跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/28 12:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳弘傑
研究生(外文):Hong-Jie Chen
論文名稱:帶電薄膜應用於電動流體輸送之研究
論文名稱(外文):Study of Electrokinetic Pumping Using Charged Membranes
指導教授:簡瑞與
指導教授(外文):Reiyu Chein
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:71
中文關鍵詞:帶電奈米毛細圓管電動能量轉換壓力-流量曲線(P-Qcurve)壓力-電流曲線(P-I curve)壓力位勢及泵浦效率
外文關鍵詞:Nanoscale charged capillaryElectrokinetic energy conversionPressure-current curve (P-Q curve)Pressure-current curve (P-I curve)Presssure head and Pumping efficiency
相關次數:
  • 被引用被引用:0
  • 點閱點閱:107
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本文中,研究泵浦通過薄膜產生功之電動能量轉換。依據薄膜的結構特性,本文的物理模型設定為有限長的帶電奈米毛細圓管,而入出口各連接儲存槽,使用數學模式來分析流體流動、離子傳輸、電位分佈及電流流動,不使用本文中的一維分析所做的假設,使用上述數學模式,結果可以得到壓差-流量(P-Q)及壓差-電流(P-I)曲線,最終求得電滲泵浦效率性能。
在此,本研究使用KCl電解液當作工作流體,濃度範圍選定10-2M~10-6M,圓管半徑及壁面電荷密度範圍分別為10nm~100nm,-10-3C/m2~-5×10-3C/m2,發現改變外加電場、壓差、壁面電荷密度及KCl濃度會影響流體流動及離子分佈,進而影響到效率。當給定一個圓管半徑與KCl濃度時,發現效率會隨著壁面電荷密度增加而升高。而當固定壁面電荷密度及圓管半徑時,效率會隨著KCl濃度改變,此時最大效率發生在10-4M,而在高濃度時,效率隨著濃度升高而減少;低濃度時,效率隨著濃度減少而稍微降低了一些。在固定壁面電荷密度及KCl濃度條件之下,就可得知產生最大效率的圓管半徑。最大壓力提升是泵浦模式的指標,因此在本文中得知會受到壁面電荷密度、管徑大小和工作流體濃度影響而變化。
In this study, electrokinetic energy conversion involving the pumping power generation is investigated using membrane as the material. Based on the structural characteristic of membrane, a physical model containing a nanoscale finite-length charged cylindrical capillary tube and reservoirs connected at its ends is established. A numerical model solving the fluid flow, ion transport, electrical potential distribution and electric current flow is established without the assumptions made in the one-dimensional analysis reported in the literature. Using these results, the pressure-flow rate (P-Q), pressure-current (P-I) curves and the pumping efficiency can be found.
The Potassium chloride (KCl) with bulk concentration in the range of 10-6 to 10-2M is used as the working fluid. The capillary tube radius and surface charge density are chosen in the ranges of 10 to 100nm and -1×10-3 to -5×10-3 C/m2, respectively. It is found that the pumping efficiency is inter-related by the fluid flow and ion distribution which depend on the externally applied voltage, pressure head generated, surface charge density and capillary tube size. For a given capillary tube radius and KCl bulk concentration, pumping efficiency is found to increases with the increase of surface charge density. For fixed surface charge density and capillary tube radius case, efficiency varies with the KCl bulk concentration with a maximum value occurs at bulk concentration of 10-4M. At high bulk concentrations, conversion efficiency increases with the decrease in bulk concentration. In the low bulk concentrations, conversion efficiency is found to slightly decrease with the decrease in bulk concentration. Under the conditions of fixed surface charge density and KCl bulk concentration, an optimum capillary radius that producing maximum efficiency can be found. The maximum pressure head generated, an indication of the pump performance, is found to depend on the surface charge density, capillary size and bulk concentration of working fluid.
目錄
誌謝……………………………………………………………………I
摘要……………………………………………………………………II
Abstract………………………………………………………………IV
目錄……………………………………………………………………VI
圖目錄………………………………………………………………VIII
符號說明 …………………………………………………………XIII
第一章 序………………………………………………………………1
1.1 前言…………………………………………………………1
1.2 電雙層、電滲流及電滲泵浦…………………………………1
1.2.1 電雙層………………………………………………2
1.2.2 電滲流現象…………………………………………3
1.2.3 電滲泵浦(EO pump)………………………………3
1.3 文獻回顧……………………………………………………4
1.4 研究動機與方向……………………………………………7
第二章 物理模型及理論模式…………………………………………9
2.1 物理模型……………………………………………………9
2.2 數學模式……………………………………………………10
2.3 一維電滲泵浦效率分析……………………………………13
第三章 數值模式……………………………………………………16
3.1 數值分析…………………………………………………16
3.2 數值評估與網格建立……………………………………18
第四章 實驗方法及步驟……………………………………………20
第五章 結果與討論…………………………………………………22
5.1 數值模式驗證………………………………………………22
5.2 基礎模型結果………………………………………………23
5.3 KCl濃度對最大壓差、最大流量、最大電流及效率之影響…………25
5.4 外加電場對效率之影響……………………………………27
5.5 壁面電荷密度對電滲泵浦效率之影響……………………28
5.6 圓管管徑大小對電滲泵浦效率之影響……………………30
5.7 實驗結果與討論……………………………………………32
第六章 結論與建議……………………………………………………33
6.1 結論…………………………………………………………33
6.2 建議…………………………………………………………34
參考文獻………………………………………………………………35
參考文獻
[1] R. J. Hunter, “Zeta potential in colloid science, Principles and Applications,” Academic press (1981) New York.
[2] S. A. Mirbozorgi, H. Niazmand, M. Renksizbulut,“Eletro-osmotic flow in reservoir-connected flat microchannels with non-uniform zeta potential,” Journal of Fluids Engineering 128 1133 (2006)
[3] Y. Kang, C. Yang, X. Huang, “Analysis of the electroosmotic flow in a microchannel packed with homogeneous microspheres under eletrokinetic wall effect,” International Journal of Engineering Science 42 (2004) 2011-2027.
[4] R.-J. Yang, L.-M. Fu, C.-C. Hwang,“Electroosmotic Entry Flow in a Microchannel,” Journal of Colloid and Interface Science 244 (2001) 173-179
[5] S. Yao and J. G. Santiago,“Porous glass electroosmotic: theory,” Journal Colloid of and Interface Science 268 (2003) 133-142.
[6] D.Stein, M. Kruithof, C. Dekker,“Surface-Charged-Governed Ion Transport in Nanofludic Channels,” The American Physical Society (2004) 035901-3
[7] P. H. Paul, D. W. Arnold, D. J. Rakestraw,“Electrokinetic generation of high pressures using porous microstrutures,” in: microTAS-98, Banff, Canada, 1998.
[8] S. Zeng, C. Chen, J. C. Mikkelsen, J. G. Santiago, “Fabrication and characterization of electrokinetic micro pumps,”Sensor Actuators B Chem. 79 (2001) 107-114.
[9] S. Zeng, C. H. Chen, J. G. Santiago, J.-R. Chen, R. N. Zare, J. A. Tripp, F. Svec, J. M. J. Frechet, “Electroosmotic flow pumps with polymer frits,”Sens . Actuators B Chem. 82 (2002) 209-212.
[10] P. Wang, Z. Chen, H. Chang, “A new electro-osmotic pump based on silica monoliths,” Sensors and Actuators B 113 (2006) 500-509.
[11] C.-H. Chen and J.G. Santiago, “A Planar Electroosmotic Micro- pump,”J. of MEMS. 11 (2002) 672-683.
[12] J. Y. Min, E. F. Hasselbrink, S. J. Kim,“On the efficiency of electrokinetic pumping of liquids through nanoscale channels,” Sensors and Actuators B 98 (2004) 368-377.
[13] F. H. Heyden, D. J. Bonthuis, D. Stein, C. Meyer, C. Dekker, “Eletrokinetic Energy Conversion Efficiency in Nanofludic Channels,”American Chemical Society 6 (2006) 2232-2237.
[14] X. Xuan, D. Li, “Thermodynamic analysis of eletrokinetic energy Conversion,” Journal of Power Sources (2005) xxx-xxx.
[15] R. F. Probstein, “Physicochemical Hydrodynamics,” second ed., Wiley, New York (1994).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top