跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/24 16:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張筱婉
研究生(外文):Sheng-Woan Chang
論文名稱:鹽分逆境下三種濱海植物接種叢枝菌根菌之生理效應
論文名稱(外文):Effects of Arbuscular Mycorrhiza Inoculation on the Physiology of Three Littoral Plants under Salt Stress
指導教授:顏江河顏江河引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:森林學系所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:79
中文關鍵詞:鹽分逆境菌根植體養分脯胺酸可溶性碳水化合物葉綠素螢光
外文關鍵詞:salt stressmycorrhizanutrientprolinetotal soluble carbohydratechlorophyll fluorescence
相關次數:
  • 被引用被引用:4
  • 點閱點閱:338
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的主要是藉由分佈在濱海地之大花咸豐草(Bidens pilosa L. var. radiate)、海埔姜(Vitex rotundifolia)及馬鞍藤(Ipomoea pes-caprae) 3種植物,經接種挑自台中港海岸砂地之Scutellospoa sp.菌種(M1)與挑自出雲山苗圃的Acaulospora sp.菌種(M2)以及未接種菌根3種處理,在施澆以海鹽配置成濃度0%、1%、2%及3%的鹽水,於溫室中生長50天後,量測其生物量、植體養分、脯胺酸、可溶性碳水化合物、葉綠素及葉綠素螢光參數等,以了解在鹽分逆境下,叢枝菌根菌對植物生長的生理效應。
三種植物中,生物量皆以未施澆鹽水並接種M1處理,得到最大生長量。植體養分中氮、磷、鉀隨鹽分濃度增加而減少,鈉和鎂則隨鹽分濃度增加亦增加;未接種菌根菌的植體,會有較高濃度的鈉、鎂累積,但氮、磷、鉀濃度則較低。植體中脯胺酸的濃度隨鹽分濃度增加略有增加;可溶性碳水化合物則隨鹽分增加而減少;澱粉則無明顯的變化;接種M1的植株,在高鹽分濃度下,能累積較多的有機化合物,以調節滲透壓,預防生理乾旱的發生。葉綠素濃度及葉綠素螢光分析則隨鹽分濃度的上升,葉綠素濃度隨之減少,Fv/Fm、ΦPSII測值同樣呈現下降之趨,唯qN會隨之上升。接種叢枝菌根菌能增加大花咸豐草、海埔姜及馬鞍藤植物在鹽分逆境下的耐受性,M1菌種分離自台中港海岸沙地,M2分離自出雲山苗圃,從各項測值中,證實接種M1的植株表現出最佳的耐鹽性,未接種處理的植株表現最差。
The purposes of this study were to evaluate the arbuscular mycorrhiza inoculation on the physiology of plants under salt stress. Three littoral plants, Bidens pilosa L. var. radiate, Ipomoea pes-caprae and Vitex rotundifolia, were inoculated with Scutellospoa sp. collected from sandlot in Tai-Chung Harbor (M1), and with Acaulospora sp. collected from Chu-Yun-Shan Nursery (M2), and were non-inoculated. The seedlings were irrigated with 0%, 1%, 2% and 3% sea water which is make up of sea salt, after 50 days grown in greenhouse, total biomass, nutrient concentration, proline, total soluble carbohydrate, chlorophyll and chlorophyll fluorescence of plant were then determined.
The results obtained showed that among all treatment, seedlings which irrigated with 0% sea water and inoculated with M1 had the highest biomass. Nutrient N, P and K concentration of plant tissue were decreased with salt increased, but the Na and Mg concentration increased when concentration of salt increased. Those non-inoculated seedlings showed more Na and Mg accumulated in plant tissue, but less absorption of N, P and K. The concentration of proline in the plants were slightly increased when concentration of salt increased, the concentration of total soluble carbohydrate decreased when concentration of salt increased, but there were no different of starch concentration among all treatments. Plant inoculated with M1 could accumulated more organic compounds to modulate osmosis and prevent physiological drought in high salt. When salt concentration increased, seedlings chlorophyll concentration were decreased, and the chlorophyll fluorescence, Fv/Fm, ΦPSII and qP were decreased too, only qN were increased. In conclusion, inoculated arbuscular mycorrhizal fungi could increase the plant tolerance in salt. In this study, seedlings inoculated with M1 collected from sandlot in Tai-Chung Harbor had the best performance than those inoculated with M2 collected from Chu-Yun-Shan Nursery, and those non-inoculated seedlings got the worst growth.
摘要..................................................i
Abstract..............................................ii
目次..................................................iv
表目次................................................vii
壹、前言..............................................1
貳、前人研究..........................................2
一、三種濱海植物之簡介...........................2
(一) 大花咸豐草(Bidens pilosa L. var. radiate)........2
(二) 馬鞍藤(Ipomoea pes-caprae).......................2
(三) 海埔姜(Vitex rotundifolia).......................2
二、鹽分逆境對植物造成之影響.....................3
(一) 植物的形質生長...................................3
(二) 離子逆境.........................................3
(三) 滲透逆境.........................................4
(四) 葉綠素濃度.......................................4
(五) 光合作用系統.....................................5
(六) 有機化合物含量...................................7
三、植物對鹽分逆境的適應表現.....................8
(一) 組織結構的適應...................................8
(二) 稀鹽作用.........................................8
(三) 泌鹽作用.........................................8
(四) 拒鹽作用.........................................9
四、菌根的功能...................................9
(一) 幫助植物吸收水分、營養物質.......................9
(二) 幫助植物抵抗惡劣環境.............................10
參、材料與方法........................................11
一、叢枝菌根菌種分離.............................11
二、海邊植物生長試驗.............................11
(一) 介質來源.........................................11
(二) 海邊植物生長試驗.................................12
三、土壤養分分析.................................12
(一) 土壤pH值.........................................12
(二) 土壤電導度.......................................12
(三) 全氮.............................................12
(四) 有效磷...........................................13
(五) 可置換性陽離子與CEC..............................13
四、植體分析.....................................14
(一) 養分分析.........................................14
(二) 脯胺酸...........................................14
(三) 可溶性碳水化合物與澱粉...........................14
(四) 葉綠素螢光.......................................15
(五) 葉綠素濃度.......................................16
五、菌根調查.....................................16
(一) 根染色...........................................16
(二) 菌根依賴度.......................................17
(三) 菌根感染率.......................................17
六、數據處裡.....................................17
肆、結果..............................................18
一、土壤養分分析.................................18
二、植體生物量...................................18
三、植體養分分析.................................21
(一) N................................................21
(二) P................................................22
(三) K................................................25
(四) Na...............................................27
(五) Ca...............................................30
(六) Mg...............................................31
(七) K/Na比...........................................34
四、脯胺酸.......................................37
五、碳水化合物...................................37
(一) 可溶性碳水化合物.................................37
(二) 澱粉.............................................40
六、葉綠素濃度...................................43
七、葉綠素螢光...................................45
(一) Fv/Fm............................................45
(二) ΦPS II...........................................46
(三) qP...............................................47
(四) qN...............................................49
伍、討論..............................................55
一、土壤養分分析.................................55
二、鹽分逆境及接種菌根對生物量之影響.............55
三、鹽分逆境及接種菌根對無機養分的吸收...........56
四、鹽分逆境及接種菌根對細胞有機溶質之影響.......59
五、鹽分逆境及接種菌根對葉綠素濃度之影響.........60
六、鹽分逆境及接種菌根對葉綠素螢光之影響.........61
七、菌根與宿主植物耐鹽性之相互影響...............63
陸、結論..............................................65
柒、參考文獻..........................................67
捌、附錄..............................................80
王永順、蘇睿智 (2004) 耐鹽植物藉由調控細胞內鉀離子濃度以維持鹽逆境下之生存。科學農業。52(7-8): 180-188。
朱德民 (1978) 植物生長與耐鹽性(Ι)—植物對鹽害之反應。科學農業。26(7-8): 227-233。
朱德民 (1979) 植物缺水與脯胺酸之代謝。科學農業。27(7-8): 197-202。
朱德民 (1982) 植物生長與耐鹽性。科學農業。30(3-4): 197-205。
朱德民 (1995) 植物與環境逆境。國立編譯館。380頁。
何冠琳 (1999) 二氧化碳濃度與溫度對樟樹苗木生長及葉綠素螢光反應的影響。中興大學森林研究所碩士論文。
李彥、張英鵬、孫明、高弼模 (2008) 鹽分脅迫對植物的影響及植物耐鹽機理研究進展。植物生理科學。24(1): 258-265頁。
吳繼光、林素禎 (1998) 囊叢枝內生菌根菌應用技術手冊。台灣省農業試驗所。
周名倩 (2005) 不同養分處理下根瘤與菌根對木賊葉木麻黃固氮與養分吸收之效應。中興大學森林研究所碩士論文。
林子超 (2002) 潛藏於土壤中的有益真菌菌根菌。自然保育季刊。40: 36-39。
林宗平 (2003) 不同生態習性植物之葉綠素螢光特性研究。中興大學生命科學研究所碩士論文。
林耿安 (2003) 觀霧地區不同海拔台灣赤楊根瘤固氮效率與叢枝菌根菌型態之研究。中興大學森林研究所碩士論文。
武廣、李廣遠、權�� (2002) 成礦溶液電導度和礦物熱電性方法在礦床評價中的應用—以黑龍江省西吉諾山鉛、鋅、銅、金普查區為例。地質與資源。11(3): 178-184。
胡弘道 (1978) 內生菌根孢子接種對紅檜幼苗生長之影響。科學發展月刊 6(11): 1064-1077。
胡弘道 (1990) 林木菌根。千華出版公司。244-615頁。
范貴珠、許博行、張峻德 (2002) 土壤鹽度對欖李苗木葉綠素螢光反應及呼吸作用之影響。台灣林業科學。17(3): 323-335。
徐邦達 (2002) 葉綠素螢光和PAM螢光儀:原理及測量。光合作用研討會。1-9頁。
許興、鄭國琦、周濤、惠紅霞 (2002) 寧夏枸杞耐鹽性與生理生化特徵研究。中國生態農業學報。10(3): 70-73。
郭幸榮、郭秀桃 (1998) 鹽分對四種台灣原生闊葉樹種之危害。中華林學季刊 33(2): 217-230。
黃瑞彰 (1995) 鹽分處理對水稻醣類代謝之影響。中興大學植物學研究所碩士論文。
楊遠波、劉和義、彭鏡毅、施炳霖、呂勝由 (2000) 台灣維管束植物簡誌 第肆卷。行政院農業委員會。104-234頁。
鄔家琪、張喜寧 (2004) 叢枝菌根菌在鹽分逆境下之反應與耐鹽性。科學農業。52(7-8): 189-193。
齊永青、肖凱、李雁鳴 (2003) 作物在滲透脅迫下脯胺酸累積的研究進展。河北農業大學學報。26: 24-27。
潘瑞熾 (2006) 植物生理學。藝軒圖書出版社。354-356頁。
盧廷瑋 (2002) 囊叢枝菌根菌對繖楊、草海桐及台灣海桐苗木生長及生理特性的效應。嘉義大學林業研究所碩士論文。
顏江河 (2000) 菌根根外菌絲對養分及水分吸收的影響。中華林學季刊。33(3): 313-320。
顏江河、胡弘道、鍾旭和 (1999) 鋁在煤礦棄土地琉球松菌根造林木的聚積。中華林學季刊。32(3): 313-322。
Abbott, L. K. and A. D. Robson (1984) The effect of mycorrhizae on plant growth. In: VA mycorrhiza, C. L. Powell and D. J. Bagyaraj (eds.). CRC Press, Boca Raton, pp. 113-130.
Al-Karaki, G. N., R. Hammad and M. Rusan (2001) Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11: 43-47.
Alam, S. M. (1994) Nutrient uptake by plant under stress conditions. In: Pessakakli M (ed) Handbook of plant stress. Dekker, New York, pp. 227-246.
Allakhverdiev, S. I., Y. Nishiyama, S. Miyairi, H. Yamamoto, N. Inagaki, Y. Kanesaki and N. Murata (2002) Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA genes in Synechocysis. Plant Physiology 130: 1443-1453.
Aoki, S. (1985) Determination of carbohydrate and free amino acids in tea plants with immobilized enzymes and H2O2 elecxtrode. Japanese Journal of Crop Science 54: 235-240.
Ames, R., C. Reid, L. Porter and C. Cambardella (1983) Hyphal uptake and transport of nitrogen from two 15N-lavelled sources by Glomus mosseae, a vesicular-arbuscular mycorrhizal fungus. New Phytologist 95: 381-396.
Amijee, F., D. P. Stribley and P. B. Tinker (1993) The development of endomycorrhizal root systems. Ⅷ. Effects of soil phosphorus and fungal colonization on the concentration of sobule carbohydrates in roots. New Phytologist 123: 297-306.
Azcon, R. and F. El-Atrash (1997) Inflence of arbuscular mycorrhizae and phosphorus fertilization on growth, nodulation and N2 fization (15N) in Medicago satiba at four salinity levels. Biology Fertility Soils 24: 81-86.
Balibrea, M. E., J. D. Amico, M. C. Bolarin and F. Perez-Alfocea (2000) Carbon partitioning and sucrose metabolism in tomato plants growing under salinity. Physiologia Plantarum 110: 503-511.
Bates, L. S., R. P. Waldren and I. D. Teare (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39: 205-207.
Bernstein, L. (1961) Osmotic adjustment of plants to saline media. I. Steady State. Amer Journal of Botany. 48: 909-918.
Bethlengalvay, G. J., M. S. Brown, R. N. Ames and R. S. Thomas (1982) Effects of drought on host and endophyte development in mycorrhizal soybeans in relation to water use and phosphate uptake. Physiologia Plantarum. 72: 565-571.
Bhandal, I. S. and C. P. Malik (1988) Potassium estimation, uptake and its role in the physiology and metabolism of flowering plants. International Review Of Cytology 110: 205-254.
Brown A. D. and J. R. Simpson (1972) Water relations of sugar-tolerant yeasts: the role of intracellular polyols. Journal of General Microbiology 72: 589-591.
Bruggemann, W., A. Wenner and Y. Sakata (1995) Long-term chilling of young tomato plants under low light. VII. Increasing chilling tolerance of photosynthesis in Lycopersicon esculentum by somatic hybridization with L. peruvianum. Plant Science 108: 23-30.
Cantrell, I. C. and R. G. Linderman (2001) Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil 233: 269-281.
Carvalho, L. M., P. M. Correia and M. A. Martins-Loucao (2004) Arbuscular mycorrhizal fungal propagules in a salt matsh. Nycorrhiza 14: 165-170.
Crossett, R. N. and B. C. Loughman (1966) The absorption and translocation of phosphorus by seedings of Hordeum vulare L. New Phytologist 65: 459-468.
Daie, J. (1996) Metabolic adjustments,assimilate partitioning, and alterations in source-sink relations in drought-stressed plants. In: Zamski, E. and A. A. Schaffer (eds.) Photoassimilate Distribution in Plants and Crops. Source-Sink Relationships. Marcel Dekker Inc, New York New York pp. 407-420.
Daniels, B. A. and H. D. Skipper (1982) Methods for the recovery and quantitative estimation of progagules from soil. In: Methods and principles of mycorrhizal research, N. C. Schenck (Ed.). The American Phytopathological Society, Staint Paul pp. 20-45.
Dizon, R. K., M. V. Rao and V. K. Garg (1993) Salt stress affects in vitro growth and in situ symbioses of ectomycorrhizal fungi. Mycorrhiza 3: 62-69.
Fang, Z., J. Bouwkamp and T. Solomos (1998) Chlorophyllase activities and chlorophyll degradation during leaf senescence in non- yellowing mutant and wild type of Phaseolus vulgaris L. Journal of Experimental Botany 49: 503-510.
Feng, G., F. S. Zhang, X. L. Li, C. Y. Tian, C. Tang and Z. Rengel (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12: 185-190.
Founoune, H., R. Duponnois, A. M. Ba and B. F. El (2002) Influence of the arbuscular endomycorrhizal/ectomycorrhizal symbiosis on the growth of Acacia holosericea (A. Cunn. Ex G. Don) in glasshouse conditions. Annals of Forest Science 59: 93-98.
Franklin, L. A., G. Levavasseur, C. B. Osmond, W. J. Henley and J. Ramus (1992) Two components of onset and recovery during photoinhibition of Ulva rotundata. Planta 187: 399-408.
Gerdemann, J. W. and T. H. Nicolson (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society 46: 235-244.
Ghazi, N. and Al-Karaki (2000) Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 10: 51-54.
Giri, B. and K. G. Mukerji (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandigflora under field conditions: evidence for reduced sodium and inmproved magnesium uptake. Mycorrhiza 14: 307-312.
Giri, B., R. Kapoor and K. G. Mukerji (2007) Improved tolerance of Acacia nilotica to salt stress by Arbuscular Mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microbial Ecology 54(4): 753-760.
Harrison, M. J. (1999) Molecular and cellular aspects of arbuscular mycorrhizal symbiosis. Annual review of plant physiology and plant molecular biology 50: 361-389.
Herralde, F. D., C. Biel, R. Save, M. A. Morales, A. Torrecillas, J. J. Alarcon and M. J. Sanchez-Blanco (1998) Effect of water and salt stresses on the growth, gas exchange and water relations in Argyranthemum coronopifolium plants. Plant Science 139: 9-17.
Hoekstra, F. A., E. A. Golovina and J. Buitink (2001) Mechanisms of plant desiccation tolerance. Trends in Plant Science 6: 431-443.
Iyengar, E. R. R. and M. P. Reddy (1996) Photosynthesis in highly salt-tolerant plants. pp. 897-909. In Pessarakli, M. eds. Handbook of Photosynthesis. Marcel Deller, Inc. New York.
Jain, P. K., K. Paliwal, R. K. Dixon and D. H. Gjerstad (1989) Improving productivity of multipurpose trees on substandard soil in India. J. For. 87: 38-42.
Juniper, S. and L. Abbott (1993) Vesicular-arbuscular mycorrhizas and soil-salinity. Mycorrhiza 4: 45-57.
Kawamitsu, Y., R. Kitahara and A. Nose (1995) Effect of NaCl on leaf gas exchange rate and water potential in Okinawan mangroves. Ryukus 42: 9-22 (in Japanese with English abstract).
Keutgen, N., K. Chen and F. Lenz (1997) Responses of strawberry leaf photosynthesis, chlorophyll fluorescence and macronutrient contents to elevated CO2. Journal of Plant Physiology 150:395-400.
Kuiper, P. J. C., D. Kuiper and J. Schuit (1988) Root functioning under stress conditions: An introduction. Plant and Soil 111: 249-253.
Larcher, W. (1995) Physiological Plant Ecology. Spring-Verlag, Berlin. pp 504.
Levitt, J. (1980) Response of plants to environmental stress, 2nd edn. Academic, New York.
Lorenzini, G., L. Guidi, C. Nali and G. Franco (1999) Quenching analysis in polar clones to ozone. Tree Physiology 19: 607-612.
Lu, C. M. and A. Vonshak (1999) Characterization of PS II photochemistry in salt-adapted cells of cyanobacterium Spirulina platensis. New Phytologist 141: 231-239.
Ma, H. C., L. Fung, S. S. Wang, A. Altman and A. Huttermann (1997) Photosynthetic response of Populus euphratica to salt stress. Forest Ecology Management 93: 55-61.
Ma, J. F. (2005) Plant root responses to three abundant soil minerals: silicon, aluminum and iron. Critical Reviews in Plant Sciences 24: 267-281.
MacDonald, C. C. (1977) Methods of soil and tissue analysis used in the analytical laboratory. Canadian Forestry Service Information Report MM-X-78.
Marcar, N. E. and A. Termaat (1990) Effects of root-zone solutes on Eucalyptus camaldulensis and Eucalypus bicostata seedling: Responses to Na+, Mg2+ and Cl-. Plant and Soil 125: 245-254.
Marcum, K. B. and C. L. Murdoch (1992) Salt tolerance of the coastal salt marsh grass, Sporobolus virginicusn (L.) kunth. The New Phytologist. 120: 281-288.
McLean, E. O. (1982) Soil pH and lime requirement. In: Page et. al. (eds.) Methods of soil analysis. Part Ⅱ. Chemical and microbiological properties 2nd. ASA.CSSA.SSSA. Madison, Wisconsin.
McMillen, B. G., S. Juniper and L. K. Abbott (1998) Inhibition of hyphal growth of a vesicular-arbuscular mycorrhizal fungus in soil containing sodium chloride limits the spread of ingection from spores. Soil Biochemical 30: 1639-1646.
Meyer, J. R. and R. G. Linderman (1986) Selective influence on population of rhizophere or rhizoplant bacteria and actionmycetes by mycorrhizas formed by Glomus fasciculatum. Soil Biology and Biochemistry 18: 191-196.
Mohammad, M. J., H. I. Malkawi and R.Shibili (2003) Effects of arbuscular mycorrhazal fungi and phosphorus fertilization on growth and nutrient uptake of barley grown on soils with different levels of salt. Journal of Plant Nutrition 26: 125-137.
Moore, P. D. and S. B. Chapman (1986) Methods in plant ecology. 2nded. Blackwell Scientific Publications. Oxford, London, Edinburgh.
Morris, C. J., J. F. Thompson and M. Johson (1969) Plant Physiology 44: 1023- 1626.
Morton, J. B. (1988) Taxonomy of VA mycorrhizal fungi: classification, nomenclature, and identification. Mycotaxon 32: 267-324.
Munns, R. (1993) Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant, Cell and Environment 16: 15-24.
Muuns, R. (2002) Comparative physiology of salt and water stress. Plant Cell Environment 20:239-250.
Muuns, R. and B. Passioura (1984) Effect of prolonged exposure to NaCl on the osmotic pressure of leaf xylem sap from intact, transpiring barley plants. Australian Journal of plant physiology 25: 497-507.
Munns, R., D. P. Schachtman and A. G. Condon (1995) The significance of the two phase growth response to salinity in wheat and barley. Australian Journal of Plant Physiology. 22: 561-569.
Navarro, J. M., M. A. Botella, A. Cerda and V. Martinez (2001) Phosphorus uptake and translocation in salt-stressed melon plants. Plant Physiology 158: 375-381.
Nicolson, T. H. (1959) Mycorrhiza in the Gramineae. Ι. Vesicular-arbuscular endophytes, with special reference to the external phase. Transactions of the British Mycological Society 42: 421-438.
Nelson, C. E. (1987) The water relations of vesicular-arbuscular mycorrhizal systems. In: Ecophysiology of VA mycorrhizal plants. G. Safir (Sd.) CRC Press Boca Raton pp. 71-91.
O’keefe, D. M. and D. M. Sylvia (1990) Mechanisms of the vesicular-arbuscular mycorrhizal plant-growth response. In Handbook of Applied Mycology, Vol. 1, D. K. Arora, B. Rai, K.G. Muderji, and G. R. Knudsen (Eds.), Marcel Dekker, New York pp. 35-54.
Olsen, S. R. and L. E. Sommers (1982) Phosphorus. In: Page et. al. (eds.) Methods of soil analysis. Part Ⅱ. Chemical and microbiological properties 2nd. ASA.CSSA.SSSA. Madison, Wisconsin.
Oxborough, K. and N. R. Baker (1997) Resolving chlorophyll a fluores cence inages of photosynthetic efficiency into photochemical and non-photochemical components—calculation of qP and Fv’/Fm’ without measuring F0’. Photosynthesis Research 54: 135-142.
Parfitt R. L. (1979) The availability of phosphorus from phosphate-geothite bridging complexes: Desorption and uptake of ryegrass. Plant and Soil 53: 55-65.
Pfeiffer, C. M. and H. E. Bloss (1987) Growth and nutrition of guayule (Parthenium argentatum) in a saline soil as influenced by vesicular-arbuscular mycorrhiza and phosphorus fertilization. New Phytologist 108: 315-321.
Phillips, J. M. and D. S. Hayman (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhiazl fungi for rapid assessment of infection. ransactions of the British Mycological Society 55: 159-161.
Poljakoff-Mayber, A. and H. R. Lerner (1994) Plants in saline environments. In: Pessarakli, M. (ed.) Handbook of Plant and Crop Stress. Marcel Dekker Inc. New York New York pp. 65-96.
Posas, F., J. R. Chambers, J. A. Heyman, J. P. Hoefflrt, E. Nadal and J. Arino (2000) The transcriptional response of yeast to saline stress. Jounal of Biological Chemistry 275: 17249-17255.
Poss, J. A., E. Pond, J. A. Menge and W. M. Jarrel (1985) Effect of salinity on mycorrhizal onion and tomato in soil with and without additional phosphorus. Plant Soil 88: 307-319.
Rabie, G. H. ( 2005) Influence of arbuscular mycorrhizal fungi and kinetin on the response of mungbean plants to irrigation with seawater. Mycorrhiza 15: 225-230.
Rhoades, J. D. (1982) Cation exchange capacity. In: Page et. al. (eds.) Methods of soil analysis. Part Ⅱ. Chemical and microbiological properties 2nd. ASA.CSSA.SSSA. Madison, Wisconsin.
Rosedahl, C. N. and S. Rosedahl (1991) Influence of vesicular-arbuscular mycorrhizal fungi (Glomus spp.) on the response of cucumber (Cucumis sativus L.) to salt stress. Envirooonmental and Experimental Botany 31: 313-318.
Sannazzaro, A. I., O. A. Ruiz. E. O. Alberto and A. B. Menendez (2006) Alleviation of salt stress in Lotus glaber by Glomus. Plant Soil 285: 279-287.
Santos, C. V. (2004) Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae 103: 93-99.
Saunier, R. E., H. M. Hull and J. H. Ehrenreich (1968) Plant Physiology 43: 401-404.
Schimper, A. F. W. (1898) Rhizophoraceae. In A. Engler and K. Prantl. [eds.], Die natu¨rlichen Pflanzenfamilien, 42–56. W. Engelmann, Leipzig, Germany.
Scholander, P. F. (1962) Salt balance in mangroves. Plant Physiology 37: 722-729.
Schreiber, U., W. Bilger, H. Hormann and C. Neubauer (1998) Chlorophyll fluorescen as a diagnostic tool: basics and some aspects of practival relevance. In: Raghavendra A. S., editor. Photosynthesis: a compreh ensive treatise. Cambridge: Cambridge University Press pp 320-336.
Sentenac, H. and C. Grignon (1985) Effect of pH on orthophosphate uptake by corn roots. Plant Physiology 77: 136-141.
Staple, R. C. and G. H. Toenniessen (1984) Salinity tolerance in plant: strategies for crop improvement. Wile New York.
Tang, D., S. Shi, D. Li, C. Hu and Y. Liu (2007) Physiological and biochemical responses of Scytonema javanicum (cyanobacterium) to salt stress. Journal of Arid Environments 71: 312-320.
Takemura, T., N. Hanagata, K. Sugihara, S. Baba, I. Karube and Z. Dubinsky (2000) Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza. Aquatic Botany 68: 15-28.
Troll, W. and J. Lindsley (1955) A photometric method for the determination of proline. The Journal of Biological Chemistry 215: 655-660.
Wada, Y., K. Miura and K. Watanabe (1993) Effects of source-to-sink ratio on carbohydrate production and senescence of rice flag leaves during the ripening period. Japanese Journal of Crop Science 62: 547-553.
Waisel, Y. (1972) Biology of halophytes. New York and London pp. 395.
Waisel, Y., E. Eshel and M. Agami (1986) Salt balance of leaves of the mangrove Avicennia marina. Physiology Plant. 67: 67-72.
Wright, D. P., J. D. Scholes and J. D. Read (1998a) Effects of VA mycorrhizal colonization on photosynthesis and biomass production of Trifolium repens L. Plant Cell and Environment 21: 209-216.
Wright, D. P., J. D. Read and J. D. Scholes (1998b) Mycorrhizal sink strength influences whole plant carbon balance of Trifolium repens L. Plant Cell Enviroment 21: 881-891.
Yoshiba, Y., T. Kiyosue, K. Nakashima. K. Yamaguchi-Shinozaki and K. Shinozaki (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physical 38: 1095-1102.
Ziska, L. H., J. R. Seemann and T. M. DeJong (1990) Salinity induced limitations on photosynthesis in Prunus salicina, a deciduous tree species. Plant Physiology 93: 864-870.
Zhongze, Z. and J. G. Torrey (1985) Biological and cultural characteristics of the effective Frankia strain HFPCc13 (Actinomycetales) from Casuraina cunninghamiana (Casuarinaceae). Annals of Botany 56: 367-378.
Zhu, J. K. (2003) Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology 6: 441-445.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top