跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/06 02:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭詩菁
研究生(外文):Shi-Jing Hsiao
論文名稱:乾旱與養分逆境下接種叢枝菌根對台灣櫸與台灣肖楠苗木之生長效應
論文名稱(外文):Effects of Arbuscular Mycorrhiza Inoculation on Seedling Growth of Zelkova serrata and Calocedrus formosana under Drought and Nutrient Stress
指導教授:顏江河顏江河引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:森林學系所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:67
中文關鍵詞:叢枝菌根乾旱逆境脯胺酸葉片水勢可溶性碳水化合物澱粉
外文關鍵詞:arbuscular mycorrhiza (AM)drought stressprolineleaf water potentialtotal soluble carbohydratestarch
相關次數:
  • 被引用被引用:2
  • 點閱點閱:286
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究目的探討台灣櫸 (Zelkova serrata) 和台灣肖楠 (Calocedrus formosana) 苗木接種叢枝菌根菌 (Acaulospora sp.) 在乾旱和養分逆境下之生長效應。盆栽試驗處理以完全逢機複因子試驗 (2×2×2) 進行,包括接種 (+M)與不接種菌根菌 (-M)、水分充足 (+W) 與乾旱 (-W) 和施肥 (+F) 與不施肥 (-F)。二種幼苗在培育3個月後,同時進行移盆和接種菌根菌;5個月後,開始進行水分和養分逆境處理,8個月後收穫苗木和養分分析。
試驗結果顯示,台灣肖楠對菌根的依賴度高於台灣櫸。二種菌根苗木無論在乾旱或水分充足下,對形質生長都呈顯著增加,施肥與否則無顯著差異;台灣櫸菌根苗,在乾旱下能提高葉部水勢值且受到施肥影響呈顯著上升,但台灣肖楠菌根苗,則不顯著。植體中脯胺酸,在乾旱下台灣櫸菌根苗葉部濃度顯著增加;台灣肖楠菌根苗葉部和根部濃度均呈顯著增加。台灣櫸菌根苗在乾旱下,可溶性碳水化合物濃度明顯降低或無顯著;台灣肖楠菌根苗根部濃度則顯著增加。在乾旱下,台灣櫸菌根苗葉部澱粉濃度受到施肥影響呈顯著增加;台灣肖楠則不顯著。不論乾旱或養分逆境與否,台灣櫸菌根苗葉部K、Mg、Mn濃度呈顯著增加,N、Ca、Zn濃度則顯著下降;莖部除了Mg、Mn濃度呈顯著降低,其他養分分布如同葉部;根部Ca、Cu、Zn、Mn濃度均呈顯著增加,N、K、Mg濃度呈顯著降低;葉、莖、根部的P濃度均與無菌根苗無顯著差異。台灣肖楠菌根苗地上部P和K濃度呈顯著增加,N、Ca、Mg、Zn和Mn等養分濃度則明顯降低;地下部N、Zn濃度明顯減少,其餘P、K、Ca、Mg、Cu和Mn濃度則顯著高於無菌根苗者。二種苗木栽植後的介質養分性質都呈顯著增加或減少。
總言之,菌根感染對二種苗木能提高抵抗乾旱和養分逆境下的生長效應,隨著不同樹種的菌根依賴度,以及其內部生理特性差異,因此台灣櫸和台灣肖楠菌根苗木在逆境下的生長效益亦不盡相同。
The objectives of this research were to study the effect of arbuscular mycorrhiza (AM) inoculation on Zelkova serrata and Calocedrus formosana seedlings grew under drought and nutrient stress. The experimental design was a 2×2×2 factorial in a complete randomized: ±mycorrhizal inoculation, ±water regimes and ±fertilizer. Both three-months-old seedlings were transferred to pot and inoculated with Acaulospora sp. After five months, half of the seedlings were subjected to drought and fertilizer stress. After eight months, all the plants were harvested and analyzed.
Results showed that the mycorrhiza dependence of C. formosana seedlings in AM were higher than that of Z. serrata. Both AM seedlings under drought or well-watered had significantly higher growth and dry weight regardless of fertilizer. The leaf water potential of Z. serrata in AM seedlings was higher in drought than in non-AM seedlings; however the C. formosana in AM seedlings were not significant. The proline of Z. serrata seedling in AM leaves accumulated more than that of non-AM. Moreover, the proline of C. formosana seedling was significant increased in AM leaves and root than in non-AM. The total soluble carbohydrate of Z. serrata seedling was not significant or decreased in drought between AM and non-AM; C. formosana seedling in AM roots was significantly increased. The increase of the starch of Z. serrata seedlings in AM leaves was significant by fertilizer addition, but not in the case of the C. formosana seedling in AM. To compare with non-AM seedling, the Z. serrata seedling leaves’ K, Mg and Mn under drought or nutrient stress were significant increased in AM; N, Ca and Zn were significant decreased. The Mg and Mn concentration in the stem were significant decreased and others nutrients were like leaves; the Ca, Cu, Zn and Mn concentration in the root were significant increased in AM, but N, K and Mg were significantly decreased. There was no significant difference in the P in AM and non-AM leaf, stem and root. The P and K of C. formosana seedling in AM shoot were significantly increased, but others were decreased; the P, K, Ca, Mg, Cu and Mn concentration in the root in AM were increased, but not N and Zn. The soil nutrients of both seedlings were significantly increased between before and after planting.
The overall results showed that mycorrhizal colonization improved Z. serrata and C. formosana seedlings growth under drought and nutrient stress. In addition, mycorrhizal benefit varies depending on the mycorrhiza dependence and physiological characteristic of different species.
摘 要 I
Abstract II
目錄 III
表目次 V
圖目次 VI
附錄目次 VII
壹、前言....1
貳、前人研究...3
一、叢枝菌根菌與植物的共生....3
(一)菌根的共生型態....3
(二)影響植物菌根形成之因子....3
二、叢枝菌根對植物水分的影響....6
三、叢枝菌根與植物養分吸收之影響.... 7
四、叢枝菌根與植物耐旱機制....9
參、材料與方法.... 11
一、實生苗生長試驗....11
(一)試驗材料.... 11
(二)苗木生長試驗 ....12
二、試驗苗生長調查與分析項目....13
(一)苗木形質生長....13
(二)苗木葉部水分潛勢....14
(三)苗木滲透調節物質分析....15
(四)苗木菌根觀察....16
(五)植體養分分析....17
(六)土壤性質分析 ....17
三、數據處理....19
四、試驗流程....20
肆、結果....21
一、苗木之根系變化....21
(一)菌根感染率....21
(二)菌根依賴度....21
(三)苗木菌根構造觀察....22
二、苗木形質生長之變化....26
(一)生長量....26
(二)生物乾重量....27
三、苗木之葉部水分潛勢變化....30
四、苗木之滲透調節物質....33
(一)脯胺酸....33
(二)可溶性碳水化合物和澱粉....34
五、苗木養分吸收....38
六、苗木栽植後對土壤介質化學性質之影響....45
伍、討論....53
一、叢枝菌根對苗木的形質生長效應.... 53
二、叢枝菌根對苗木抵抗逆境的生理效應....54
(一)葉片水分潛勢....54
(二)脯胺酸....55
(三)可溶性碳水化合物和澱粉....56
三、叢枝菌根對苗木和土壤養分的影響....56
(一)苗木養分吸收之影響....56
(二)栽植介質養分之影響....58
陸、結論....60
柒、參考文獻....61
捌、附錄....68
朱德民 (1984) 植物對缺水適應性- (一) 滲透調節作用-膨壓維持。科學農業 32 (1-2): 21-26。
朱德民 (1995) 植物與環境逆境。國立編譯館。明文書局。13-64頁。
弓明欽、陳應龍、仲崇錄 (1997) 菌根研究及應用。中國林業出版社。
余卓玲、梁計南 (2005) VA菌根真菌對植物吸收能力及抗逆性的影響研究進展。廣東農業科學 3: 44-47。
宋會興、鐘章成 (2006) 乾旱生境中VA菌根對宿主植物的影響及其機制。土壤通報 37(4): 787-791。
吳強盛、夏仁學 (2004) VA菌根與植物水分代謝的關係。園藝園林科學 20 (1): 188-192。
吳繼光、林素禎 (1998) 囊叢枝內生菌根菌應用技術手冊。台灣省農業試驗所印行。
李曉林、曹一平 (1992) 菌根和非菌根三葉草根際土壤磷鉀濃度變化。土壤通報 23: 180-182。
李愛榮、管開雲 (2006) 叢枝菌根養分吸收和轉運機制的研究歷史與進展。微生物學雜誌 26 (4): 72-76。
胡弘道 (1990) 林木菌根。千華出版公司。666頁。
郝會軍、劉英、王洪波、丁雪珍 (2007) VA菌根與植物礦質營養的研究進展。安微農業科學 35 (4): 978-979。
畢銀麗 (2007) 叢枝菌根培養新技術及其對土地復墾生態效應。地質出版社,北京。
許謙信 (2004) 菊花葉片之可溶性固形之變化與老化之關係。台中區農業改良場研究彙報84: 11-28。
陶紅群、李曉林、張俊伶 (1998) 叢枝菌根菌絲對重金屬Zn和Cd吸收的研究。環境科學學報18 (5): 545-548。
廖天賜、翁仁憲、劉如章 (2002) 塔塔加亞高山植物葉片水分潛勢對光合作用之影響及葉片水分潛勢之季節變化。中華林學季刊35(2):163-170。
劉仕平、張玲琪、李成雲、郭仕平、楊春燕 (2003) VA菌根營養生理研究概況及其應用前景。西南農叢學報 16 (2): 93-97。
劉業經、呂福原、歐辰雄 (1987) 臺灣樹木誌。國立中興大學農學院叢書。
劉潤進、李曉林 (2000) 叢枝菌根及其應用。科學出版社。
劉潤進、陳應龍 (2007) 菌根學。科學出版社。
潘慶民、韓興國、白永飛、楊景成 (2002) 植物非結構性貯藏碳水化合物的生理生態學研究進展。植物學通報 19 (1): 30-38。
顏江河、唐盛林 (2000) 兩種闊葉樹菌根之研究。林業研究季刊 22(2): 37-44。
顏江河、鍾旭和 (1991) 台灣杉幼苗感染Scutellospora migra內生菌根之觀察。林業試驗所研究報告季刊 5(1): 51-60。
顏江河、鍾旭和 (1994) 菌根接種與土壤含水量對台灣杉幼苗生長之影響。林業試驗所研究報告季刊 9(4): 291-298。
Ackerson, R. C. (1981) Osmoregulation in cotton in response to water stress. Plant Phytol. 67: 489-493.
Ahmad Khan, I., A. Shahbaz and M. Sarwat (2003) Yield and water use efficiency (WUE) of Avena sativa as influenced by vesicular arbuscular mycorrhizae (VAM). Asian J. Plant Sci. 2 (4): 371-373.
Aliasgarzal, N., M. R. Neyshabouri and G. Salimi (2006) Effects of arbuscular mycorrhizal fungi and bradyrhizobium japonicum on drought stress of soybean. Biologia 61 (19) : 324-328.
Andersen, C. P., A. H. Markhart, R.K. Dixon and E. I. Sucoff (1988) Root hydraulic conductivity of vesicular-arbuscular mycorrhizal green ash seedlings. New Phytol. 109: 465-471.
Auge, R. M. (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11: 3-42.
Auge, R. M. (2004) Arbuscular mycorrhizae and soil/plant water relations. Canadian Journal of Soil Science 84: 373-381.
Auge, R. M., K. A. Scheke and R. L. Wample (1986) Greater leaf conductance of VA mycorrhizal rose plants is not related to phosphorus nutrition. New Phytol. 103: 107-116.
Auge, R. M., K. A. Scheke and R. L. Wample (1986) Osmotic adjustment in leaves of VA mycorrhizal nonmycorrhizal rose plants in reponse to drought stress. Plant Physiol. 82: 765-770.
Auge, R. M., K. A. Scheke and R. L. Wample (1987) Leaf water and carbohydrate status of VA mycorrhizal rose exposed to drought stress. Plant Soil 99: 291-302.
Bago, B., H. Vierheilig, Y. Piche and C. Azcon-Aguilar (1996) Nitrate depletion and pH changes induced by the extraradical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices growth in monoxenicculture. New Phytol. 133: 273-280.
Bartschi, H., V. Gianinazzi-Pearson and I. Vegh (1981) Vesicular-arbuscular mycorrhiza formation and root rot disease (Phytophthora cinnamomi) development in Chamaecyparis lawsoniana. Journal of Phytopathology 102: 213-218.
Bates, L. S., R. P. Waldren and I. D. Teare (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39: 205-207.
Becard, G., D. D. Douds and P. E. Pfeffer (1992) Extensive in vitro hyphal growth of vesicular-arbuscular mycorrhizal fungi in the presense of CO2 and flavonols. Appl. Environ. Mycrobiol. 58: 821-825.
Bereau, M., T. S. Barigah, E. Louisanna and J. Garbaye (2000) Effects of endomycorrhizal development and light regimes on the growth of Dicorynia guianensis Amshoff seedlings. Ann. For. Sci. 57: 725-733.
Bethlenfalvay, G. J., M. S. Brown, R.N. Ames and R.S Thomas. (1988) Effects of drought on host and endophyte development in mycorrhizal soybeans in relation to water use and phosphate uptake. Physiol. Plant 72: 565-571.
Brundrett, M. C., Y. Piche and R. L. Peterson (1984) A new method for observing the morphology of vesicular-arbuscular mycorrhizae. Canadian Journal of Botany 62: 2128-2134.
Busse, M. D. and J. R. Eillis (1985) Vesicular-arbuscula mycorrhizal (Glomus fasciculatm) influence on soybean drought tolerance in high-phosphorus soil. Can. J. Bot. 63: 2290-2294.
Chambers, C. S., S. E. Smith, and F. A. Smith (1980) Effects of ammonium and nitrate ions on mycorrhizal infection, nodulation and growth of Trifolium subterraneum. New Phytol. 85:47-62.
Dehn, B. D. and H. Schuepp (1989) Influence of VA mycorrhizas on the uptake and distribution of heavy metals in plants. Agr. Ecosystems Environ 29: 79-83.
Duan, X., D. S. Meuman, J. M. Reiber, C. D. Saxton and R. M. Auge (1996) Mycorrhizal influence on hydraulic and hormonal factors involved in the control of stomatal conductance during drought. J. Exp. Bot. 47: 151-155.
EI-Kherbawy, M. and J. S. Angle (1989) Soil pH, rhizobia and vesicular-mycorrhizas inoculation effects on growth and heavy metal uptake of alfalfa (Medicago sativa L.). Biol. Fertil Soil 8: 61-59.
El-Kherbawy, M., J. S. Angle, A. Heggo and R. L. Chaney (1989) Soil pH, rhizobia, and vesicular-arbuscular mycorrhizae inoculation effects on growth and heavy metal uptake of alfalfa (Medicago sativa L.). Biol. Fertil. Soils 8: 61-65.
Faber, B. A., R. J. Zasoske, D. N. Munns and K. Shackel (1991) A method for measuring hyphal nutrition and water uptake in mycorrhizal plants. Can. J. Bot. 69: 87-94.
Fitter, A. H. (1988) Water relations of red clover Trifolium pretense L. as affected by VA mycorrhizal infection and phosphorus supply before and during drought. J. Exp. Bot. 39: 595-603.
Furlan, Valentin and J. Andre Fortin (1981) Growth stimulation of apple trees in unsterilized soil under field conditions with VA mycorrhiza inoculation. Canadian Journal of Botany 59:2003-2008.
Gadkar, V., S. R. David, T. Kuni and Y. Kapulnik (2001) Arbuscular mycorrhizal fungi colonization factors involved in host recognition. Plant Physiol. 127: 1493-1499.
Garroick, M. L., R. L. Peterson and C. A. Ackerley (1989) Early stages in colonization of Allium Porrum (leek) roots by the vesicular- arbuscular mycorrhizal fungus, Gloms versiforme. New Phytol. 112: 85-92.
Garu, A. and A. Adholeya (2000) Effects of the particle size of soil-less substrate upon AM fungus inoculum production. Mycorrhiza 10: 43-48.
Gerdemann, J. W. and T. H. Nicolson (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society 46: 235-244.
Gibson, S. I. (2000) Plant sugar-response pathway. Part of a complex regulatory web. Plant Phytol. 124: 1532-139.
Gnekow, M. A. and H. Marschner (1989) Role of VA-mycorrhiza in growth and mineral nutrition of apple (Malus pumila var. domestica) rootstock cuttings. Plant and Soil 119: 285-293.
Goicoechea, N., M. C. Antolin and M. Sanchez-Diaz (1997) Influence of arbuscular mycorrhizae and Rhizobium on nutrient content and water relations in drought stressed alfalfa. Plant and Soil 192: 261-268.
Graham, J. H., R. G. Linderman and J. A. Menge (1982) Development of external hyphae by different isolates of mycorrhizal Glomus spp. in relation to colonization and growth of Troyer citrange. New Phytol. 91: 183-189.
Hamblin, A. P. (1985) The influence of soil structure on water movement crop root growth and water uptake. Adv. Agron. 38: 95-158.
Haugen, L. M. and S. E. Smith (1992) The effect of high temperature and fallow period on infection of mung bean and cashew roots by the vesicular-arbuscular mycorrhizal fungus Glomus intraradices. Plant and Soil 145: 71-80.
Hooker, J. E. and K. E. Black (1995) Arbuscular mycorrhizal fungi as components of sustainable soil-plant systems. Crit. Rev. Biotechnol 15: 201-212.
Hoystead, A., N. Malajczuk and T. S. Grove (1998) Underground transfer of nitrogen between pasture plant infected with vesicular-mycorrhizal fungi. Plant and Soil 201: 417-423.
Jonhson, C. R., W. M. Jarrell and J. A. Menge (1984) Influence of ammonium: nitrate ratio and solution pH on mycorrhizal infection, growth and nutrient composition of Chrysanthemum morifolium var. Circus. Plant and Soil 77:151-157.
Koide, R. T. (1991) Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytol. 117: 365-386.
Koide, R. T. and Z. Kabir (2000) Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytol. 148: 511-517.
Kothari, S. K., H. Marschener and E. George (1990) Effect of VA mycorrhizal fungi and rhizosphere micro-organisms on root and shoot morphology, growth and water relations of maize. New Phytol. 116: 303-311.
MacDonald, C. C. (1977) Methods of soil and tissue analysis used in the analytical laboratory. Canadian Forestry Service Information Report MM-X-78.
Maggio, A., M. P. Reddy and R. J. Joly (2000) Leaf gas exchange and soluble accumulation in the halophyte Salvadora persica grown at moderate salinity. Environ. Exp. Bot. 44: 31-38.
McLean, E. O. (1982) Soil pH and lime requirement. In A. L. Page et al. (eds.) Methods of soil analysis. Part 2.2nd ed. Agronomy 9: 199-223.
Medeiros, C. A. B., R. B. Clark and J. R. Eills (1994) Growth and nutrient uptake of sorghum cultivated with vesicular-arbuscular mycorrhiza isolates at varying pH. Mycorrhiza 4: 185-191.
Menge, J. A., D. Sterile, D. J. Bagyaraj, E. L. V. Johnson and R. T. Leonard (1978) Phosphorus concentrations in plants responsible for inhibition of mycorrhizal infection. New Phytol. 80: 575-578.
Michelsen, A. and S. Rosendahl (2000) The effect of VA mycorrhizal fungi, phosphorus and drought stress on the growth of Acacia nilotica and Leucaena leucocephala seedlins. Plant and Soil 124: 7-13.
Molles, C. Manuel (2002) Ecology Concepts and Applications. The McGraw-Hill Companies, Inc. p 352-353.
Moore, P. D. and S. B. Chapman (1986) Methods in plant ecology. 2nd edition. Blackwell Scientific Publications. Oxford, London, Edinburgh.
Morte, A., C. Lovisolo and A. Schubert (2000) Effect of drought stress on growth and water relations of mycorrhizal association Helianthemum almeriense-Terfezia claveryi. Mycorrhiza 10: 115-119.
Morton, J. B. (1988) Taxonomy of VA mycorrhizal fungi: classification, nomenclature, and identification. Mycotaxon 32: 267-324.
Nagahshi, G., J. D. D. Douds and G. D. Abney (1996) Phosphorus amendment inhibits hyphal branching of the VAM fungus Giaspora margarita directly through its effect on root exudation. Mycorrhiza 6: 403-408.
Olson, S. R. and L. E. Sommers (1982) Phosphorus. In A. L. Page et al. (eds.) Methods of soil analysis. Part 2.2nd ed. Agronomy 9: 403-427.
Onguene, N. A. and M. Habte (1995) Nitrogen and phosphorus requirements for raising mycorrhizal seedlings of Leucaena leucocephala in containers. Mycorrhiza 5: 347-356.
Pacovsky, R. S. (1986) Micronutrient uptake and distribution in mycorrhizal or phosphorus- fertilized soybeans. Plant and Soil 95: 379-388.
Perry, D. A. (1994) Forest ecosystems. The John Hopkins University Press, Baltimore and London, USA. pp398-438.
Pier, C. L. and G. A. Berkowitz (1987) Modulation of water stress effects on photosynthesis by altered leaf K+. Plant Physiol. 85: 655-661.
Pinior, A., G. G. Stocker, H. von Alten and R. J. Strasser (2005) Mycorrhizal impact on drought stress tolerance of rose plants probed by chlorophyll a fluorescence, praline content and visual scoring. Mycorrhiza 15: 596-605.
Porcel, R. and J. M. Ruiz-Lozano (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. Journal of Experimental Botany 55: 1743-1750
Quick, W. P., M. M. Chaves, R. Wendler and M. David (1992) The effect of water stress on photosynthetic carbon metabolism in four speices grown under field conditions. Plant Cell and Environment 15: 25-35.
Rhoades, J. D. (1982) Cation exchange capacity. In A. L. Page et al. (eds.) Methods of soil analysis. Part 2.2nd ed. Agronomy 9: 149-157.
Rubio, R., F. Borie, C. Schalchli, C. Castillo and R. Azcon (2003) Occurrence and effect of arbuscular mycorrhizal propagules in wheat as affected by the source and amount of phosphorus fertilizer and fungal inoculation. Applied Soil Ecology 23: 245-255.
Ruiz-Lozano, J. M. (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress, new perspectives for molecular studies. Mycorrhiza 13: 309-317.
Ruiz-Lozano, J. M., R. Azcon and M. Gomez (1995) Effect of Arbuscular-mycorrhizal Glomus species on drought tolerance: physiological and nutritional plant responses. Applied and Environmental Microbiology 61 (2): 456-460.
Sanchez, F. J., M. Manzanares, E. F. Andres, J. L. Tenorio and L. Averbe (1998) Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress. Field Crops Res. 59: 225-235.
Schellenbaum, L. M., J. Muller, T. Boller, A. Wienken and H. Schtepp (1998) Effects on drought on non-mycorrhizal and mycorrhizal maize: changes in the pools of non-structural carhydrates, in the activities of invertase and trehalase, and in the pools of amino acids and imino acids. New Phytol. 138: 59-66.
Sieverding, E. and S. T. Toro (1988) Influence of soil moisture regime on VA-mycorrhiza V. Performance of different VAM fungal species with cassava. Agronomy and Crop Science 161: 322-332.
Slavỉk, B. (1974) Methods of studying plant water relations. Springer-Verlag, New York.
Smith, S. E., V. Gianinazzi-Pearson, R. Koide and J. W. G. Cairney (1994) Nutrient transport in mycorrhiza: structure, physiology and consequences for efficiency of symbiosis. Plant and Soil 159: 103-113.
Subramanian, K. S. and C. Charest (1995) Influence of arbuscular mycorrhizas on the metabolism of maize under drought stress. Mycorrhiza 5: 273-278.
Subramanian, K. S., C. Charest, L. M. Dwyer and R. I. Hamilton (1995) Arbuscular mycorrhizas and water relations in maize under drought stress at tasseling. New Phytol. 129: 643-650.
Sylvia, D. M. and L. H. Neal (1990) Nitrogen affects the phosphorus reponse of VA mycorrhiza. New Phytol. 115:303-310.
Thompson, J. B. (1986) Soilless culture of vesicular-arbuscular mycorrhizae of cereals: effects of nutrient concentration and nitrogen source. Canadian Journal of Botany 64: 2282-2294.
Thomson, T. Edathil, S. Manian and K. Udaiyan (1996) Interaction of multiple VAM fungal species on root colonization, plant growth and nutrient status of tomato seedlings. Agriculture, Ecosystems and Environment 59: 63-68.
Troll, W. and J. Lindsley (1955) A photometric method for the determination of proline. The Journal of Biological Chemistry 215: 655-660.
Vazquez, M. M., R. Azcon and J. M. Barea (2001) Compatibility of a wild type and its genetically modified Sinorhizobium strain with mycorrhizal fungi on Medicago species as affected by drought stress. Plant Science 161: 347-358.
Wilson, D. O. (1988) Differential plant response to inoculation with two VA-mycorrhizal fungi isolated from a low pH soil. Plant Soil 110: 69-75.
Wu, Q. S. and R. X. Xia (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology 163: 417-425.
朱德民 (1984) 植物對缺水適應性- (一) 滲透調節作用-膨壓維持。科學農業 32 (1-2): 21-26。
朱德民 (1995) 植物與環境逆境。國立編譯館。明文書局。13-64頁。
弓明欽、陳應龍、仲崇錄 (1997) 菌根研究及應用。中國林業出版社。
余卓玲、梁計南 (2005) VA菌根真菌對植物吸收能力及抗逆性的影響研究進展。廣東農業科學 3: 44-47。
宋會興、鐘章成 (2006) 乾旱生境中VA菌根對宿主植物的影響及其機制。土壤通報 37(4): 787-791。
吳強盛、夏仁學 (2004) VA菌根與植物水分代謝的關係。園藝園林科學 20 (1): 188-192。
吳繼光、林素禎 (1998) 囊叢枝內生菌根菌應用技術手冊。台灣省農業試驗所印行。
李曉林、曹一平 (1992) 菌根和非菌根三葉草根際土壤磷鉀濃度變化。土壤通報 23: 180-182。
李愛榮、管開雲 (2006) 叢枝菌根養分吸收和轉運機制的研究歷史與進展。微生物學雜誌 26 (4): 72-76。
胡弘道 (1990) 林木菌根。千華出版公司。666頁。
郝會軍、劉英、王洪波、丁雪珍 (2007) VA菌根與植物礦質營養的研究進展。安微農業科學 35 (4): 978-979。
畢銀麗 (2007) 叢枝菌根培養新技術及其對土地復墾生態效應。地質出版社,北京。
許謙信 (2004) 菊花葉片之可溶性固形之變化與老化之關係。台中區農業改良場研究彙報84: 11-28。
陶紅群、李曉林、張俊伶 (1998) 叢枝菌根菌絲對重金屬Zn和Cd吸收的研究。環境科學學報18 (5): 545-548。
廖天賜、翁仁憲、劉如章 (2002) 塔塔加亞高山植物葉片水分潛勢對光合作用之影響及葉片水分潛勢之季節變化。中華林學季刊35(2):163-170。
劉仕平、張玲琪、李成雲、郭仕平、楊春燕 (2003) VA菌根營養生理研究概況及其應用前景。西南農叢學報 16 (2): 93-97。
劉業經、呂福原、歐辰雄 (1987) 臺灣樹木誌。國立中興大學農學院叢書。
劉潤進、李曉林 (2000) 叢枝菌根及其應用。科學出版社。
劉潤進、陳應龍 (2007) 菌根學。科學出版社。
潘慶民、韓興國、白永飛、楊景成 (2002) 植物非結構性貯藏碳水化合物的生理生態學研究進展。植物學通報 19 (1): 30-38。
顏江河、唐盛林 (2000) 兩種闊葉樹菌根之研究。林業研究季刊 22(2): 37-44。
顏江河、鍾旭和 (1991) 台灣杉幼苗感染Scutellospora migra內生菌根之觀察。林業試驗所研究報告季刊 5(1): 51-60。
顏江河、鍾旭和 (1994) 菌根接種與土壤含水量對台灣杉幼苗生長之影響。林業試驗所研究報告季刊 9(4): 291-298。
Ackerson, R. C. (1981) Osmoregulation in cotton in response to water stress. Plant Phytol. 67: 489-493.
Ahmad Khan, I., A. Shahbaz and M. Sarwat (2003) Yield and water use efficiency (WUE) of Avena sativa as influenced by vesicular arbuscular mycorrhizae (VAM). Asian J. Plant Sci. 2 (4): 371-373.
Aliasgarzal, N., M. R. Neyshabouri and G. Salimi (2006) Effects of arbuscular mycorrhizal fungi and bradyrhizobium japonicum on drought stress of soybean. Biologia 61 (19) : 324-328.
Andersen, C. P., A. H. Markhart, R.K. Dixon and E. I. Sucoff (1988) Root hydraulic conductivity of vesicular-arbuscular mycorrhizal green ash seedlings. New Phytol. 109: 465-471.
Auge, R. M. (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11: 3-42.
Auge, R. M. (2004) Arbuscular mycorrhizae and soil/plant water relations. Canadian Journal of Soil Science 84: 373-381.
Auge, R. M., K. A. Scheke and R. L. Wample (1986) Greater leaf conductance of VA mycorrhizal rose plants is not related to phosphorus nutrition. New Phytol. 103: 107-116.
Auge, R. M., K. A. Scheke and R. L. Wample (1986) Osmotic adjustment in leaves of VA mycorrhizal nonmycorrhizal rose plants in reponse to drought stress. Plant Physiol. 82: 765-770.
Auge, R. M., K. A. Scheke and R. L. Wample (1987) Leaf water and carbohydrate status of VA mycorrhizal rose exposed to drought stress. Plant Soil 99: 291-302.
Bago, B., H. Vierheilig, Y. Piche and C. Azcon-Aguilar (1996) Nitrate depletion and pH changes induced by the extraradical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices growth in monoxenicculture. New Phytol. 133: 273-280.
Bartschi, H., V. Gianinazzi-Pearson and I. Vegh (1981) Vesicular-arbuscular mycorrhiza formation and root rot disease (Phytophthora cinnamomi) development in Chamaecyparis lawsoniana. Journal of Phytopathology 102: 213-218.
Bates, L. S., R. P. Waldren and I. D. Teare (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39: 205-207.
Becard, G., D. D. Douds and P. E. Pfeffer (1992) Extensive in vitro hyphal growth of vesicular-arbuscular mycorrhizal fungi in the presense of CO2 and flavonols. Appl. Environ. Mycrobiol. 58: 821-825.
Bereau, M., T. S. Barigah, E. Louisanna and J. Garbaye (2000) Effects of endomycorrhizal development and light regimes on the growth of Dicorynia guianensis Amshoff seedlings. Ann. For. Sci. 57: 725-733.
Bethlenfalvay, G. J., M. S. Brown, R.N. Ames and R.S Thomas. (1988) Effects of drought on host and endophyte development in mycorrhizal soybeans in relation to water use and phosphate uptake. Physiol. Plant 72: 565-571.
Brundrett, M. C., Y. Piche and R. L. Peterson (1984) A new method for observing the morphology of vesicular-arbuscular mycorrhizae. Canadian Journal of Botany 62: 2128-2134.
Busse, M. D. and J. R. Eillis (1985) Vesicular-arbuscula mycorrhizal (Glomus fasciculatm) influence on soybean drought tolerance in high-phosphorus soil. Can. J. Bot. 63: 2290-2294.
Chambers, C. S., S. E. Smith, and F. A. Smith (1980) Effects of ammonium and nitrate ions on mycorrhizal infection, nodulation and growth of Trifolium subterraneum. New Phytol. 85:47-62.
Dehn, B. D. and H. Schuepp (1989) Influence of VA mycorrhizas on the uptake and distribution of heavy metals in plants. Agr. Ecosystems Environ 29: 79-83.
Duan, X., D. S. Meuman, J. M. Reiber, C. D. Saxton and R. M. Auge (1996) Mycorrhizal influence on hydraulic and hormonal factors involved in the control of stomatal conductance during drought. J. Exp. Bot. 47: 151-155.
EI-Kherbawy, M. and J. S. Angle (1989) Soil pH, rhizobia and vesicular-mycorrhizas inoculation effects on growth and heavy metal uptake of alfalfa (Medicago sativa L.). Biol. Fertil Soil 8: 61-59.
El-Kherbawy, M., J. S. Angle, A. Heggo and R. L. Chaney (1989) Soil pH, rhizobia, and vesicular-arbuscular mycorrhizae inoculation effects on growth and heavy metal uptake of alfalfa (Medicago sativa L.). Biol. Fertil. Soils 8: 61-65.
Faber, B. A., R. J. Zasoske, D. N. Munns and K. Shackel (1991) A method for measuring hyphal nutrition and water uptake in mycorrhizal plants. Can. J. Bot. 69: 87-94.
Fitter, A. H. (1988) Water relations of red clover Trifolium pretense L. as affected by VA mycorrhizal infection and phosphorus supply before and during drought. J. Exp. Bot. 39: 595-603.
Furlan, Valentin and J. Andre Fortin (1981) Growth stimulation of apple trees in unsterilized soil under field conditions with VA mycorrhiza inoculation. Canadian Journal of Botany 59:2003-2008.
Gadkar, V., S. R. David, T. Kuni and Y. Kapulnik (2001) Arbuscular mycorrhizal fungi colonization factors involved in host recognition. Plant Physiol. 127: 1493-1499.
Garroick, M. L., R. L. Peterson and C. A. Ackerley (1989) Early stages in colonization of Allium Porrum (leek) roots by the vesicular- arbuscular mycorrhizal fungus, Gloms versiforme. New Phytol. 112: 85-92.
Garu, A. and A. Adholeya (2000) Effects of the particle size of soil-less substrate upon AM fungus inoculum production. Mycorrhiza 10: 43-48.
Gerdemann, J. W. and T. H. Nicolson (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society 46: 235-244.
Gibson, S. I. (2000) Plant sugar-response pathway. Part of a complex regulatory web. Plant Phytol. 124: 1532-139.
Gnekow, M. A. and H. Marschner (1989) Role of VA-mycorrhiza in growth and mineral nutrition of apple (Malus pumila var. domestica) rootstock cuttings. Plant and Soil 119: 285-293.
Goicoechea, N., M. C. Antolin and M. Sanchez-Diaz (1997) Influence of arbuscular mycorrhizae and Rhizobium on nutrient content and water relations in drought stressed alfalfa. Plant and Soil 192: 261-268.
Graham, J. H., R. G. Linderman and J. A. Menge (1982) Development of external hyphae by different isolates of mycorrhizal Glomus spp. in relation to colonization and growth of Troyer citrange. New Phytol. 91: 183-189.
Hamblin, A. P. (1985) The influence of soil structure on water movement crop root growth and water uptake. Adv. Agron. 38: 95-158.
Haugen, L. M. and S. E. Smith (1992) The effect of high temperature and fallow period on infection of mung bean and cashew roots by the vesicular-arbuscular mycorrhizal fungus Glomus intraradices. Plant and Soil 145: 71-80.
Hooker, J. E. and K. E. Black (1995) Arbuscular mycorrhizal fungi as components of sustainable soil-plant systems. Crit. Rev. Biotechnol 15: 201-212.
Hoystead, A., N. Malajczuk and T. S. Grove (1998) Underground transfer of nitrogen between pasture plant infected with vesicular-mycorrhizal fungi. Plant and Soil 201: 417-423.
Jonhson, C. R., W. M. Jarrell and J. A. Menge (1984) Influence of ammonium: nitrate ratio and solution pH on mycorrhizal infection, growth and nutrient composition of Chrysanthemum morifolium var. Circus. Plant and Soil 77:151-157.
Koide, R. T. (1991) Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytol. 117: 365-386.
Koide, R. T. and Z. Kabir (2000) Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytol. 148: 511-517.
Kothari, S. K., H. Marschener and E. George (1990) Effect of VA mycorrhizal fungi and rhizosphere micro-organisms on root and shoot morphology, growth and water relations of maize. New Phytol. 116: 303-311.
MacDonald, C. C. (1977) Methods of soil and tissue analysis used in the analytical laboratory. Canadian Forestry Service Information Report MM-X-78.
Maggio, A., M. P. Reddy and R. J. Joly (2000) Leaf gas exchange and soluble accumulation in the halophyte Salvadora persica grown at moderate salinity. Environ. Exp. Bot. 44: 31-38.
McLean, E. O. (1982) Soil pH and lime requirement. In A. L. Page et al. (eds.) Methods of soil analysis. Part 2.2nd ed. Agronomy 9: 199-223.
Medeiros, C. A. B., R. B. Clark and J. R. Eills (1994) Growth and nutrient uptake of sorghum cultivated with vesicular-arbuscular mycorrhiza isolates at varying pH. Mycorrhiza 4: 185-191.
Menge, J. A., D. Sterile, D. J. Bagyaraj, E. L. V. Johnson and R. T. Leonard (1978) Phosphorus concentrations in plants responsible for inhibition of mycorrhizal infection. New Phytol. 80: 575-578.
Michelsen, A. and S. Rosendahl (2000) The effect of VA mycorrhizal fungi, phosphorus and drought stress on the growth of Acacia nilotica and Leucaena leucocephala seedlins. Plant and Soil 124: 7-13.
Molles, C. Manuel (2002) Ecology Concepts and Applications. The McGraw-Hill Companies, Inc. p 352-353.
Moore, P. D. and S. B. Chapman (1986) Methods in plant ecology. 2nd edition. Blackwell Scientific Publications. Oxford, London, Edinburgh.
Morte, A., C. Lovisolo and A. Schubert (2000) Effect of drought stress on growth and water relations of mycorrhizal association Helianthemum almeriense-Terfezia claveryi. Mycorrhiza 10: 115-119.
Morton, J. B. (1988) Taxonomy of VA mycorrhizal fungi: classification, nomenclature, and identification. Mycotaxon 32: 267-324.
Nagahshi, G., J. D. D. Douds and G. D. Abney (1996) Phosphorus amendment inhibits hyphal branching of the VAM fungus Giaspora margarita directly through its effect on root exudation. Mycorrhiza 6: 403-408.
Olson, S. R. and L. E. Sommers (1982) Phosphorus. In A. L. Page et al. (eds.) Methods of soil analysis. Part 2.2nd ed. Agronomy 9: 403-427.
Onguene, N. A. and M. Habte (1995) Nitrogen and phosphorus requirements for raising mycorrhizal seedlings of Leucaena leucocephala in containers. Mycorrhiza 5: 347-356.
Pacovsky, R. S. (1986) Micronutrient uptake and distribution in mycorrhizal or phosphorus- fertilized soybeans. Plant and Soil 95: 379-388.
Perry, D. A. (1994) Forest ecosystems. The John Hopkins University Press, Baltimore and London, USA. pp398-438.
Pier, C. L. and G. A. Berkowitz (1987) Modulation of water stress effects on photosynthesis by altered leaf K+. Plant Physiol. 85: 655-661.
Pinior, A., G. G. Stocker, H. von Alten and R. J. Strasser (2005) Mycorrhizal impact on drought stress tolerance of rose plants probed by chlorophyll a fluorescence, praline content and visual scoring. Mycorrhiza 15: 596-605.
Porcel, R. and J. M. Ruiz-Lozano (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. Journal of Experimental Botany 55: 1743-1750
Quick, W. P., M. M. Chaves, R. Wendler and M. David (1992) The effect of water stress on photosynthetic carbon metabolism in four speices grown under field conditions. Plant Cell and Environment 15: 25-35.
Rhoades, J. D. (1982) Cation exchange capacity. In A. L. Page et al. (eds.) Methods of soil analysis. Part 2.2nd ed. Agronomy 9: 149-157.
Rubio, R., F. Borie, C. Schalchli, C. Castillo and R. Azcon (2003) Occurrence and effect of arbuscular mycorrhizal propagules in wheat as affected by the source and amount of phosphorus fertilizer and fungal inoculation. Applied Soil Ecology 23: 245-255.
Ruiz-Lozano, J. M. (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress, new perspectives for molecular studies. Mycorrhiza 13: 309-317.
Ruiz-Lozano, J. M., R. Azcon and M. Gomez (1995) Effect of Arbuscular-mycorrhizal Glomus species on drought tolerance: physiological and nutritional plant responses. Applied and Environmental Microbiology 61 (2): 456-460.
Sanchez, F. J., M. Manzanares, E. F. Andres, J. L. Tenorio and L. Averbe (1998) Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress. Field Crops Res. 59: 225-235.
Schellenbaum, L. M., J. Muller, T. Boller, A. Wienken and H. Schtepp (1998) Effects on drought on non-mycorrhizal and mycorrhizal maize: changes in the pools of non-structural carhydrates, in the activities of invertase and trehalase, and in the pools of amino acids and imino acids. New Phytol. 138: 59-66.
Sieverding, E. and S. T. Toro (1988) Influence of soil moisture regime on VA-mycorrhiza V. Performance of different VAM fungal species with cassava. Agronomy and Crop Science 161: 322-332.
Slavỉk, B. (1974) Methods of studying plant water relations. Springer-Verlag, New York.
Smith, S. E., V. Gianinazzi-Pearson, R. Koide and J. W. G. Cairney (1994) Nutrient transport in mycorrhiza: structure, physiology and consequences for efficiency of symbiosis. Plant and Soil 159: 103-113.
Subramanian, K. S. and C. Charest (1995) Influence of arbuscular mycorrhizas on the metabolism of maize under drought stress. Mycorrhiza 5: 273-278.
Subramanian, K. S., C. Charest, L. M. Dwyer and R. I. Hamilton (1995) Arbuscular mycorrhizas and water relations in maize under drought stress at tasseling. New Phytol. 129: 643-650.
Sylvia, D. M. and L. H. Neal (1990) Nitrogen affects the phosphorus reponse of VA mycorrhiza. New Phytol. 115:303-310.
Thompson, J. B. (1986) Soilless culture of vesicular-arbuscular mycorrhizae of cereals: effects of nutrient concentration and nitrogen source. Canadian Journal of Botany 64: 2282-2294.
Thomson, T. Edathil, S. Manian and K. Udaiyan (1996) Interaction of multiple VAM fungal species on root colonization, plant growth and nutrient status of tomato seedlings. Agriculture, Ecosystems and Environment 59: 63-68.
Troll, W. and J. Lindsley (1955) A photometric method for the determination of proline. The Journal of Biological Chemistry 215: 655-660.
Vazquez, M. M., R. Azcon and J. M. Barea (2001) Compatibility of a wild type and its genetically modified Sinorhizobium strain with mycorrhizal fungi on Medicago species as affected by drought stress. Plant Science 161: 347-358.
Wilson, D. O. (1988) Differential plant response to inoculation with two VA-mycorrhizal fungi isolated from a low pH soil. Plant Soil 110: 69-75.
Wu, Q. S. and R. X. Xia (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology 163: 417-425.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top