跳到主要內容

臺灣博碩士論文加值系統

(35.173.42.124) 您好!臺灣時間:2021/07/24 10:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖榮川
研究生(外文):Rong-Chuan Liao
論文名稱:承受空間中固定外力之複合材料軸-圓盤系統動態響應之探討
論文名稱(外文):Studies of Dynamic Responses of Composite Shaft-Disk Systems Subjected to Spatial-Fixed External Loads
指導教授:張銘永
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:105
中文關鍵詞:複合材料軸-圓盤系統
外文關鍵詞:CompositeShaft-Disk Systems
相關次數:
  • 被引用被引用:2
  • 點閱點閱:53
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
The objective of this thesis is to investigate dynamic responses of composite shaft-disk systems subjected to spatial-fixed external loads. The system included a composite shaft and a flexible disk. The disk is fixed on the shaft. The shaft is supported by bearings which are simulated by springs and dampers. Referring to the rotating coordinate systems that are fixed on the shaft and the disk, the kinetic energy and the strain energy of the system, as well as the work done by the reaction forces of bearings has been derived previously. In this thesis, the geometric stiffness and the internal structural damping are further included and the work done by the spatial-fixed external load is obtained. Then, by employing the Hamilton’s principle together with the finite element method, the equations of motion of the composite shaft system containing flexible disks subjected to a space-fixed load spinning at constant speed are derived. Next, the mode summation method is used to determine the dynamic responses of system.
In the numerical examples, first, the responses of non-spinning cantilever isotropic shaft-disk systems are analyzed. The results are shown in agreement with those obtained using software ANSYS. Furthermore, the flexible disks clamped at its inner edge , the flexible shaft-disk and the flexible shaft-rigid disks systems are studied. In addition, the stiffening effect produced by the centrifugal forces in the circular disk on the natural frequencies of flexible shaft-disk are analyzed.
誌謝 i
中文摘要 ii
Abstract iii
章節目錄 iv
圖目錄 viii
表目錄 xiii
符號索引 xiv
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 1
1.3 研究動機 4
第二章 含撓性圓盤之複合材料軸系統之基礎理論與動態響應推導 6
2.1 簡述含撓性圓盤之複材軸系統之理論數學模式 6
2.1.1 單層纖維加強複材板的本構方程式 7
2.1.2 複合材料旋轉軸的動能與應變能 11
2.1.3 複合材料旋轉圓盤的動能與應變能 15
2.1.4 軸承作用力所做的功 18
2.2 有限元素模式與運動方程式之建立 20
2.2.1 有限元素模式 20
2.2.2 幾何勁度矩陣 24
2.2.3 結構阻尼矩陣 28
2.2.4 運動方程之有限元素模式 32
2.3 迴旋速度分析與肯博尼圖 34
2.4 軸-圓盤系統承受空間中固定外力之動態響應 35
第三章 實例分析與討論 44
3.1 軸-圓盤系統於離心力加勁效應下之振動模態分析 46
3.1.1 等向性圓盤系統於離心力加勁效應下之振動模態分析 46
3.1.2 等向性軸-圓盤系統於離心力加勁效應下之振動模態分析 49
3.1.3 單層複材圓盤系統於離心力加勁效應下之振動模態分析 50
3.1.4 單層複材軸-圓盤系統於離心力加勁效應下之振動模態分析 53
3.1.5 對稱疊層複材軸-圓盤系統於離心力加勁效應下之振動模態分析 54
3.2 軸-圓盤系統於靜止下承受外力之暫態響應分析 56
3.2.1 ANSYS暫態響應分析 57
3.2.2 內緣固定外緣自由等向性圓盤靜止下暫態響應分析 58
3.2.3 等向性軸-圓盤系統於靜止下暫態響應分析 60
3.3 等向性軸-圓盤系統之動態響應分析 77
3.3.1 圓盤於不同位置之動態響應分析 77
3.3.2 圓盤邊緣承受不同方向外力之動態響應分析 80
3.3.3 軸-圓盤系統承受空間固定外力之動態響應分析 82
3.3.4 圓盤於各參數變化下之動態響應分析 87
3.4 複合材料軸-圓盤系統之動態響應分析 91
3.4.1 疊層複材圓盤之動態響應分析 91
3.4.2 複材軸-圓盤之動態響應分析 92
3.5 含剛性圓盤與含撓性圓盤之撓性軸動態響應比較 96
3.5.1 空間中固定外力對軸-圓盤系統的動態響應 96
3.5.2 圓盤質量不平衡對軸-圓盤系統的動態響應 98
第四章 結論與未來展望 101
4.1 總結 101
4.2 未來展望與建議 102
參考文獻 103
附錄一 複材疊層板勁度參數矩陣[28] 106
附錄二 元素之質量、迴轉、外阻尼、勁度矩陣[27] 108
附錄三 內緣固定外緣無支撐等向性圓盤系統之彎曲振動模態圖(Ω=6000 rpm) 121
附錄四 等向性軸-圓盤系統之振動模態圖(Ω=6000 rpm) 123
附錄五 內緣固定外緣無支撐單層複材圓盤系統之彎曲振動模態圖(Ω=6000 rpm) 126
附錄六 單層複材軸-圓盤系統之振動模態圖(Ω=6000 rpm) 128
附錄七 對稱疊層複材圓盤之撓性軸系統之振動模態圖(Ω=6000 rpm) 131
附錄八 等向性軸-圓盤系統於靜止時及一端固定之振動模態圖 134
[1] Zinberg, H. and Symonds, M. F., “The Development of an Advanced Composite Tail Rotor Driveshaft,: Presented at the 26th Annual Forum if the American Helicopter Society, Washington, DC, June
[2] dos Reis, H. L. M., Goldman, R. B. and Verstrate, P. H., “Thin-Walled Laminated Composite Cylindrical Tubes: Part III - Critical Speed Analysis,” Journal of Composites Technology and Research, Vol. 9, pp. 58-62 (1987).
[3] Kim, C. D. and Bert, C. W.,“Critical Speed Analysis of Laminated Composite, Hollow Drive shafts,” Composites Engineering, Vol. 3, pp. 633-643 (1993)
[4] Bert, C. W., “The Effect of Bending-Twisting Coupling on the Critical Speed of a Driveshafts,” Proceeding, 6th Japan-U.S. Conference on Composites Materials, Orlando, FL, 1992, Technomic Lancaster, PA, pp. 29-36 (1993).
[5] Bert, C. W. and Kim, C. D., “Whirling of Composite-Material Driveshafts Including Bending-Twisting Coupling and Transverse Shear Deformation,” Journal of Vibration and Acoustics, Vol. 117, pp. 17-21 (1995).
[6] Lee, D. and Waas, A. M., “Stability Analysis of a Rotating Multi-layer Annular Plate with a Stationary Friction Load,” International Journal of Mechanical Sciences, Vol. 39, No. 10, pp. 1117-1138 (1997).
[7] Yu, S. C. and Huang, S. C., ”Vibration of a Three-layered Visco- elastic Sandwich Circular Plate,” International Joural of Mechanical Sciences, Vol. 43, pp. 2215-2236 (2001).
[8] Wang, H. J. and Chen, L. W., “Vibration and Damping Analysis of a Three-layered Composite Annular Plate with a Viscoelastic Mid-layer,” Composite Structures, Vol. 58, pp. 563-570 (2002).
[9] Carin, J. F., Appl, F. C., Bridwell, H. C. and Dubois, R. P., “Effects of Tensioning on Bucking and Vibration of Circular Saw Blades,” ASME Journal of Engineering for Industy, Vol. 2, pp. 37-48 (1975).
[10] Hutton, S. G., Chonan, S. and Lehmann, B. F., “Dynamic Response of a Guided Circular Saw,” Journal of Sound and Vibration, Vol. 112, No. 3, pp. 527-539 (1987).
[11] Chen, J. S. and Bogy, D. B., “Effects of Load Parameters on the Natural Frequencies and Stability of a Flexible Spinning Disk with a Stationary Load System,” Journal of Applied Mechanics, Vol. 59, pp. 230-235 (1992).
[12] Chen, J. S. and Bogy, D. B., “The Effects of a Space-Fixed Friction Force on the In-Plane Stress and Stability of a Spinning Disk,” Journal of Applied Mechanics, Vol. 60, pp. 646-648 (1993).
[13] Chen, J. S., “Stability Analysis of a Spinning Elastic Disk Under a Stationary Concentrated Edge Load,” Journal of Applied Mechanics, Vol. 61, pp. 788-792 (1994).
[14] Shen, I. Y. and Song, Y., “Stability and Vibration of a Rotating Circular Plate Subjected to Stationary In-Plane Edge Load, ” Journal of Applied Mechanics, Vol. 63, pp. 121-127 (1996).
[15] Chen, J. S., “Parametric Resonance of a Spinning Disk Under Space Fixed Pulsating Edge Loads,” Journal of Applied Mechanics, Vol. 64, pp. 139-143 (1997).
[16] Chen, J. S. and Hsu, C. M., “Forced Response of a Spinning Disk Under Space-Fixed Couples,” Journal of Sound and Vibration, Vol. 206, No. 5, pp. 627-639 (1997).
[17] Tian, J. and Hutton, S. G., “Self-Excited Vibration in Flexible Rotating Disks Subjected to Various Transverse Interactive Force: A General Approach,” Journal of Applied Mechanics, Vol. 66, pp. 800-805 (1999).
[18] Son, H., Kikuchi, N., Ulsoy, A. G. and Yigit,A. S.,“Dynamics of Prestressed Rotating Anisotropic Plates Subject to Transverse Loads and Heat Sources,” Journal of Sound and Vibration, Vol. 226, No. 3, pp. 457-504 (2000).
[19] Tian, J. and Hutton, S. G., “Cutting-Induced Vibration in Circular Saws,” Journal of Sound and Vibration, Vol. 242, No. 5, pp. 907-922.
[20] Liang, D. S. ,Wang, H. J. and Chen, L. W., “Vibration and Stability of Rotating Polor Orthotropic Annular Disks Subjected to a Stationary Concentrated Transverse Load,” Journal of Sound and Vibration, Vol. 250, No. 5, pp. 795-811 (2002).
[21] Young, T. H. and Wu, M. Y., “Dynamic Stability of Disks with periodically Varying Spin Rates Subjected to Stationary In-Plane Edge Loads ,” Journal of Applied Mechanics, Vol. 71, pp. 450-458 (2004).
[22] Eid, H. and Adams, G. G., “Critical Speeds and the Response of a Spinning Disk to a Stationary Load Using Mindlin Plate Theory,” Journal of Sound and Vibration, Vol. 290, pp. 209-222 (2006).
[23] Jia, H. S. and Chun, S. B., “Evaluation of the Longitudinal Coupled Vibrations in Rotating, Flexible Disk/Spindle Systems,” Journal of Sound and Vibration, Vol. 208, No. 2, pp 175-187 (1997).
[24] Parker R. G. and Sathe P. J., “Exact Solution of the Free and Forced Vibration of a Rotating Disk-Spindle System,” Journal of Sound and Vibration, Vol. 223, No. 3, pp. 445-465 (1999).
[25] Lim, S., “Finite Element Analysis of Flexural Vibrations in Hard Disk Drive Spindle Systems,” Journal of Sound and Vibration, Vol. 233, No. 4, pp. 601-616 (2000).
[26] 陳鄭貴, “ 複合材料旋轉軸之動態響應與其振動控制之探討,” 碩士論文,中興大學機械研究所 (1998).
[27] 蔡家偉, “ 複合材料旋轉軸-圓盤系統振動特性之探討,” 碩士論文,中興大學機械研究所 (2005).
[28] 蘇振文, “ 含壓電制動器與感測器之複合材料疊層板振動之數位控制,” 碩士論文,中興大學機械研究所 (1995).
[29] 魏瑞宏, “ 旋轉軸系統之振動與控制-兩種數學模式之比較,” 碩士論文,中興大學機械研究所 (2001).
[30] Gibson, R. F., Principles of Composite Material Mechanics, McGraw-Hill (1994).
[31] Reddy, J. N., An Introduction to Finite Element Method, McGraw-Hill (1984).
[32] Timoshenko, S. P. and Goodier, J. N., Theory of Elastic Stability, McGraw-Hill (1970).
[33] Franklin, G. F., Powell, J. D. and Workman, M. L., Digital Control of Dynamic Systems, ADDISON-WESLEY (1990).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top