跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/01 09:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:胡育維
研究生(外文):Yu-Wei Hu
論文名稱:頻率域多視角形貌註冊
論文名稱(外文):Multiview Range Image Registration By A Frequency Domain Technique
指導教授:李吉群
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:52
中文關鍵詞:快速傅立葉轉換影像註冊相位關聯法ICP演算法
外文關鍵詞:FFTRegistrationPhase correlationICP algorithm
相關次數:
  • 被引用被引用:0
  • 點閱點閱:108
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在工業迅速發展的現代,利用輪廓影像來重建三維物體是一種常見三維重建方式,譬如工業造型設計或利用電腦斷層掃描片來重建人體的骨骼模型等等。
本研究介紹一種利用三維快速傅立葉轉換的頻率域影像註冊演算法。我們利用傅立葉轉換的特性,可以把旋轉和平移分開來計算,而其三維旋轉關係我們定義為在卡式座標系中,對三維旋轉軸旋轉一個平面角度。演算法的流程主要有三個步驟:第一步,計算兩視角形貌資訊的共同旋轉軸。第二個步驟,計算依據旋轉軸的平面旋轉角。第三個步驟,將旋轉過後的形貌資訊分別對座標軸做兩次投影,利用相位關聯法來計算空間位移量。此演算法快速且不需要初始值的優點可以使用在空間域註冊演算法的粗估計,像ICP演算法。
In the age of rapid progress of industrialization, it is a popular methodology to utilize range images for 3D objects reconstruction, eg, use computer tomography (CT) to rebuild human bone structures.
This paper introduces an algorithm for the registration of rotated and translated object using the three-dimensional (3-D) Fast Fourier transform. The Fourier transform allow the decoupling of the estimate of the rotation parameters from the estimate of the translation parameters. The rotation estimation is based on Euler’s theorem, which allows one to represent a 3-D rotation as a planar rotation around a 3-D rotation axis. We propose a three-step procedure. The first step estimates the rotation axis. The second step computes the planar rotation relative to the rotation axis. The third step recovers the translational displacement by phase correlation technique. This method is fast and does not require an initial estimation. This algorithm can be used as prealignment tool for more accurate space domain registration techniques, like the ICP algorithm.
目錄
中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 iv
表目錄 v
符號說明 vi
一、緒論 1
(一)前言 1
(二)研究動機與目的 1
(三)研究方法 2
(四)文獻回顧 2
(五)論文架構 3
二、頻率域特性 4
(一)傅立葉轉換的基本概念與特性 4
(二)離散與快速傅立葉轉換 11
(三)相位關聯法 19
三、形貌註冊演算法 21
(一)形貌資訊網格化 23
(二)傅立葉轉換 25
(三)計算旋轉軸 26
(四)計算平面旋轉角 28
(五)計算位移量 32
四、實驗結果 33
(一)單視角形貌註冊 33
 (二)多視角形貌註冊 40
(三)誤差分析 42
五、結論 50
(一)結論 50
(二)未來展望 50
參考文獻 51
參考文獻
1.P. J. Besl and N. D. McKay, “A method for registration of 3-D shapes, ” IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 239-256, 1992.
2.J. W. Cooley and O. W Tukey, “An Algorithm for the Machine Calculation of Complex Fourier Series. ” Math. Comput., 19,pp 297-301.1965
3.E. De Castro and C. Morandi, “Registration of translated and rotated images using finite Fourier transforms,” IEEE Truns. Pattern Anal. Muchine Intell., vol. PAMI-95, pp. 700-703, Sept. 1987.
4.L . Lucchese and G.M. Cortelazzo, “A Noise-Robust Frequency Domain Technique for Estimating Planar Roto-Translations,” IEEE Trans. Signal Processing, vol. SP-48, no. 6, pp. 1769-1786,June 2000.
5.L .Lucchese, G.M. Cortelazzo, and C. Monti, “High Resolution Estimation of Planar Rotations Based on Fourier Transform and Radial Projections,” Proc. Int’l Symp. Circuits and Systems 1997,vol. II, pp. 1181-1184, June 1997.
6.L. Lucchese, G.. Doretto, and G.M. Cortelazzo, “Frequency Domain Estimation of 3D Rigid Motion Based on Range and Intensity Data,” Proc. Int’l Conf. Recent Advances in 3D Digital Imaging and Modeling, pp. 107-112, May 1997.
7.G.M. Cortelazzo, G.. Doretto, and L. Lucchese, “Free-Form Textured Surfaces Registration by a Frequency Domain Technique,” Proc. IEEE Int’l Conf. Image Processing, vol. 1, pp. 813-817,Oct. 1998.
8.Y. Keller, A. Averbuch, Y. Shkolnisky: “Algebraically Accurate Volume Registration Using Euler''s Theorem and the 3-D Pseudo-Polar FFT, ”CVPR pp.795-800,2005:
9.Y. Keller, Y. Shkolnisky, and A. Averbuch. “ The angular difference function and its application to image registration. IEEE Transactions on Pattern Analysis and Machine Intelligence, ”pp.969–976, 2005
10.Y. Keller, Y. Shkolnisky, and A. Averbuch. “Volume registration using the 3-D pseudo-polar Fourier transform. ”IEEE Transactions on Signal Processing, 54(11):4323–4331, 2006.
11.B. Srinivasa Reddy and B. N. Chatterji. “An FFT-Based Technique for Translation, Rotation, and Scale-Invariant Image Registration,”pp.1266-1271,Aug,1996
12.Y. Keller, A. Averbuch. “A Projection-Based Extension of the Phase Correlation Method” Signal Processing , ” Volume 87, Issue 1 , pp. 124-133,January 2007.
13.C.D. Kuglin and D.C. Hines, “The Phase Correlation Image Alignment Method,” Proc. IEEE 1975 Int’l Conf. Cybernetics and Soc., pp. 163-165, Sept. 1975.
14.J. Feldmar and N. Ayache, “Rigid, Affine, and Locally Affine Registration of Free-Form Surfaces,” Int’l J. Computer Vision, vol. 18, no. 2, pp. 99-119, 1996.
15.R.N. Bracewell, K.-Y. Chang, A.K. Jha, and Y.-H. Wang, “Affine Theorem for Two-dimensional Fourier Transform,” Electronics Letters, vol. 29, no. 3, p. 304, Feb. 1993.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top