跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/08/04 08:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱逸軒
研究生(外文):I-Hsuan Chiu
論文名稱:旋轉T型微流道乳化液滴生成之可視化實驗
論文名稱(外文):Visualization experiment of droplet emulsion in centrifugal T-shaped microchannels
指導教授:陳志敏陳志敏引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:49
中文關鍵詞:乳化液滴T型微流道離心力
外文關鍵詞:droplet emulsionT-shaped microchannelscentrifugal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究以旋轉時產生的離心力驅動液體,觀察在T型結構上乳化液滴的生成情形。實驗採用CNC微機械加工技術,於直徑10 cm的透明光面壓克力碟片上製作T型微流道晶片。實驗主要觀察在不同轉速下,T型結構處乳化液滴的產生情形。流場可視化的取像是由He-Ne Laser及光電二極體定位裝置輸出觸發訊號,同步啟動CCD攝影機擷取影像。實驗流體為去離子水與葵花油,產生油包水的乳化液滴。液體受毛細力影響,有轉速下限;流速變大葵花油不易截斷去離子水,有轉速上限。在相同的流道寬度與轉速下,油的速度越快,乳化液滴越小。隨著轉速提高,去離子水與葵花油流速增加,Ca值變大,乳化液滴也跟著變大。乳化液滴靠連續相流體推力截斷,當連續相流道越寬,截出的乳化液滴就越大。
摘要 I
目錄 III
圖目錄 V
表目錄 VII
符號表 VIII
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.2.1 機械式驅動 3
1.2.2電力式驅動 3
1.2.3 加熱方式驅動 4
1.2.4 離心式驅動 4
1.3 研究目的與本文組織 4
第二章 基礎理論 6
2.1 液體驅動力 6
2.2 毛細係數(Capillary number, Ca) 8
第三章 實驗設備與晶片製作 10
3.1 影像擷取系統 12
3.2 光源供給系統 12
3.3 晶片旋轉平台 13
第四章 實驗晶片製作 16
4.1 碟片選用 16
4.2 晶片加工 16
4.3 流道幾何尺寸設計 17
4.3.1 流道寬度比1:1 18
4.3.2 不同寬度比 19
4.3 流道幾何尺寸量測結果 20
4.4 晶片封裝 21
第五章 實驗結果 24
5.1 實驗流體選用 24
5.2 實驗參數設定 25
5.3乳化液滴可視化觀察 27
5.3.1 流道寬度比1:1 27
5.3.2不同寬度比 41
第六章 結論與建議 44
參考文獻 46
Burns M. A., Johnson B. N., Brahmasandra S. N., Handique k., Webster J. R., Krishnan M., Sammarco T. S., Man P. M., Jones D., Heldsinger D., Mastrangelo C. H., and Burke D.T.,“An integrated nanoliter DNA analysis device,” Science, Vol. 282, 1998, pp 484-487.

Ducrée J., Schlosser H. P., Haeberle S., Glatzel T., Brenner T. and Zengerle R., “Centrifugal Platform for High-Throughout Reactive Micromixing,” Proceedings of 8th International Conference on Miniaturized System for Chemical and Life Sciences Systems, Malmo, Sweden, September, 26-30, 2004.

Fowler J., Moon H. and Kim C. J., “Enhancement of Mixing by Droplet Based Microfluidics,” Proceedings of the 15th IEEE Micro Electro Mechanical Systems (MEMS), Las Vegas, Nevada, 2002, pp. 97-100.

Garstecki P., Fuerstman M. J., Stone H. A. and Whitesides G. M., “Formation of Droplets and Bubbles in a Microfluidic T-junction,” Lab on a Chip, Vol. 6, 2006, pp. 437-446.

Gustafsson M., Hirschberg D., Palmberg C., Jornvall H. and Bergman T., “Integrated Sample Preparation and MALDI Mass Spectrometry on a Microfluidic Compact Disk,” Analytical Chemistry, Vol. 76, No.2, 2004, pp. 345-350.

Haeberle S., Zengerle R. and Ducrée J., “Centrifugal Generation and Manipulation of Droplet Emulsions,” Microfluid and Nanofluid, Vol. 3, 2007, 65-75.

Hirschberg D., Jagerbrink T., Samskog J., Gustafsson M., Stahlberg M., Alvelius G., Husman B., Carlquist M., Jornvall H. and Bergman T., “Detection of Phosphorylated Peptides in Proteomic Analyses Using Microfluidic Compact Disk Technology,” Analytical Chemistry, Vol. 76, 2004, pp. 5864-3871.

Husny J. and White J. J., ”The Effect of Elasticity on Drop Creation in T-shaped Microchannels,” J. Non-Newtonian Fluid Mech, Vol. 137, 2006, pp. 121-136.

Jun T. K. and Kim C.-J., “Valveless Pumping Using Traversing Vapor Bubbles in Microchannels,” Applied Physics, Vol. 83, No. 11, June 1998, pp. 5658-5664.

Madou M. J. and Kellogg G. J., “LabCD: A Centrifuge-Based Microfluidic Platform for Diagnostics,” Proceedings of SPIE- Systems and Technologies for Clinical Diagnostics and Drug Discovery, Vol. 3259, 1998, pp. 80-93.

Menech M., Garstecki P. and Jousse F., “Transition from Squeezing to Dripping in a Microfluidic T-shaped Junction.” J. Fluid Mech, Vol. 595, 2008, pp. 141-161.

Nisisako T., Torii T. and Higuchi T., “Formation of Liquid Droplets in a Microchannel Network for Microreactor Applications,” Lab on a Chip, Vol. 2, No.1, 2002, pp. 24-26.

Sammarco T. S. and Burns M. A., “Thermocapillary Pumping of Discrete Drops in Microfabricated Analysis Devices,” Journal of American Institute for Chemical Engineers, Vol. 45, 1999, pp. 350-366.

Stone H. A., Stroock A. D. and Ajdari A., “Engineering Flows in Small Devices: Microfluidics Toward a Lab-on-A-Chip,” Annual Review of Fluid Mechanics, Vol. 36, 2004, pp. 381-411.

Takahashi K., Yoshino K., Hatano S., Nagayama K. and Asano T., “Novel Applications of Thermally Controlled Microbubble Driving System,” Proceedings of 14th IEEE Micro Electro Mechanical Systems, Interlaken, Switzerland, 2001, pp. 286-289.

Thorsen G., Ekstrand G., Selditz U., Wallenborg R. S. and Andersson P., “Integated Microfluidics for Parallel Processing of Proteins in a CD Microlaboratory,” Proceedings of 7th International Conference on Miniaturized Chemical and Biochemlcal Analysis Systems, Squaw Valley, California, USA, October 5-9, 2003.

Vestad T., Marr D. W. M. and Oakey J., “Flow Control for Capillary-Pumped Microfluidic Systems,” Journal of Micromechanics and Microengineering, Vol. 14, 2004, pp. 1503-1506.

Wang A. B., Chen S. S., Sung P. F., Lin I. C., Chen C.C. and Fedorchenko A. I., “The Study of Drop-Surface Interactions,” Bulletin of the College of Engineering, N.T.U., No.91, 2004, pp. 103-115.

Xu J. H., Li S. W., Tan J. and luo G. S., "Formation of monodisperse microbubbles in a microfluidic device," Aiche Journal, Vol. 52, 2006, pp. 2254-2259.

陳炯翰,“微流道內兩相流動態數值模擬,”中興大學機械工程系研究所碩士論文,民國97年7月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top