(3.235.25.169) 您好!臺灣時間:2021/04/17 20:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林皇銘
研究生(外文):Huang-Ming Lin
論文名稱:12吋晶圓廠AMHS懸吊系統之強度分析
論文名稱(外文):The Analysis of the AMHS Hanging System for 300mm Wafer Fab
指導教授:曾柏昌曾柏昌引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:中文
論文頁數:79
中文關鍵詞:自動物料搬運系統
外文關鍵詞:AMHS
相關次數:
  • 被引用被引用:1
  • 點閱點閱:573
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著晶圓進入12吋世代,25片裝的晶圓盒(FOUP)重量已達10公斤,人工搬運已無法再負荷,以及為了搬運的安全與效率,以及工廠佈置的空間考量,懸吊式的自動物料搬運系統AMHS (Automated Material Handling System)已成12吋晶圓廠必備的搬運系統。由於台灣地處於地震帶中,本研究以實例針對懸吊系統結構受地震力所產生影響加以分析,並提出補強方法,得到一安全穩固的懸吊系統。
本研究建構一連結兩個12吋晶圓廠區的輸送帶系統懸吊結構,以ANSYS軟體架構整個模型,並在各方向施以地震所產生的加速度,進行整個結構的分析,分析結構的變形與應力分部情形;針對分析結果中強度不足的部分以懸吊桿做為結構補強。
經過補強後懸吊桿最大等效應力由458.062MPa下降到190.743MPa,低於材料容許應力;最大位移量由56.045mm下降至28.817 mm,減少為原來的一半;結構的最大軸向壓應力33.191MPa,低於材料的挫曲強度,證明整個懸吊系統是安全穩固的。
As the semi-conductor industry embraces into the 12 inch generation, a fully loaded 25 plate FOUP would weigh around 10kg. Therefore, manual labor in carrying these FOUP would no longer be sustainable. In considering the safety and efficiency of transportation as well as spatial consideration of the factory environment, the suspended Automated Material Handling System (AMHS) has become a necessity for 12 inch FAB transportation systems. Due to Taiwan been situated on an earthquake fault line, this research will focus on the physical analysis of the impact that an earthquake would have on an AMHS. The result of this analysis would provide enforcement methods to help ascertain a safe and robust AMHS.
The research would establish a connection of the suspended AMHS transportation belt from two 12 inch semi-conductor FAB. By applying ANSYS structure to the entire model and simulating earthquake forces accelerating in various directions, we would be able to analyze the entire structure and conditions of distortion and stress displacement. The results would show certain parts that are experiencing inadequate intensity levels and would be reinforced by suspensor rods to ascertain structural reinforcement.
After installing structural reinforcement, equivalent stress of suspensor rods have decreased from 458.062MPa to 190.743MPa, which is lower than the material stress capacity. The maximum shifting has decreased from 56.045mm to 28.817mm, which have decreased to half of the original. The maximum axis suppression stress is 33.191MPa, which is lower than the buckling intensity of the material. The above results have shown that suspended AMHS are safe and robust.
目次
誌謝 I
摘要 II
Abstract III
目次 IV
表目次 VII
圖目次 VIII
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 1
1.3 文獻回顧 2
1.4 研究步驟 4
第二章 有限元素法與12吋晶圓廠AMHS系統介紹 7
2.1 有限元素分析 7
2.1.1 有限元素基本概念 7
2.1.3 ANSYS有限元素分析軟體介紹 9
2.2 研究方法 11
2.2.1 懸吊系統補強方式 11
2.2.2 地震力 12
2.2.3 挫曲(Buckling)強度 13
2.3 AMHS系統介紹 14
2.3.1 AMHS系統的演進 14
2.3.2 AMHS系統的組成 15
第三章 參數設定 23
3.1 模型設定 23
3.1.1 幾何模型 23
3.1.2 網格模型 23
3.2 元素幾何性質設定 24
3.3 材料性質設定 28
3.4 地震力的計算 31
3.4.1 水平總橫力Fph 31
3.4.2 垂直地震力Fp 32
3.4.3 邊界條件設定 32
第四章 模擬分析結果 34
4.1 原始結構自重分析 34
4.1.1 邊界條件設定 34
4.1.2 原始結構自重分析結果 34
4.2 原始結構地震力分析 36
4.2.1 邊界條件設定 36
4.2.2 原始結構地震力分析結果 37
4.3 原始結構地震力分析討論 52
4.3.1 結構補強設計變更 53
4.3.2 補強討論 58
4.4 補強結構剛性分析 59
4.4.1 補強結構模型設定 59
4.4.2 補強結構自重分析 59
4.4.3 補強結構地震力分析 60
4.4.4 補強結構分析結果 60
4.5 分析與比較 62
4.5.1 設計討論 62
4.5.2 補強方案檢討 64
4.5.3 挫曲強度計算 69
4.5.4 模態分析 73
4.5.5 檢討案分析結果討論 75
第五章 結論與討論 76
5.1 原始結構分析 76
5.2 補強結構分析 76
5.3 問題討論 77
第六章 參考文獻 78
[1] Philip L. Campbell and Glen Laitinen, “Overhead Intra bay Automation and Microstocking – avirtual fab case study,” IEEE/SEMI, pp. 368-372, 1997
[2] Devadas Pillai, “Integrated of 300mm Fab layout and Material Handling Automation,” IEEE, pp.23-26, 1999.
[3] 游峻安, “自動化物料搬運系統在晶圓廠之應用”, 碩士論文,中原大學工業工程研究所,2001。
[4] 潘威成,”以模態實驗法研究懸臂樑之振動行為”,碩士論文,國立成功大學土木工程研究所,2000。
[5] 盧建銘,”旋轉懸臂樑附帶任意集中質量之自由振動分析”,碩士論文,國立成功大學造船暨船舶機械工程研究所,2001。.
[6] E. L. Wilson, M. W. Yuan and J. M. Dickens, “Dynamic Analysis by Direct Superposition of Ritz Vectors”, Earthquake Engineering and Structural Dynamics, Vol.10, pp.813-821, 1982.
[7] 全湘偉,邱垂鈺,“半導體廠房製程儀具基礎暨樓板結構振動反應分析模式之建立”,機械月刊,第二十三卷,第九期,pp.327-337,1997。
[8] 蔡克銓,陳界宏,王宏遠,“耐震間柱之抗震行為”,土木技術,第四卷,第一期,pp.90-97,2001。
[9] T. Y. Yang and M. I. Baig, “Seismic Analysis of Fossil-Fuel Boiler Structures”, Journal of the Structural Division, Vol. 105, pp. 2511-2528, 1979.
[10] D. G. Lee, H. S Kim and M. H. Chun, “Efficient Seismic Analysis of Hight-Rise Building Structures with the Effects of Floor Slabs”, Engineering Structures, Vol.24, pp.613-623, 2002.
[11] 簡秋記,翟慰宗,“頂層加建影響建物耐震能力之分析”,土木技術,第四卷,第八期,pp.75-89,2001。
[12] 李有豐等人,“鋼筋混凝土建物樓層數、跨數與剪力牆配置對耐震能力影響之研究”,結構工程,第十七卷,第二期,pp.97-112,2002。
[13] 龔皇光、黃柏文、陳鴻雄,”ANSYS與電腦輔助工程分析”,全華科技圖書公司,台北,2002。
[14] 康淵、陳信吉,”ANSYS入門”,全華科技圖書公司,台北,修訂三版,2006。
[15] http://www.psc.com.tw/
[16] http://www.asyst-shinko.com/
[17] http://www.semiconductor.net/article/CA6462399.html?q=Fabex
[18] http://www.entegris.com/
[19] http://www.wafercare.com/
[20] 內政部營建署頒布,”建築物耐震設計規範及解說”,2006。
[21] 行政院勞工委員會頒布,”固定式起重機安全檢查構造標準”,2005。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔