cells. Science, 295, 338-342.
Takakura, N., Wakabayashi, H., Ishibashi, H., Teraguchi, S., Tamura, Y., Yamaguchi, H., & Abe, S. (2003). Oral lactoferrin treatment of experimental oral candidiasis in mice. Antimicrob Agents Chemother, 47, 2619-2623.
Takakura, N., Wakabayashi, H., Ishibashi, H., Yamauchi, K., Teraguchi, S., Tamura, Y., Yamaguchi, H., & Abe, S. (2004). Effect of orally administered bovine lactoferrin on the immune response in the oral candidiasis murine model. J Med Microbiol, 53, 495-500.
Takeuchi, T., Kitagawa, H., & Harada, E. (2004). Evidence of lactoferrin transportation into blood circulation from intestine via lymphatic pathway in adult rats. Exp Physiol, 89, 263-270.
Tanaka, K., Ikeda, M., Nozaki, A., Kato, N., Tsuda, H., Saito, S., & Sekihara, H. (1999). Lactoferrin inhibits hepatitis C virus viremia in patients with chronic hepatitis C: a pilot study. Jpn J Cancer Res, 90, 367-371.
Tanaka, T., Omata, Y., Isamida, T., Saito, A., Shimazaki, K., Yamauchi, K., & Suzuki, N. (1998). Growth inhibitory effect of bovine lactoferrin to Toxoplasma gondii tachyzoites in murine macrophages: tyrosine phosphorylation in murine macrophages induced by bovine lactoferrin. J Vet Med Sci, 60, 369-371.
Teraguchi, S., Shin, K., Ozawa, K., Nakamura, S., Fukuwatari, Y., Tsuyuki, S., Namihira, H., & Shimamura, S. (1995). Bacteriostatic effect of orally administered bovine lactoferrin on proliferation of Clostridium species in the gut of mice fed bovine milk. Appl Environ Microbiol, 61, 501-506.
Teraguchi, S., Wakabayashi, H., Kuwata, H., Yamauchi, K., & Tamura, Y. (2004). Protection against infections by oral lactoferrin: evaluation in animal models. Biometals, 17, 231-234.
Tomita, M., Takase, M., Bellamy, W., & Shimamura, S. (1994). A review: the active peptide of lactoferrin. Acta Paediatr Jpn, 36, 585-591.
Troost, F. J., Steijns, J., Saris, W. H., & Brummer, R. J. (2001). Gastric digestion of bovine lactoferrin in vivo in adults. J Nutr, 131, 2101-2104.
Trumpler, U., Straub, P. W., & Rosenmund, A. (1989). Antibacterial prophylaxis with lactoferrin in neutropenic patients. Eur J Clin Microbiol Infect Dis, 8, 310-313.
Ushida, Y., Sekine, K., Kuhara, T., Takasuka, N., Iigo, M., Maeda, M., & Tsuda, H. (1999). Possible chemopreventive effects of bovine lactoferrin on esophagus and lung carcinogenesis in the rat. Jpn J Cancer Res, 90, 262-267.
Ushida, Y., Sekine, K., Kuhara, T., Takasuka, N., Iigo, M., & Tsuda, H. (1998). Inhibitory effects of bovine lactoferrin on intestinal polyposis in the Apc(Min) mouse. Cancer Lett, 134, 141-145.
van Berkel, P. H., Geerts, M. E., van Veen, H. A., Mericskay, M., de Boer, H. A., & Nuijens, J. H. (1997). N-terminal stretch Arg2, Arg3, Arg4 and Arg5 of human lactoferrin is essential for binding to heparin, bacterial lipopolysaccharide, human lysozyme and DNA. Biochem J, 328, 145-151.
van Berkel, P. H., Welling, M. M., Geerts, M., van Veen, H. A., Ravensbergen, B., Salaheddine, M., Pauwels, E. K., Pieper, F., Nuijens, J. H., & Nibbering, P. H. (2002). Large scale production of recombinant human lactoferrin in the milk of transgenic cows. Nat Biotechnol, 20, 484-487.
Varadhachary, A., Wolf, J. S., Petrak, K., O''Malley, B. W., Jr., Spadaro, M., Curcio, C., Forni, G., & Pericle, F. (2004). Oral lactoferrin inhibits growth of established tumors and potentiates conventional chemotherapy. Int J Cancer, 111, 398-403.
Volk, H., Asadullah, K., Gallagher, G., Sabat, R., & Grutz, G. (2001). IL-10 and its homologs: important immune mediators and emerging immunotherapeutic targets. Trends Immunol, 22, 414-417.
Wada, T., Aiba, Y., Shimizu, K., Takagi, A., Miwa, T., & Koga, Y. (1999). The therapeutic effect of bovine lactoferrin in the host infected with Helicobacter pylori. Scand J Gastroenterol, 34, 238-243.
Wakabayashi, H., Uchida, K., Yamauchi, K., Teraguchi, S., Hayasawa, H., & Yamaguchi, H. (2000). Lactoferrin given in food facilitates dermatophytosis cure in guinea pig models. J Antimicrob Chemother, 46, 595-602.
Wakabayashi, H., Yamauchi, K., & Takase, M. (2006). Lactoferrin research, technology and applications. Int. Dairy J., 1241-1251.
Wang, X., Hirmo, S., Willen, R., & Wadstrom, T. (2001). Inhibition of Helicobacter pylori infection by bovine milk glycoconjugates in a BAlb/cA mouse model. J Med Microbiol, 50, 430-435.
Ward, P. P., Lo, J. Y., Duke, M., May, G. S., Headon, D. R., & Conneely, O. M. (1992). Production of biologically active recombinant human lactoferrin in Aspergillus oryzae. Biotechnology, 10, 784-789.
Ward, P. P., Piddington, C. S., Cunningham, G. A., Zhou, X., Wyatt, R. D., & Conneely, O. M. (1995). A system for production of commercial quantities of human lactoferrin: a broad spectrum natural antibiotic. Biotechnology, 13, 498-503.
Ward, P. P., Zhou, X., & Conneely, O. M. (1996). Cooperative interactions between the amino- and carboxyl-terminal lobes contribute to the unique iron-binding stability of lactoferrin. J Biol Chem, 271, 12790-12794.
Yajima, M., Yajima, T., & Kuwata, T. (2005). Intraperitoneal injection of lactoferrin ameliorates severe albumin extravasation and neutrophilia in LPS-induced inflammation in neonatal rats. Biomed Res, 26, 249-255.
Yamauchi, K., Toida, T., Kawai, A., Nishimura, S., Teraguchi, S., & Hayasawa, H. (2000a). Mutagenicity of bovine lactoferrin in reverse mutation test. J Toxicol Sci, 25, 63-66.
Yamauchi, K., Toida, T., Nishimura, S., Nagano, E., Kusuoka, O., Teraguchi, S., Hayasawa, H., Shimamura, S., & Tomita, M. (2000b). 13-Week oral repeated administration toxicity study of bovine lactoferrin in rats. Food Chem Toxicol, 38, 503-512.
Yamauchi, K., Tomita, M., Giehl, T. J., & Ellison, R. T., 3rd (1993). Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment. Infect Immun, 61, 719-728.
Yamauchi, K., Wakabayashi, H., Shin, K., & Takase, M. (2006). Bovine lactoferrin: benefits and mechanism of action against infections. Biochem Cell Biol, 84, 291-296.
Yi, M., Kaneko, S., Yu, D. Y., & Murakami, S. (1997a). Hepatitis C virus envelope proteins bind lactoferrin. J Virol, 71, 5997-6002.
Yi, M., Nakamoto, Y., Kaneko, S., Yamashita, T., & Murakami, S. (1997b). Delineation of regions important for heteromeric association of hepatitis C virus E1 and E2. Virology, 231, 119-129.
Zagulski, T., Lipinski, P., Zagulska, A., Broniek, S., & Jarzabek, Z. (1989). Lactoferrin can protect mice against a lethal dose of Escherichia coli in experimental infection in vivo. Br J Exp Pathol, 70, 697-704.
Zhang, J., Li, L., Cai, Y., Xu, X., Chen, J., Wu, Y., Yu, H., Yu, G., Liu, S., Zhang, A., Chen, J., & Cheng, G. (2008). Expression of active recombinant human lactoferrin in the milk of transgenic goats. Protein Expr Purif, 57, 127-135.
Zimecki, M., Dawiskiba, J., Zawirska, B., Krawczyk, Z., & Kruzel, M. (2003). Bovine lactoferrin decreases histopathological changes in the liver and regulates cytokine production by splenocytes of obstructive jaundiced rats. Inflamm Res, 52, 305-310.
Zimecki, M., Mazurier, J., Spik, G., & Kapp, J. A. (1996). Lactoferrin inhibits proliferative response and cytokine production of TH1 but not TH2 cell lines. Arch Immunol Ther Exp, 44, 51-56.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 蓮子心及其萃取物對免疫細胞及糖尿病誘發小鼠免疫調節功能之影響
2. 複方中草藥之安全性及免疫調節功能
3. 以動物體外及體內實驗模式評估植酸酶基因轉殖水稻(台農67號)之過敏可能性
4. 利用即時聚合酶連鎖反應及酵素免疫連結分析法評估黃連素對BALB/c小鼠脾臟細胞分泌細胞激素之影響
5. 由肝免疫生物學觀點探討肝疾病藥物的開發平台
6. 靈菌表面移行行為之調控及其與宿主間之交互關係:-SspA,新的脂蛋白調控靈菌表面移行系統-2,3-butanediol緩解大鼠模式中脂多醣誘發之急性發炎反應
7. 以系統生物學方法探討細菌內毒素在大鼠胸主動脈內皮細胞所引發之反應
8. 大蒜精油及其有機含硫成分-二烯丙基硫化物、二烯丙基二硫化物、二烯丙基三硫化物-對於系統性發炎之大鼠嗜中性球生理活性之影響
9. 利用化學標定及質譜技術分析經脂多醣刺激後小鼠巨噬細胞 (RAW 264.7) 之比較分泌蛋白質體研究
10. 牛樟芝萃取輔酶衍生物對LPS誘導敗血症模式的影響
11. 3-Methyladenine調控脂多醣在巨噬細胞活化之發炎反應的機制探討
12. 異柴胡內酯異構物作用於巨噬細胞的抗發炎活性
13. 組蛋白乙醯基轉移酵素在脂多醣體刺激RAW264.7巨噬細胞引發環氧酵素-2表現之角色探討
14. 芝麻酚對酯多醣體誘發之巨噬細胞前發炎物質釋放的影響
15. 芝麻油對脂多醣所誘發大白鼠內毒素血症的影響
 
無相關期刊
 
1. 乳鐵蛋白對早期離乳仔豬生長、腸道及免疫性狀之影響
2. 沉香萃取物之免疫調節功能及其對人類前列腺癌細胞和乳腺癌細胞的影響
3. 苦丁茶與空心蓮子草不同萃取物對初代免疫細 胞與自然殺手細胞免疫調節能力之影響及其與 前列腺癌細胞和乳腺癌細胞間交互作用
4. 香蕉不同萃取物對Th1/Th2免疫平衡、發炎及PC-3與MCF-7細胞凋亡之影響
5. 萜類化合物在體外及體內對Th1/Th2免疫反應之影響
6. 槲皮素及其主要代謝產物槲皮酮葡萄醣醛酸對BALB/c小鼠體內發炎腹腔細胞發炎作用及發炎相關訊息傳遞的影響
7. 蓮子心抗發炎成分之研究
8. 以初代免疫細胞培養評估不同食材之免疫調節傾向並探討桑椹多醣對卵白蛋白致敏小鼠之免疫調節功能
9. 金銀花萃取物免疫調節作用及其對前列腺癌PC-3與乳腺癌MCF-7細胞生長之影響
10. 道手香水蒸餾精油吸入對正常及氣喘模式小鼠免疫調節之影響
11. 利用動物及細胞模式探討芸香素補充對代謝症候群指標及免疫調節的影響
12. 乳鐵蛋白對草蝦稚蝦成長及免疫反應之影響
13. 蓮子心多醣純化與其在動物體外和體內抗發炎作用之研究
14. 利用即時聚合酶連鎖反應及酵素免疫連結分析法評估黃連素對BALB/c小鼠脾臟細胞分泌細胞激素之影響
15. 開發多功能複合性保健食品配方並利用雞卵白蛋白致敏小鼠模式評估其抗過敏性氣喘之功效