跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/02 01:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:宋志剛
研究生(外文):Chih-Kang Sung
論文名稱:6061T6鋁合金平面銑削之切削力與工件溫度之探討
論文名稱(外文):The Study on Cutting Force and Temperature of Workpiece in Face Milling of 6061T6 Aluminum Alloy
指導教授:蔡志成蔡志成引用關係
指導教授(外文):Jhy-Cherng Tsai
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:61
中文關鍵詞:切削力切削速度切削深度每刃切削量工件溫度
外文關鍵詞:cutting forcecutting speeddepth of cutchip loadtemperature of workpiece
相關次數:
  • 被引用被引用:3
  • 點閱點閱:383
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
切削加工是最基本的加工方式之一,隨著科技進步,加工技術與設備亦隨之創新,切削加工的精度亦大幅提升。在影響加工精度的諸多因素中,影響其變形的切削力及工件溫度扮演重要的角色。本論文以產業常用的6061T6鋁材做為標的,探討銑製過程中改變切削速度、進刀量與切削深度所導致切削力及工件溫度變動的效果,以及在此過程中此兩者的相關性。文中首先以理論模式分析銑削之切削力與工件溫度,隨後規劃實驗以探討上述之效果,實驗分別透過切削動力計與熱電偶量測切削時的作用力與工件溫度。研究結果顯示切削速度與切削深度愈大會導致比削力愈小,而每刃切削量對比切削力影響較為緩和,此尺寸效應與前人之觀察結果相仿;研究結果亦顯示工件溫度隨著切削速度增加或切削深度減少而降低,同時隨著每刃切削量增加而略有降低的趨勢。而由實際測量所得之工件溫度分析工件近剪力面平均溫度模式可表示為 C.Ts(V.t / (6.21x10-5))n 其中Ts為計算之剪力面溫度,而C和n與切削深度及每刃切削量有關。另研究進一步顯示在相同的每刃切削量但不同的切削深度及切削速度下,工件上升溫度與切削力呈現高度正相關,此二者與切削深度呈正比,但與切削速度略呈反比;而在相同的切削深度下,切削力與每刃切削量略呈正比,但工件上升溫度與每刃切削量則略呈反比。
Cutting process is one of the basic manufacturing processes. As the machining techniques and equipments progress with technology, the precision of cutting process is also improved substantially. Among other factors affecting the precision, the cutting force and temperature of workpiece, which affect the deformation of workpiece, play important roles. This research is aimed to investigate the effects of cutting speed, chip load and depth of cut on the cutting force and temperature of workpiece and their correlation with the 6061T6 aluminum alloy, a common alloy used in industry. In this study, the cutting force and temperature of workpiece were analyzed by theoretical models first. A series of experiments exploring the above effects were then planed and conducted. The cutting force and temperature of workpiece during milling were measured via a dynamometer and thermal couples. The result shows that the specific cutting force is lower with higher cutting speed and larger depth of cut while only slightly influenced by the chip load. This dimension effect is similar to the observations of previous researches. The result also shows the temperature of workpiece is lower with the increasing of cutting speed and with the decrease of depth of cut. It also slightly decreases as the chip load increases. A model, C.Ts(V.t / (6.21x10-5))n, was built with measured data to describe the average temperature near the shear surface. In the model Ts is the calculated temperature of shear face and the coefficient C and exponent n depend on the depth of cut and chip load. The study also shows that the cutting force and the increase of workpiece temperature are highly correlated. With the same chip load, both cutting force and the increase of workpiece temperature are proportional to the depth of cut but slightly in inverse proportion to the cutting speed. Under the same depth of cut, the cutting force is proportional to the chip load, but the rising of workpiece temperature is in inverse proportion to the chip load.
目錄
摘要 i
ABSTRACT ii
圖目錄 iv
表目錄 vi
符號表 vii
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 3
1.2.1 切削力 3
1.2.2 切削溫度 5
1.3 研究方法與步驟 8
1.4 論文大綱 8
第二章 銑削之切削力與溫度分析 10
2.1 銑削之切削力分析 11
2.1.1 面銑切削路徑分析 11
2.1.2 銑削之切削力分析 14
2.1.3 軸向切削力對工件變形分析 18
2.2 切削溫度分析 21
2.2.1 產生熱變形之熱源 21
2.2.2 切削熱傳分析 22
2.2.3 平板近表面熱傳導溫度估算 31
第三章 平面銑削實驗規劃 32
3.1 實驗規劃 32
3.1.1 實驗銑削參數規劃 32
3.1.2 實驗設備 34
3.1.3 影響平面銑削誤差之預防 38
3.2 試片切削力與溫度量測 38
第四章 實驗結果與分析 41
4.1 切削力實驗結果與分析 41
4.2 切削溫度實驗結果與分析 44
4.3 工件溫度之預測模式 48
4.4 切削力與工件溫度相關性分析 50
第五章 結論與未來展望 56
5.1 結論 56
5.2 未來展望 56
附錄:紅外線溫度計與量測之數據 61
中文文獻
1. 龔才元等編,金屬切削原理與刀具,1991,航空工業出版社,第二章。
2. 傅光華等,切削刀具學, 1997,高立圖書,第四章&第八章。
3. 趙芝眉等編,金屬切削原理,1989,科技圖書,第二章。
4. 姜文奇、段佩玲,機械加工誤差,1991,國防工業出版社,第二章&第三章。
5. 葉怡成,製程與產品最佳化,2001,五南圖書,第二章。
6. 倪安順,Excel 5.0 統計與數量方法應用,1995,松崗電腦圖書,第十一章。
7. 徐明堅,最新切削加工技術,1992,復漢出版社,第九章。
8. 林惠玲、陳正倉合著,統計學方法與應用(上),1999,雙葉書廊有限公司,第十二章。
9. 柳義耿,高速銑削之切削力研究,2001,國立中興大學機械工程學研究所碩士論文。
10. 范光照,“高精密工具機熱變形補償控制技術計畫”,科學發展月刊,第26卷,第5期,1998,第520-529頁。
11. CNS 7549:B6048,精密平板,1981,經濟部中央標準局。
12. Center 309熱電偶溫度紀錄裝置操作說明書,2007,群特科技。

西文文獻
1. S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, 1959, McGraw-Hill Book Company, Inc. Chap.2, Chap.6.
2. E. R. G. Eckert and R. M. Drake, Analysis of Heat and Mass Tranasfer, 1972, McGraw-Hill, Chap.5
3. G. Boothroyd and W. A. Knight, Fundamentals of Machining and Machine Tools, 1989, Marcel Dekker, Chap.3.
4. M. C. Shaw, Metal Cutting Principles, 1991, Oxford, Chap. 3 & Chap.12.
5. H. Nakazawa, Principles of Precision Engineering, 1994, Oxford University Press, Chap.9.
6. G. Tlusty, Manufactuing Processes and Equipment, 2000, Prentice-Hall, Chap.7-9.
7. M. C. Shaw, “Thermal Effects on the Accuracy of Numerically Controlled Machine Tools,” Annals of the CIRP. 35(1), 1986, pp.255-258.
8. J. Jedrzejewski and W. Moddrzycki, “A New Approach to Modeling Thermal Behavior of a Machine Tool under Service Conditions,” Annals of the CIRP. 41(1), 1992, pp.455-458.
9. R. Connolly and C. Rubenstein, “The Mechanics of Continuous Chip Formation in Orthogonal Cutting,” International Journal of Machine Tool Design and Research, 8, 1968, pp.159-187.
10. J. Manjunathaiah and W. Endres, “A New Model and Analysis of Orthogonal Machining with an Edge-Radiused Tool,” Journal of Manufacturing Science and Engineering, Vol. 122, August 2000, pp.384-390.
11. G. Sutter and A. Molinari, “Analysis of the Cutting Force Components and Friction in High Speed Machining,” Journal of Manufacturing Science and Engineering, Vol. 127, May 2005, pp.245-250.
12. F. Koenigsberger and J. A. P. Sabberwal, “An Investigation into the Cutting Force Pulsations During Milling Operations,” International Journal of Machine Tool Design and Research, Vol.1, 1961, pp.15-33.
13. J. Tlusty and P. MacNeil, “Dynamics of Cutting Forces in End Milling,” CIRP annals, Vol.24, 1975, pp.21-25.
14. T. Insperger, J. Gradišek, M. Kalveram, G. Stépán, K. Winert and E. Govekar, “Machine Tool Chatter and Surface Location Error in Milling Processes,” ASME, Journal of Manufacturing Science and Engineering, November 2006, Vol. 128, pp. 913 -920.
15. K. Sampath, S. G. Kapoor, R. E. DeVor, “Modeling and Prediction of Cutting Noise in the Face-Milling Process,” Journal of Manufacturing Science and Engineering, Vol. 129 , JUNE 2007, pp. 527-530.
16. A. U. Anagonye, D. A. Stephenson, “Modeling Cutting Temperatures for Turning Inserts With Various Tool Geometries and Materials,” ASME, Journal of Manufacturing Science and Engineering, 2002, Volume 124, pp. 544-552.
17. Y. K. Potdar, A. T. Zehnder, “Measurements and Simulations of Temperature and Deformation Fields in Transient Metal Cutting,” ASME, Journal of Manufacturing Science and Engineering, November 2003, Vol. 125, pp. 645-655.
18. M. R. Miller, G. Mulholland and C. Anderson, “Experimental Cutting Tool Temperature Distributions,” ASME, Journal of Manufacturing Science and Engineering, November 2003, Volume 125, pp. 667-673.
19. R. M’Saoubi and H. Chandrasekaran, “Experimental Tool Temperature Distributions in Oblique and Orthogonal Cutting Using Chip Breaker Geometry Inserts,” ASME, Journal of Manufacturing Science and Engineering, May 2006,Vol.128, p.p.606-610.
20. K.-M. Li & S.Y. Liang, “Modeling of Cutting Temperature in Near Dry Machining,” Journal of Manufacturing Science and Engineering, 2006, Vol.128, pp.416-424.
21. Y. Karpat & T. Özel, “Predictive Analytical and Thermal Modeling of Orthogonal Cutting Process—Part I: Predictions of Tool Forces, Stresses, and Temperature Distributions,” Journal of Manufacturing Science and Engineering, Vol. 128, May 2006, pp. 435-444.
22. Y. Karpat and T. Özel, “Predictive Analytical and Thermal Modeling of Orthogonal Cutting Process—Part II: Effect of Tool Flank Wear on Tool Forces, Stresses, and Temperature Distributions,” Journal of Manufacturing Science and Engineering, Vol. 128, May 2006, pp. 445-453.
23. H. Saglam and A. Unuvar, “Three-Component, Strain Gage Based Milling Dynamometer Design and Manufacturing,” Transactions of the SDPS, Vol.5, No.2, 2001, pp.95-109.
24. ASME Y14.5M, Dimensioning and Tolerance, 1994, ASME, Chap.1 and Chap.6.
25. ISO 1101:2004(E), Geometrical Product Specifications(GPS)-Geometrical tolerancing- Tolerances of form, orientation, location and run-out, 2004, The International Organization for Standardization.
26. Kistler Brochure-cutting force measurement, 2005, Kistler Instrument Corp.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top