跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/07/31 10:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林祐鋒
研究生(外文):You-Feng Lin
論文名稱:可結合於微感測器之射頻傳輸器
論文名稱(外文):RF transmitters for integrating micro sensors
指導教授:戴慶良
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:75
中文關鍵詞:CMOS射頻振盪電路電感微壓力感測器
外文關鍵詞:CMOSRFoscillator circuitinductormicro pressure sensor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:98
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本論文利用TSMC CMOS 0.35μm 2P4M標準製程製作一可結合於微感測器之射頻傳輸器,此射頻傳輸器架構包含振盪電路與當成對外傳輸天線的圓形繞線電感,傳輸原理是藉由供給直流電壓於振盪電路的輸入端,振盪電路將輸出射頻電壓訊號,此訊號透過圓形繞線電感向外傳輸,利用外部接收線圈來接收此訊號並量測大小。
根據實驗結果顯示,當振盪電路輸入電壓為3V、4V與5V時,輸出電壓頻率為15-16MHz、18-19MHz與20-21MHz,此結果與模擬相近;此傳輸器傳輸距離為5公分以上,距離由1公分增加至5公分的量測結果顯示,每公分訊號變化範圍大約為2dBm。此外,本論文利用CMOS-MEMS的技術將微壓力感測器與射頻傳輸器結合,原理為微壓力感測器訊號透過放大電路轉換,再經由射頻傳輸器對外傳輸。
This study investigates the fabrication of RF transmitters for integrating micro sensors using the standard TSMC CMOS (complementary metal oxide semiconductor) 2P4M (double polysilicon four metal) process. The architecture of the RF transmitter includes an oscillator circuit and a circle inductor as an antenna. The operating principle of the RF transmitter is that the oscillator circuit would produce RF voltage when providing DC voltage to the oscillator circuit. The RF voltage is transmitted by the circle inductor and received by an outside coil.
The experimental results show that the output frequency of the oscillator circuit is 15-16MHz, 19-20MHz and 20-21MHz when applying DC voltage of 3V, 4V and 5V, respectively. The measured results are agreement with the simulated results. The transmitting distance of the RF transmitter is over five centimeter. The measured signal decreases about 2dBm when the distance increases two centimeter. On the other hand, this work studies the fabrication of a micro pressure sensor combined with the RF transmitter. The operating principle is that the sensing signal of the micro pressure sensor is converted by an amplified circuit, and then the signal is transmitted by the RF transmitter.
致謝 i
中文摘要 iii
Abstract iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1前言 1
1.2無線射頻傳輸技術 1
1.3壓力感測器 3
1.4研究動機 5
第二章 傳輸器的設計與模擬 6
2.1訊號傳輸原理 6
2.2射頻傳輸器結構 9
2.2-1振盪電路 11
2.2-2電阻 17
2.2-3電容 17
2.2-4電感理論 18
2.2-5電感設計尺寸與模擬 21
第三章 傳輸器的製作與量測 27
3.1傳輸器的製作 27
3.3-1傳輸器 27
3.1-2化學鍍鎳 30
3.2傳輸器的量測 32
3.2-1振盪電路 32
3.2-2接收訊號量測 34
3.3討論 43
第四章 無線傳輸微壓力感測器的設計 44
4.1 MOS原理 45
4.2微壓力感測單元結構 47
4.3壓力感測原理 50
4.4微壓力感測結構模擬 51
4.5放大電路 57
4.6無線傳輸微壓力感測器之振盪電路輸出結構 61
第五章 無線傳輸微壓力感測器的製作與量測 62
5.1微壓力感測器的製作 62
5.2無線傳輸微壓力感測器的量測 68
5.3放大電路量測 70
5.4討論 71
第六章 結論與未來展望 72
第七章 參考文獻 73
[1] A. Raghavan, E. Gebara, C-H. Lee, S. Chakraborty, D.Mukherjee, D. Heo and J. Laskar, “A GaAs HBT 5.8 GHz OFDM Transmitter MMIC Chip Set,” IEEE Radio Frequency Integrated Circuits Symposium Digest, pp. 267-270, 2001.
[2] B. A. Floyd, C. M. Hung and K. O. Kenneth, “Intra-Chip Wireless Interconnect for Clock Distribution Implemented With Integrated Antennas, Receivers, and Transmitters, ” IEEE Journal of Solid-State Circuits, vol. 37, pp. 543-552, 2002.
[3] K. Nishikawa, B. Piernas, T. Nakagawa, K. Araki and K. Cho, “V-band Fully-integrated TX/RX Single-chip 3-D MMICs Using Commercial GaAs pHEMT Technology For High-speed Wireless Applications,” IEEE Gallium Arsenide Integrated Circuit Symposium Digest, pp. 97-100, 2003.
[4] A. Molnar, B. Lu, S. Lanzisera, Ben W. Cook, and K. S. J. Pister, “An Ultra-low Power 900 MHz RF Transceiver for Wireless Sensor Networks,” Custom Integrated Circuits Conference, pp. 401-404, 2004.
[5] Y. H. Chee, A. M. Niknejad and J. Rabaey, “An Ultra-Low Power Injection Locked Transmitter for Wireless Sensor Networks,” Custom Integrated Circuits Conference, pp. 797-800, 2005.
[6] Y. C. Lee and C. S. Park, “A Very Compact 62 GHz Transmitter LTCC SiP Module for Wireless Terminals Applications,” Microwave and Optical Technology Letters, vol. 49, pp. 575-577, 2007.
[7] P. C. Wang, C. J. Chang, W. M. Chiu, P. J. Chiu, C. C. Wang, C. H. Lu, K. T. Chen, M. C. Huang, Y. M. Chang, S. M. Lin, K. U. Chan, Y. H. Lin and C. C. Lee, “A 2.4 GHz Fully Integrated Transmitter Front End with +26.5-dBm On-Chip CMOS Power Amplifier,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 263-266, 2007.
[8] E. Hynes, P. Elebert, D. McAuliffe, D. Doyle, M. O’Neill, W. A. Lane, H. Berney and M. Hill, “The CAP-FET, a Scaleable MEMS Sensor Technology on CMOS with Programmable Floating Gate,” International Electron Devices Meeting Technical Digest, pp. 41, 2001.
[9] H. K. Trieu, N. Kordas and W. Mokwa, “Fully CMOS Compatible Capacitive Differential Pressure Sensors with On-chip Programmabilities and Temperature Compensation,” Proceedings of IEEE, vol. 2, pp. 1451-1455, 2002.
[10] S. Buschnakowski, A. Bertz, W. Brauer, S. Heinz, R. Schuberth, G. Ebest and T. Gessner, “Development and Characterisation of A High Aspect Ratio Vertical FET Sensor for Motion Detection,” International Transducers, Solid-State Sensors, Actuators and Microsystems Conference, vol. 2, pp. 1391-1394, 2003.
[11] L. S. Pakula, H. Yang, H. T. M. Pham, P. J. French and P. M. Sarro, “Fabrication of A CMOS Compatible Pressure Sensor for Harsh Environments,” Journal of Micromechanics and Microengineering, vol. 14, pp. 1478-1483, 2004.
[12] L. J. Yang, C. C. Lai, C. L. Dai and P. Z. Chang, “A Piezoresistive Micro Prssure Sensor Fabricated by Commercial DPDM CMOS Process,” Tamkang Journal of Science and Engineering, vol. 8, pp. 67-73, 2005.
[13] H. H. Wang, C. W. Hsui, W. H. Liao, L. J. Yang and C. L. Dai, “Micro Pressure Sensors of 50μm Size Fabricated by A Standard CMOS Foundry and A Novel Post Process”, Micro Electro Mechanical Systems, IEEE International Conference, pp. 578-581, 2006.
[14] C. L. Dai and M. C. Liu, “Complementary Metal-Oxide-Semiconductor Microelectromechanical Pressure Sensor Integrated with Circuits on Chip,” Japanese Journal of Applied Physics, vol. 46, pp. 843-848, 2007.
[15] Halliday, Resnick and Walker, Fundamentals of PHYSICS, sixth edition, John Wiley and Sons, pp. 688, 2001.
[16] Halliday, Resnick and Walker, Fundamentals of PHYSICS, sixth edition, John Wiley and Sons, pp. 712, 2001.
[17] C. T. Ko, S. H. Tseng and Michael S. C. Lu, “A CMOS Micromachined Capacitive Tactile Sensor with High-Frequency Output,” IEEE Journal of Microelectromachanical System, vol. 15, pp. 1708-1714, 2006.
[18] 何中庸,振盪電路之設計與應用,全華科技圖書,1999。
[19] 洪俊榆,低驅動電壓之可調變微帶通濾波器,國立中興大學機械研究所碩士論文,2007。
[20] C. P. Yue, C. Ryu, J. Lau, T. H. Lee and S. S. Wong, “A Physical Model for Planar Spiral Inductors on Silicon,” IEEE International Electron Devices Meeting, pp. 155-158, 1996.
[21] C. P. Yue and S. S. Wong, “On-chip Spiral Inductors with Patterned Ground Shields for Si-based RF ICs,” IEEE Solid-State Circuits, vol. 33, pp. 743-752, 1998.
[22] www.sounderpro.com.tw/Reviw/dB.html
[23] K. M. Sung and L. Yusuf, “CMOS digital integrated circuits analysis and design,” McGraw-Hill, 2004.
[24] 戴銚葦,整合積體電路的FET微壓力感測器,國立中興大學機械研究所碩士論文,2007。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊