跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/27 10:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾穎承
研究生(外文):Ying-Cheng Chung
論文名稱:中草藥活性成分對肝癌細胞生長之影響
論文名稱(外文):Effects of Chinese medicinal herbs on hepatoma cell survival in vitro and in vivo
指導教授:蔣恩沛
指導教授(外文):En-Pei Chiang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
畢業學年度:96
語文別:英文
論文頁數:52
中文關鍵詞:中草藥
外文關鍵詞:Chinese medicinal herbs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在全世界,肝癌為因癌症而死亡的主要癌症之一。之前在動物實驗及細胞實驗中發現中草藥板藍具有化學治療的能力。在這項研究過程中,我們針對板藍中最有可能成為化學治療的 5 種化合物 tryptanthrin,indirubin,indigo,iscoparin 和 isovitexin,探討其療效。在這些化合物中,我們發現 tryptanthrin 在細胞實驗中對肝癌細胞最具有細胞毒性,並且更進一步的我們研究了 tryptanthrin 抑制肝癌細胞生長的主要機制。
先前許多的研究發現使用 cyclooxygenase-2 抑制劑藥物如 celecoxib、meloxicam 及 NS-398等,透過抑制 cyclooxygenase-2 的表現或活性而有抑制癌細胞生長的情形。 過去研究顯示 Tryptanthrin 在單核白血球細胞中強烈抑制 cycloxygenase-2。因為cyclooxygenase-2 在很多肝癌細胞中被發現有過量表現現象,因此在我們假設 tryptanthrin 能夠透過抑制 cyclooxygenase-2 的活性,抑制肝癌細胞生長,進而探討其是否有抑制肝腫瘤的效果。我們發現 tryptanthrin活化了caspase 3 和 caspase 9,藉由caspase 依賴性的細胞凋亡路徑、誘導細胞凋亡及細胞週期的停滯。在異皮移植肝癌細胞於裸鼠之實驗中,餵食 tryptanthrin 並沒有造成體重,攝食,器官組織學或者肝功能的影響。但 tryptanthrin 明顯抑制了異皮移植肝癌細胞腫瘤的大小超過百分之六十。而實驗中也發現非癌化之肝細胞 tryptanthrin 有較低的敏感性。。
我們研究在動物實驗及細胞實驗中發現 tryptanthrin 具有抑制腫瘤生長能力。這也是第一個報告證明 tryptanthrin 具有對於肝癌化學治療的能力,藉由減少細胞的增生且透過caspases-3,9 和 PARP 的活化、抑制 Bcl-2 所引起的細胞凋亡。此研究結果發現 tryptanthrin 具有抗肝癌生長之潛力。
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer related mortality worldwide. Previously we discovered the chemotherapeutic mechanism of Isatis indigotica on human hepatoma cells in vivo and in vitro. In this study, we focused on five compounds that have the most probable chemotherapeutic function. Tryptanthrin, indirubin, indigo, iscoparin and isovitexin substance could be found find in the Isatis indigotica. Among these compounds, tryptanthrin had the most cytotoxic effect against HCC in vivo and in vitro. We further investigated the mechanism by which tryptanthrin inhibits hepatoma cell growth.
Numerous previous studies indicated that reduction in COX-2 expression by specific COX-2 inhibitors such as celecoxib, meloxicam and NS-398 could suppress HCC cells growth by cell cycle arrest and induction of apoptosis. Tryptanthrin has been reported to strongly inhibit cycloxygenase-2 (COX-2) in human monocytic cell line Mono Mac 6 (concentration of 50 % inhibition was 64 nm)10. As cyclooxygenase-2 is over-expressed in many HCC cells 11-13, we investigated whether tryptanthrin suppresses HCC tumor growth via inhibition of COX-2. In nude mice xenotransplanted with human hepatoma cells, tryptanthrin supplementation at physiological dose inhibited tumor growth by about 63.1 % compared to non-supplemented animals without affecting body weight, food intake, organ histology or liver function. Tryptanthrin induced sub-G1 cell cycle arrest and apoptosis in hepatoma cells; and non-malignant Chang liver cell-line was less susceptible to tryptanthrin induced cell death compared to hepatoma cell-line HepG2, Huh-7, Hep3B, SK1 and HA22T. Differ from what we found in Isatis indigotica that specific component could induce AIF translocation and apoptosis, tryptanthrin activated caspase-3 and 9 without translocation of AIF, resulted a distinguished caspase dependent pathway of apoptosis in hepatoma cells.
Our study provides novel in vivo and in vitro evidence that tryptanthrin has anti-tumor activity against liver tumorigenesis. This is also the first report demonstrating that the chemotherapeutic activity of tryptanthrin on HCC was due to reducing proliferation and inducing apoptosis by activation of caspases-3, 9 and PARP, activation Bax expression, reduction Bcl-2 expression. Results from this study provide the tryptanthrin as a potential anticancer treatment against human HCC.
Abstract
中文………………………………………………………………2
英文………………………………………………………………3
Abbreviations…………………………………………………4
Introduction………………………………………………………6
Materials and methods……………………………………9
Result………………………………………………………………15
Discussion……………………………………………………20
Figure and Table………………………………………………………………25
Reference………………………………………………………………45
1. Wu, T. Cyclooxygenase-2 in hepatocellular carcinoma. Cancer Treat. Rev. 32, 28-44 (2006).
2. Kern, M. A. et al. Cyclooxygenase-2 inhibitors suppress the growth of human hepatocellular carcinoma implants in nude mice. Carcinogenesis 25, 1193-1199 (2004).
3. Bae, S. H. et al. Expression of cyclooxygenase-2 (COX-2) in hepatocellular carcinoma and growth inhibition of hepatoma cell lines by a COX-2 inhibitor, NS-398. Clin. Cancer Res. 7, 1410-1418 (2001).
4. Hu, K. Q. et al. Inhibited proliferation of cyclooxygenase-2 expressing human hepatoma cells by NS-398, a selective COX-2 inhibitor. Int. J. Oncol. 22, 757-763 (2003).
5. Huang, D. S. et al. Specific COX-2 inhibitor NS398 induces apoptosis in human liver cancer cell line HepG2 through BCL-2. World J. Gastroenterol. 11, 204-207 (2005).
6. Park, M. K. et al. NS398 inhibits the growth of Hep3B human hepatocellular carcinoma cells via caspase-independent apoptosis. Mol. Cells 17, 45-50 (2004).
7. Yamanaka, Y. et al. COX-2 inhibitors sensitize human hepatocellular carcinoma cells to TRAIL-induced apoptosis. Int. J. Mol. Med. 18, 41-47 (2006).
8. Cheng, J., Imanishi, H., Amuro, Y. & Hada, T. NS-398, a selective cyclooxygenase 2 inhibitor, inhibited cell growth and induced cell cycle arrest in human hepatocellular carcinoma cell lines. Int. J. Cancer 99, 755-761 (2002).
9. Kern, M. A. et al. Cyclooxygenase-2 inhibitors suppress the growth of human hepatocellular carcinoma implants in nude mice. Carcinogenesis 25, 1193-1199 (2004).
10. Danz, H., Stoyanova, S., Wippich, P., Brattstrom, A. & Hamburger, M. Identification and isolation of the cyclooxygenase-2 inhibitory principle in Isatis tinctoria. Planta Med. 67, 411-416 (2001).
11. Kern, M. A. et al. Cyclooxygenase-2 inhibitors suppress the growth of human hepatocellular carcinoma implants in nude mice. Carcinogenesis 25, 1193-1199 (2004).
12. Kern, M. A. et al. Proapoptotic and antiproliferative potential of selective cyclooxygenase-2 inhibitors in human liver tumor cells. Hepatology 36, 885-894 (2002).
13. Kern, M. A., Breuhahn, K. & Schirmacher, P. Molecular pathogenesis of human hepatocellular carcinoma. Adv. Cancer Res. 86, 67-112 (2002).
14. El-Serag, H. B. & Mason, A. C. Rising incidence of hepatocellular carcinoma in the United States. N. Engl. J. Med. 340, 745-750 (1999).
15. Parkin, D. M., Bray, F., Ferlay, J. & Pisani, P. Estimating the world cancer burden: Globocan 2000. Int. J. Cancer 94, 153-156 (2001).
16. Coleman, W. B. Mechanisms of human hepatocarcinogenesis. Curr. Mol. Med. 3, 573-588 (2003).
17. Thompson, H. J. et al. Sulfone metabolite of sulindac inhibits mammary carcinogenesis. Cancer Res. 57, 267-271 (1997).
18. Molina, M. A., Sitja-Arnau, M., Lemoine, M. G., Frazier, M. L. & Sinicrope, F. A. Increased cyclooxygenase-2 expression in human pancreatic carcinomas and cell lines: growth inhibition by nonsteroidal anti-inflammatory drugs. Cancer Res. 59, 4356-4362 (1999).
19. Goldberg, Y. et al. The anti-proliferative effect of sulindac and sulindac sulfide on HT-29 colon cancer cells: alterations in tumor suppressor and cell cycle-regulatory proteins. Oncogene 12, 893-901 (1996).
20. Smith, W. L., Garavito, R. M. & DeWitt, D. L. Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J. Biol. Chem. 271, 33157-33160 (1996).
21. Dubois, R. N. et al. Cyclooxygenase in biology and disease. FASEB J. 12, 1063-1073 (1998).
22. Fosslien, E. Biochemistry of cyclooxygenase (COX)-2 inhibitors and molecular pathology of COX-2 in neoplasia. Crit Rev. Clin. Lab Sci. 37, 431-502 (2000).
23. O''Neill, G. P. & Ford-Hutchinson, A. W. Expression of mRNA for cyclooxygenase-1 and cyclooxygenase-2 in human tissues. FEBS Lett. 330, 156-160 (1993).
24. Eberhart, C. E. & Dubois, R. N. Eicosanoids and the gastrointestinal tract. Gastroenterology 109, 285-301 (1995).
25. Smith, W. L., Garavito, R. M. & DeWitt, D. L. Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J. Biol. Chem. 271, 33157-33160 (1996).
26. Dubois, R. N. et al. Cyclooxygenase in biology and disease. FASEB J. 12, 1063-1073 (1998).
27. Vane, J. R., Bakhle, Y. S. & Botting, R. M. Cyclooxygenases 1 and 2. Annu. Rev. Pharmacol. Toxicol. 38, 97-120 (1998).
28. Tsujii, M. et al. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 93, 705-716 (1998).
29. Tsujii, M. & DuBois, R. N. Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell 83, 493-501 (1995).
30. Glezer, V. D. & Kuperman, A. M. [Model of local spectral description of images in the visual system]. Biofizika 23, 694-698 (1978).
31. Kimura, M., Osumi, S. & Ogihara, M. Stimulation of DNA synthesis and proliferation by prostaglandins in primary cultures of adult rat hepatocytes. Eur. J. Pharmacol. 404, 259-271 (2000).
32. Hashimoto, N. et al. Prostaglandins induce proliferation of rat hepatocytes through a prostaglandin E2 receptor EP3 subtype. Am. J. Physiol 272, G597-G604 (1997).
33. Leng, J., Han, C., Demetris, A. J., Michalopoulos, G. K. & Wu, T. Cyclooxygenase-2 promotes hepatocellular carcinoma cell growth through Akt activation: evidence for Akt inhibition in celecoxib-induced apoptosis. Hepatology 38, 756-768 (2003).
34. Liu, C. H. et al. Overexpression of cyclooxygenase-2 is sufficient to induce tumorigenesis in transgenic mice. J. Biol. Chem. 276, 18563-18569 (2001).
35. Fernandez-Martinez, A. et al. Cyclo-oxygenase 2 expression impairs serum-withdrawal-induced apoptosis in liver cells. Biochem. J. 398, 371-380 (2006).
36. Tessner, T. G., Muhale, F., Riehl, T. E., Anant, S. & Stenson, W. F. Prostaglandin E2 reduces radiation-induced epithelial apoptosis through a mechanism involving AKT activation and bax translocation. J. Clin. Invest 114, 1676-1685 (2004).
37. Kataoka, M. et al. Antibacterial action of tryptanthrin and kaempferol, isolated from the indigo plant (Polygonum tinctorium Lour.), against Helicobacter pylori-infected Mongolian gerbils. J. Gastroenterol. 36, 5-9 (2001).
38. Koya-Miyata, S. et al. Prevention of azoxymethane-induced intestinal tumors by a crude ethyl acetate-extract and tryptanthrin extracted from Polygonum tinctorium Lour. Anticancer Res. 21, 3295-3300 (2001).
39. Danz, H., Stoyanova, S., Wippich, P., Brattstrom, A. & Hamburger, M. Identification and isolation of the cyclooxygenase-2 inhibitory principle in Isatis tinctoria. Planta Med. 67, 411-416 (2001).
40. Honda, G., Tosirisuk, V. & Tabata, M. Isolation of an antidermatophytic, tryptanthrin, from indigo plants, Polygonum tinctorium and Isatis tinctoria. Planta Med. 38, 275-276 (1980).
41. Zou, P. & Koh, H. L. Determination of indican, isatin, indirubin and indigotin in Isatis indigotica by liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 21, 1239-1246 (2007).
42. Chen, L., Lin, T., Zhang, H. & Su, Y. Immune responses to foot-and-mouth disease DNA vaccines can be enhanced by coinjection with the Isatis indigotica extract. Intervirology 48, 207-212 (2005).
43. Ho, Y. L. & Chang, Y. S. Studies on the antinociceptive, anti-inflammatory and anti pyretic effects of Isatis indigotica root. Phytomedicine. 9, 419-424 (2002).
44. Ishihara, T. et al. Tryptanthrin inhibits nitric oxide and prostaglandin E(2) synthesis by murine macrophages. Eur. J. Pharmacol. 407, 197-204 (2000).
45. Micallef, M. J. et al. The natural plant product tryptanthrin ameliorates dextran sodium sulfate-induced colitis in mice. Int. Immunopharmacol. 2, 565-578 (2002).
46. Kusaba, M. et al. Abrogation of constitutive STAT3 activity sensitizes human hepatoma cells to TRAIL-mediated apoptosis. J. Hepatol. 47, 546-555 (2007).
47. Lin, C. M. et al. Isovitexin suppresses lipopolysaccharide-mediated inducible nitric oxide synthase through inhibition of NF-kappa B in mouse macrophages. Planta Med. 71, 748-753 (2005).
48. Lin, C. M., Chen, C. T., Lee, H. H. & Lin, J. K. Prevention of cellular ROS damage by isovitexin and related flavonoids. Planta Med. 68, 365-367 (2002).
49. Eisenbrand, G., Hippe, F., Jakobs, S. & Muehlbeyer, S. Molecular mechanisms of indirubin and its derivatives: novel anticancer molecules with their origin in traditional Chinese phytomedicine. J. Cancer Res. Clin. Oncol. 130, 627-635 (2004).
50. Xiao, Z., Hao, Y., Liu, B. & Qian, L. Indirubin and meisoindigo in the treatment of chronic myelogenous leukemia in China. Leuk. Lymphoma 43, 1763-1768 (2002).
51. Moon, M. J. et al. Synthesis and structure-activity relationships of novel indirubin derivatives as potent anti-proliferative agents with CDK2 inhibitory activities. Bioorg. Med. Chem. 14, 237-246 (2006).
52. Damiens, E., Baratte, B., Marie, D., Eisenbrand, G. & Meijer, L. Anti-mitotic properties of indirubin-3''-monoxime, a CDK/GSK-3 inhibitor: induction of endoreplication following prophase arrest. Oncogene 20, 3786-3797 (2001).
53. Knockaert, M. et al. Independent actions on cyclin-dependent kinases and aryl hydrocarbon receptor mediate the antiproliferative effects of indirubins. Oncogene 23, 4400-4412 (2004).
54. Lee, J. W. et al. Induction of apoptosis by a novel indirubin-5-nitro-3''-monoxime, a CDK inhibitor, in human lung cancer cells. Bioorg. Med. Chem. Lett. 15, 3948-3952 (2005).
55. Kagialis-Girard, S. et al. Inhibition of normal lymphocyte proliferation by Indirubin-3''-monoxime: a multifactorial process. Leuk. Lymphoma 48, 605-615 (2007).
56. Ribas, J. et al. 7-Bromoindirubin-3''-oxime induces caspase-independent cell death. Oncogene 25, 6304-6318 (2006).
57. Sethi, G. et al. Indirubin enhances tumor necrosis factor-induced apoptosis through modulation of nuclear factor-kappa B signaling pathway. J. Biol. Chem. 281, 23425-23435 (2006).
58. Knockaert, M. et al. Independent actions on cyclin-dependent kinases and aryl hydrocarbon receptor mediate the antiproliferative effects of indirubins. Oncogene 23, 4400-4412 (2004).
59. Liau, B. C., Jong, T. T., Lee, M. R. & Chen, S. S. LC-APCI-MS method for detection and analysis of tryptanthrin, indigo, and indirubin in daqingye and banlangen. J. Pharm. Biomed. Anal. 43, 346-351 (2007).
60. Cheng, A. S. et al. Specific COX-2 inhibitor, NS-398, suppresses cellular proliferation and induces apoptosis in human hepatocellular carcinoma cells. Int. J. Oncol. 23, 113-119 (2003).
61. Leng, J., Han, C., Demetris, A. J., Michalopoulos, G. K. & Wu, T. Cyclooxygenase-2 promotes hepatocellular carcinoma cell growth through Akt activation: evidence for Akt inhibition in celecoxib-induced apoptosis. Hepatology 38, 756-768 (2003).
62. Lampiasi, N. et al. The selective cyclooxygenase-1 inhibitor SC-560 suppresses cell proliferation and induces apoptosis in human hepatocellular carcinoma cells. Int. J. Mol. Med. 17, 245-252 (2006).
63. Fodera, D. et al. Induction of apoptosis and inhibition of cell growth in human hepatocellular carcinoma cells by COX-2 inhibitors. Ann. N. Y. Acad. Sci. 1028, 440-449 (2004).
64. Kern, M. A. et al. Cyclooxygenase-2 inhibition induces apoptosis signaling via death receptors and mitochondria in hepatocellular carcinoma. Cancer Res. 66, 7059-7066 (2006).
65. Kern, M. A. et al. Cyclooxygenase-2 inhibitors suppress the growth of human hepatocellular carcinoma implants in nude mice. Carcinogenesis 25, 1193-1199 (2004).
66. Yamanaka, Y. et al. COX-2 inhibitors sensitize human hepatocellular carcinoma cells to TRAIL-induced apoptosis. Int. J. Mol. Med. 18, 41-47 (2006).
67. Ishihara, T. et al. Tryptanthrin inhibits nitric oxide and prostaglandin E(2) synthesis by murine macrophages. Eur. J. Pharmacol. 407, 197-204 (2000).
68. Benson, R. S., Heer, S., Dive, C. & Watson, A. J. Characterization of cell volume loss in CEM-C7A cells during dexamethasone-induced apoptosis. Am. J. Physiol 270, C1190-C1203 (1996).
69. Allen, R. T., Hunter, W. J., III & Agrawal, D. K. Morphological and biochemical characterization and analysis of apoptosis. J. Pharmacol. Toxicol. Methods 37, 215-228 (1997).
70. Gross, A., McDonnell, J. M. & Korsmeyer, S. J. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 13, 1899-1911 (1999).
71. Hockenbery, D., Nunez, G., Milliman, C., Schreiber, R. D. & Korsmeyer, S. J. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348, 334-336 (1990).
72. Crompton, M. Bax, Bid and the permeabilization of the mitochondrial outer membrane in apoptosis. Curr. Opin. Cell Biol. 12, 414-419 (2000).
73. Liu, X., Kim, C. N., Yang, J., Jemmerson, R. & Wang, X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147-157 (1996).
74. Baliga, B. & Kumar, S. Apaf-1/cytochrome c apoptosome: an essential initiator of caspase activation or just a sideshow? Cell Death. Differ. 10, 16-18 (2003).
75. Germain, M. et al. Cleavage of automodified poly(ADP-ribose) polymerase during apoptosis. Evidence for involvement of caspase-7. J. Biol. Chem. 274, 28379-28384 (1999).
76. Li, X. & Darzynkiewicz, Z. Cleavage of Poly(ADP-ribose) polymerase measured in situ in individual cells: relationship to DNA fragmentation and cell cycle position during apoptosis. Exp. Cell Res. 255, 125-132 (2000).
77. Yamanaka, Y. et al. COX-2 inhibitors sensitize human hepatocellular carcinoma cells to TRAIL-induced apoptosis. Int. J. Mol. Med. 18, 41-47 (2006).
78. Kern, M. A. et al. Cyclooxygenase-2 inhibition induces apoptosis signaling via death receptors and mitochondria in hepatocellular carcinoma. Cancer Res. 66, 7059-7066 (2006).
79. Kimoto, T. et al. Cell differentiation and apoptosis of monocytic and promyelocytic leukemia cells (U-937 and HL-60) by tryptanthrin, an active ingredient of Polygonum tinctorium Lour. Pathol. Int. 51, 315-325 (2001).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top