跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/31 01:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡文錫
研究生(外文):Wen-Shi Tsai
論文名稱:南亞及東南亞辣椒脈斑駁病毒與台灣及菲律賓番茄Begomovirus分子特性之研究及番茄捲葉病毒轉基因抗性之研發
論文名稱(外文):Molecular characterization of Chilli veinal mottle virus from South and Southeast Asia and tomato begomoviruses fromthe Philippines and Taiwan, and development of transgenic resistance to Tomato leaf curl Taiwan virus
指導教授:詹富智
指導教授(外文):Fuh-Jyh Jan
學位類別:博士
校院名稱:國立中興大學
系所名稱:植物病理學系所
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
畢業學年度:96
語文別:英文
論文頁數:134
中文關鍵詞:Begomovirus核酸序列氨基酸序列轉基因番茄演化分析
外文關鍵詞:Begomovirusamino acid sequencenucleotide sequencetransgenic tomatophylogenic analysis
相關次數:
  • 被引用被引用:2
  • 點閱點閱:275
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
感染番茄的begomoviruses引起廣泛性的嚴重病害,曾經在許多地區造成高達百分之百生產損失。台灣於1981年首次發現此病害,目前則是全省性的廣泛分佈。從台灣已鑑定出四個感染番茄的begomoviruses,包括Ageratum yellow vein Hualien virus (AYVHuV),Tomato leaf curl Hsinchu virus (ToLCHsV),Tomato leaf curl Taiwan virus (ToLCTWV)和Tomato yellow leaf curl Thailand virus (TYLCTHV)。2007年發現,單基因體的ToLCTWV和雙基因體的TYLCTHV為主要分佈者。所有抗ToLVTWV的種原,包括L. esculentum,L. hirsutum,L. peruvianum和L. chilense,皆對TYLCTHV無抗性。菲律賓於1971年首次發現番茄begomoviruses引起的病害。從菲律賓偵測到五個番茄begomoviruses,包括Ageratum yellow vein China virus (AYVCNV),Tomato leaf curl Cebu virus (ToLCCeV),Tomato leaf curl Cotabato virus (ToLCCoV),Tomato leaf curl Mindanao virus (ToLCMiV)和Tomato leaf curl Philippines virus (ToLCPV)。在番椒上亦測得ToLCPV和ToLCCeV。在呂宋島的葫蘆科植物測得另外二個begomoviruses,為Squash leaf curl China virus 和Squash leaf curl Philippines virus。呂宋島測得ToLCPV和ToLCCeV,而宿霧島則只測得ToLCCeV。民達那峨島的狀況較複雜,共有AYVCNV,ToLCCeV,ToLCCoV及ToLCMiV等四個病毒。此等的病毒歧異狀況,為發展有效疾病管理所必需考慮者。由於病毒差異性和寄主抗性的不穩定性,發展源自病毒引發的抗性(virus-derived resistance)可作為另一有效的病毒防治策略。利用三個病毒引發抗性的策略發展抗ToLCTWV的轉基因番茄,包括利用基因反意股, silencer-linked和IR flanked with the 5’ C1 and 5’ V2。初步結果顯示源自C2所產生的R0植物抗病毒性較高,可達100%。由IR flanked with the 5’ C1 and 5’ V2所產生的R1植物亦具有較高抗病毒性,抗性可達67%。這二個病毒基因體片段可適用於發展多重抗病毒性的轉基因番茄,以抵抗begomoviruses及其他重要的番茄病毒,如tospovirus和胡瓜嵌紋病毒等。Chilli veinal mottle virus (ChiVMV)是另一個感染茄科作物的重要病毒。由南亞及東南亞分離的24個ChiVMV病毒分離株,經定序及分析其基因相關性,結果與已發表的ChiVMV有高相似度,其CP氨基酸和核酸序列分別有超過94.8和89.5%相似度,因此全部24個分離株均歸屬於ChiVMV。分析其演化關係,所有ChiVMV分離株可分為3群。此外,ChiVMV和Pepper veinal mottle virus (PVMV) CP基因的C端,有一長204個氨基酸的保留區,其氨基酸序列相似度大於90.2%。此高相似度保留區可解釋此兩種病毒之間的血清學交互回應。另外,此保留區,亦可用以發展同時抗ChiVMV和PVMV的轉基因作物。
World-wide distributed tomato-infecting begomoviruses cause severe disease epidemics and possibly up to 100% yield losses. In Taiwan, the disease was first observed in 1981 and now distributed throughout the island. Four tomato-infecting begomoviruses have been determined, including Ageratum yellow vein Hualien virus (AYVHuV), Tomato leaf curl Hsinchu virus (ToLCHsV), Tomato leaf curl Taiwan virus (ToLCTWV) and Tomato yellow leaf curl Thailand virus (TYLCTHV). As 2007, the monopartite ToLCTWV and the bipartite TYLCTHV were determined as the two most predominant ones. All currently available ToLVTWV resistant sources, including L. esculentum, L. hirsutum, L. peruvianum and L. chilense can not hold up against TYLCTHV. In the Philippines, tomato-infecting begomovirus disease was first observed in 1971. Five tomato-infecting begomoviruses were detected, including Ageratum yellow vein China virus (AYVCNV), Tomato leaf curl Cebu virus (ToLCCeV), Tomato leaf curl Cotabato virus (ToLCCoV), Tomato leaf curl Mindanao virus (ToLCMiV) and Tomato leaf curl Philippines virus (ToLCPV). ToLCPV and ToLCCeV were also detected in symptomatic peppers. Two cucurbit-infecting begomoviruses, Squash leaf curl China virus and Squash leaf curl Philippines virus were detected in Luzon Island. ToLCPV and ToLCCeV were found in Luzon Island, whereas only ToLCCeV was detected in Cebu Island. Begomoviruses were more diverse in Mindanao Island, where four tomato-infecting begomoviruses, AYVCNV, ToLCCeV, ToLCCoV and ToLCMiV have been detected. The virus diversity should be considered in the development of effective disease management practices. Based on the virus diversity and unstability of host resistance, virus-derived resistance (VDR) provides an alternative strategy to control these viruses. Transgenic tomato plants against ToLCTWV were developed based on three VIR strategies, including anti-sense, silencer DNA-linked and IR flanked with the 5’ C1 and 5’ V2. Preliminary results showed that high virus resistance (up to 100 % resistance) of R0 plants was developed by constructs generated from C2. Highest virus resistance (up to 67 %) of R1 plants was found in the construct of IR flanked with the 5’C1 and 5’V2. Both virus genomic regions may be useful for the development of multiple-virus resistance targeting begomoviruses and other important tomato-infecting viruses, such as tospovirus and Cucumber mosaic virus. Chilli veinal mottle virus (ChiVMV) is another important Solanaceae-infecting virus. Twenty-four ChiVMV isolates from South and Southeast Asia have been analyzed to determine their genetic relationships. All 24 isolates were considered as belonging to ChiVMV because of their high CP amino acid and nucleotide identity (>94.8 and 89.5%, respectively) with the reported ChiVMV. Based on the phylogenic analysis, ChiVMV isolates was classified into three groups. A conserved region (204 amino acids located at C terminal of CP gene) has been identified among ChiVMV and Pepper veinal mottle virus (PVMV). Their high amino acid identity (> 90.2%) may explain the serological cross-reaction between these two viruses. The conserved region may also provide useful information for developing transgenic resistance to both ChiVMV and PVMV.
摘要……………………………………………………………………1
Abstract …………………………………………………………………3

Chapter 1 Introduction and literature review ………………………5
第一章、前言及前人研究
References………………………………………………………………10
Tables and Figures………………………………………………………19
Chapter 2 Molecular diversity and agroinfection of tomato-infecting begomoviruses in Taiwan …………………………………22
第二章、台灣感染番茄的Begomoviruses之分子歧異性及其農桿菌接種感染
Abstract …………………………………………………………………23
Introduction ……………………………………………………………24
Materials and methods …………………………………………………25
Virus detection and sequencing …………………………………………25
Survey for tomato-infecting begomoviruses ………………………………26
Sequence analysis ……………………………………………………26
Infectious clone construction ……………………………………………27
Agroinoculation of tomato and tobacco plants ……………………………28
Results …………………………………………………………………28
Viral DNAs detection and sequencing …………………………………28
Virus survey …………………………………………………………29
Sequence comparison and phylogenetic analysis of viral DNAs ……………29
Infectivity assay of cloned viral DNA-As ………………………………30
Discussion ………………………………………………………………30
References ………………………………………………………………33
Tables and Figures ………………………………………………………37

Chapter 3 Molecular identification of the newly emerged
Tomato yellow leaf curl Thailand virus in Taiwan ………46
第三章、台灣新發生之番茄黃化卷葉泰國病毒的分子特性
Abstract …………………………………………………………………47
Introduction ……………………………………………………………48
Materials and methods ……………………………………………49
Virus detection and sequencing …………………………………………49
Survey for tomato-infecting begomoviruses ………………………………49
Sequence analysis ……………………………………………………50
Infectious clone construction ……………………………………………51
Agroinoculation of tomato and tobacco plants ……………………………52
Screening of ToLCTWV resistance sources for TYLCTHV resistance ………53
Results …………………………………………………………………53
Viral DNAs detection and sequencing …………………………………53
Virus survey …………………………………………………………54
Infectivity assay of cloned viral DNA-As ………………………………54
Screening of ToLCTWV resistance sources for TYLCTHV resistance ………55
Discussion ………………………………………………………………55
References ………………………………………………………………57
Tables and Figures ………………………………………………………60

Chapter 4 Molecular identification of begomoviruses infecting Sloanaceae and Cucurbitaceae crops in the Philippines …68
第四章、菲律賓感染茄科及葫蘆科作物的Begomoviruses
之分子特性鑑定
Abstract …………………………………………………………………69
Introduction …………………………………………………………70
Materials and methods ……………………………………………71
Viral DNAs detection of symptomatic samples …………………………71
Cloning and sequencing of begomoviral DNA-As …………………………72
Sequence analysis …………………………………………………73
Results …………………………………………………………………77
Viral DNAs detection of symptomatic samples …………………………77
Cloning and sequencing of begomoviral DNA-As …………………………77
Sequence comparison and phylogenetic analysis of viral DNA-As …………78
Discussion ………………………………………………………………79
References ………………………………………………………………81
Tables and Figures ………………………………………………………85

Chapter 5 Development of transgenic resistance to Tomato leaf curl Taiwan virus ………92
第五章、番茄捲葉病毒轉基因抗性之研發
Abstract …………………………………………………………………93
Introduction …………………………………………………………94
Materials and methods ……………………………………………95
Plant selection for gene transformation and virus strain …………………95
Amplification of viral gene fragments by PCR ……………………………96
Preparation of plant gene expression and transformation vectors ……………96
Construction of plant gene transformation vectors ………………………97
Plant transformation and regeneration ……………………………………97
PCR analysis of virus gene fragment in transgenic tomato plants……………98
Screening for ToLCTWV resistance ……………………………………98
Results …………………………………………………………………99
Plant selection for gene transformation …………………………………99
Tomato plant transformation ……………………………………………99
Screening for ToLCTWV resistance ……………………………………99
Discussion ………………………………………………………………100
References ………………………………………………………………101
Tables and Figures ………………………………………………………105

Chapter 6 Molecular characterization of the CP gene and 3′UTR of Chilli veinal mottle virus from South and Southeast Asia …111
第六章、南亞及東南亞辣椒脈斑駁病毒鞘蛋白基因
及3端非轉譯區分子特性之鑑定
Abstract …………………………………………………………………112
Introduction …………………………………………………………113
Materials and methods ……………………………………………114
Virus isolation ………………………………………………………114
Viral cDNA synthesis, PCR amplification, cloning and sequencing …………115
Nucleotide sequence analysis ………………………………………116
Results …………………………………………………………………117
Virus isolation ………………………………………………………117
Viral cDNA cloning, sequencing and analysis ……………………………117
Comparison and phylogenetic relationship of the viral CP gene and 3’UTR of the ChiVMV …………………………………………………………118
Alignment of the viral CP gene and 3’UTR between the ChiVMV and PVMV isolates ………………………………………………………………118
Discussion ………………………………………………………………119
References ………………………………………………………………121
Tables and Figures …………………………………126

Chapter 7 Conclusion remarks…………………………………131
第七章、結論
Chapter 1
References
Anandalakshmi R, Pruss GJ, Ge X, Marathe R, Mallory AC, Smith TH, Vance VB, 1998. A viral suppressor of gene silencing in plants. Proceedings of the National Academy of Sciences, USA 95, 13079-84.
Anon, 2007. FAO Statistical Data, 2007. Food and Agriculture Organization of the United Nations (http://faostat.fao.org/)
Atreya CD, Atreya PL, Thornbury DW, Pirone TP, 1992. Site-directed mutations in the potyvirus HC-PRO gene affect helper component activity, virus accumulation, and symptoms expression in infected tobacco plants. Virology 191, 106-11.
Atreya CD, Raccah B, Pirone TP, 1990. A point mutation in the coat protein abolishes aphid transmissibility of a potyvirus. Virology 178, 161-5.
Bedford ID, Briddon RW, Jones P, Alkaff N, Markham PG., 1994. Differentiation of three whitefly-transmitted geminiviruses from the Republic of Yemen. European Journal of Plant Pathology 100, 243-57.
Behjatnia SAA, Dry IB, Rezaian MA, 1998. Identification of the replication-associated protein binding domain within the intergenic region of tomato leaf curl geminivirus. Nucleic Acids Research 26, 925-31.
Bisaro DM, 1994. Recombination in geminiviruses: Mechanisms for maintaining genome size and generating genomic diversity. In: Paszkowski J, ed. Homologous recombination and gene silencing in plants. Dordrecht, the Netherlands: Kluwer Academic Publishers, 39–60.
Briddon RW, Markham PG., 1995. Geminiviridae. In: Murphy FA, Fauquet CM, Bishop DHL, Ghabrial SA, Jarvis AW, Martelli G.P, Mayo MA, Summers MD, eds. Virus taxonomy: classification and nomenclature of viruses. New York, USA: Springer, 158-65.
Brigneti G, Voinett O, Li WX, Ji LH, Ding SW, Baulcombe DC, 1998. Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. The EMBO Journal 17, 6739-46.
Brown JK, 2001. The molecular epidemiology of begomoviruses. In: Khan JA, Dykstra J, eds. Trends in Plant Virology. New York, USA: Haworth Press, 279–315.
Bull SE, Tsai WS, Briddon RW, Markham PG., Stanley J, Green SK, 2004. Diversity of begomovirus DNA β satellites of non-malvaceous plants in South East Asia. Archives of Virology 149, 1193-200.
Carrington JC, Freed DD, Sanders TC, 1989a. Autocatalytical processing of the potyvirus helper component proteinase in Escherichia coli and in vitro. Journal of Virology 63, 4459-63.
Carrington JC, Cary SM, Parks TD, Dougherty WG, 1989b. A second proteinase encoded by a plant potyvirus genom. The EMBO Journal 8, 365-70.
Carrington JC, Freed DD, Oh CS, 1990. Expression of the potyviral polyproteins in transgenic plants reveals three proteolytic activities required for complete processing. The EMBO Journal 9, 1347-53.
Carrington JC, Jensen PE, Schaad MC, 1998. Genetic evidence for an essential role for potyvirus CI protein in cell-to-cell movement. The Plant Journal 14, 393-400.
Channarayappa, Shivashankar G, Muniyappa V, Frist RH, 1992. Resistance of Lycopersicon species to Bemisia tabaci, a tomato leaf curl virus vector. Canada Journal of Botany 70, 2184-92.
Chellappan P, Vanitharani R, Fauquet CM, 2005. Micro RNA-binding viral protein interferes with Arabidopsis development. Proceedings of the National Academy of Sciences, USA 102, 10381-6.
Cui X, Li G, Wang D, Hu D, and Zhou X, 2005. A begomovirus DNAβ-encoded protein binds DNA, functions as a suppressor of RNA silencing, and targets the cell nucleus. Journal of virology 79, 10764-75.
Cui X, Tao X, Xie Y, Fauquet CM, and Zhou X, 2004. A DNAβ associated with Tomato yellow leaf curl China virus is required for symptom induction. Journal of virology 78, 13966-74.
Dahan R, 1985. Lycopersicon pennellii as a source for resistance to the tobacco whitefly Bemisia tabaci in tomato. Be’er Sheva, Israel: Ben Gurion University of the Negev, MS Thesis.
De Bokx JA, Huttinga H, 1981. Potato virus Y. CMI/AAB Descriptions of Plant Viruses No. 242. Kew, UK: Commonwealth Mycological Institute.
Dolja VV, HaldemanR, Robertson NL, Dougherty WG, Carrington JC, 1994. Distinct functions of capsid protein in assembly and movement of tobacco etch potyvirus in plants. The EMBO Journal 13, 1482-91.
Dolja VV, Haldeman-Cahill R, Montgomery AE, Vandenbosch KA, Carrington JC, 1995. Capsid protein determinants involved in cell-to-cell and long-distance movement of tobacco etch potyvirus. Virology 206, 1007-16.
Dougherty WG, Parks TD, Cary SM, Bazan JF, Fletterick RJ, 1989. Characterization of the catalytical residues of the Tobacco etch virus 49-kDa proteinase. Virology 172, 302-10.
Dougherty WG, Carrington JC, 1988. Expression and function of potyviral gene products. Annual Review of Phytopathology 26, 123-143.
Dry IB, Krake LR, Rigden JE, Rezaian MA, 1997. A novel subviral agent with a geminivirus: The first report of a DNA satellite. Proceedings of the National Academy of Sciences, USA 94, 7088-93.
Eagles RM, Balmorimelian E, Beck DL, Garnder RC, Foster RLS, 1994. Characteization of NTPase, RNA-binding and RNA-helicase activities of the cytoplasmic inclusion protein of tamarillo mosaic potyvirus. European Journal of Biochemistry 224, 677-84.
Fauquet CM, Briddon RW, Brown JK, Moriones E, Stanley J. Zerbini M, Zhou X, 2008. Geminivirus strain demarcation and nomenclature. Archives of Virology 153, 783-821.
Fauquet CM, Maxwell DP, Gronenborn B, Stanley J, 2000. Revised proposal for naming geminiviruses. Archives of Virology 145, 1743–61.
Fauquet CM, Mayo CM, Maniloff J, Desselberger U, Ball LA, 2005. Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Viruses. San Diego, CA, USA: Elsevier Academic Press, 301-26.
Fontes EPB, Eagle PA, Sipe PS, Luckow VA, Hanley-Bowdoin L, 1994. Interaction between a geminivirus replication protein and origin DNA is essential for viral replication. Journal of Biological Chemistry 269, 8459-65.
Gafni Y, 2003. Tomato yellow leaf curl virus, the intracellular dynamics of a plant DNA virus. Molecular Plant Pathology 4, 9-15.
Green SK, Shanmugasundaram S, 2007.AVRDC’s international networks to deal with the tomato yelloe leaf curl disease: the needs of developing countries. In: Czosnek H, ed. Tomato Yellow Leaf Curl Virus Disease: Management, molecular biology, breeding for resistance. Dordrecht, the Netherlands: Springer, 417-39.
Hanson P, Green SK, Kuo G, 2006. Ty-2, a gene on chromosome 11 conditioning geminivirus resistance in tomato. Report of the Tomato Genetic Cooperative 56, 17-8.
Hanson PM, Bernacchi D, Green SK, Tanksely SD, Muniyappa V, Padmaja AS, Chen H-M, Guo G, Fang D, Chen J-T, 2000. Mapping a wild tomato introgression associated with tomato yellow leaf curl virus resistance in a cultivated tomato line. Journal of the American Society for the Horticultural Science 125, 15-20.
Harrison BD, Robinson DJ, 1999. Natural genomic and antigenic variation in whitefly-transmitted geminiviruses (begomoviruses). Annual Review of Phytopathology 37, 369-98.
Hong Y, Hunt AG, 1996. RNA polymerase activity catalysed by a potyvirus encoded RNA-dependent RNA polymerase. Virology 226, 146-51.
Ji Y, Schuster DJ, Scott JW, 2007. Ty-3, a begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Molecular Breeding 20, 271-84.
Jones, 2003. Plant viruses transmitted by whiteflies. European Journal of Plant Pathology 109, 195-219.
Jones JB, Jones JP, Stall RE, Zitter TA, 1991. Compendium of tomato diseases. Minnesota, USA: The American Phytopathological Society.
Jovel J, Reski G., Rothenstein D, Ringel M, Frischnuth T, Jeske H, 2004. Sida micrantha mosaic is associated with a complex infection of begomoviruses different from Abutilon mosaic virus. Archives of Virology 149, 829–41.
Kasschau KD, Carrington JC, 1998. A counterdefensive strategy of plant viruses: Suppression of posttranscriptional gene silencing. Cell 95, 461-70.
Kitamura K, Murayama A, Ikegami M, 2004. Evidence for recombination among isolates of Tobacco leaf curl Japan virus and Honeysuckle yellow vein mosaic virus. Archives of Virology 146, 1221–9.
Klein PG, Klein RR, Rodrígues-Cerezo E, Hunt AG, Shaw JG, 1994. Mutational analysis of the Tobacco vein mottling virus genome. Virology 204, 759-69.
Laín S, Riechmann JL, GarcIa JA, 1990. RNA helicase: a novel activity associated with a protein encoded by a positive strand RNA virus. Nucleic Acids Research 18, 7003-6.
Lazarowitz SG., 1992. Geminiviruses: Genome structure and gene function. Critical Reviews in Plant Sciences 11, 327–49.
Leonard S, Plante D, Wittmann S, Daigneault N, Fortin MG, Laliberté JF, 2000. Complex formation between potyvirus VPg and translation eukaryotic initiation factor 4E correlates with virus infectivity. Journal of Virology 74, 7730-7.
Luafs J, Traut W, Heyraud F, Matzeit V, Rogers S, Schell J, Gronenborn B, 1995. In vitro cleavage and joining at the viral origin of replication by the replication initiator protein of tomato yellow leaf curl virus. Proceedings of the National Academy of Sciences, USA 92, 3879-83.
Mahajan S, Dolja VV, Carrington JC, 1996. Roles of the sequence encoding tobacco etch virus capsid protein in genome amplification: Requirements for the translation process and cis-active element. Journal of Virology 70, 4370-9.
Maruthi MN, Seal S, Colvin J, Briddon RW, Bull SE, 2004. East African cassava mosaic Zanzibar virus - a recombinant begomovirus species with a mild phenotype. Archives of Virology 149, 2365–77.
Merits A, Guo DY, Järvekülg L, Saarma M, 1999. Biochemical and genetic evidence for interaction between potato A potyvirus-encoded proteins P1 and P3 and proteins of the putative replication complex. Virology 263, 15-22.
Merits A, Guo DY, Saarma M, 1998. VPg, coat protein and five non-structural proteins of potato A potyvirus bind RNA in a sequence-unspecific manner. Journal of General Virology 79, 3123-7.
Navas-Castillo J, Sanches-Campos S, Noris E, Louro D, Accotto GP, Moriones E, 2000. Natural recombination between Tomato yellow leaf curl virus - Is and Tomato leaf curl virus. Journal of General Virology 81, 2797–801.
Nicolas O, Dunnington SW, Gotow LF, Pirone TP, Hellmann GM, 1997. Variations in the VPg protein allow a potyvirus to overcome va gene resistance in tobacco. Virology 237, 452-9.
Ong CA, Varghese G, Poh TW, 1980. The effect of Chilli veinal mottle virus on yield of chilli (Capsicum annuum L.). Malaysian Agriculture Research and Development Institute Research Bulletin 8, 7479.
Padidam M, Beachy RN, Fauquet CM, 1995. Classification and identification of geminiviruses using sequence comparisons. Journal of General Virology 76, 249–63.
Padidam M, Maxwell DP, Fauquet CM, 1997. A proposal for naming geminiviruses. Archives of Virology 142, 2553–62.
Padidam M, Sawyer S, Fauquet CM, 1999. Possible emergence of new geminiviruses by frequent recombination. Virology 265, 218–25.
Pascal E, Goodlove PE, Wu LC, Lazarowitz SG, 1993. Transgenic tobacco plants expressing the geminivirus BL1 protein exhibit symptoms of viral disease. Plant Cell 5, 795-807.
Pascal E, Sanderfoot AA, Ward BM, Medville R, Turgeon R, Lazarowitz SG, 1994. The geminivirus BR1 movement protein binds single-stranded DNA and localizes to the cell nucleus. Plant Cell 6, 995-1006.
Pernezny K, Roberts PD, Murphy JF, Goldberg NP, 2003. Compendium of pepper diseases. Minnesota, USA: The American Phytopathological Society.
Picó B, Díez MJ, Nuez F, 1996. Viral diseases causing the greatest economic losses to the tomato crop. II. The Tomato yellow leaf curl virus – a review. Scientia Horticulturae 67, 151-96.
Pirone TP, Thornbury DW, 1984. The involvement of a helper component in nonpersistent transmission of plant viruses by aphids. Microbiological Sciences 1, 191-3.
Pita JS, Fondong VN, Sangare A, Otim-Nape GW, Ogwal S, Fauquet CM, 2001. Recombination, pseudo-recombination and synergism of geminiviruses are determinant keys to the epidemic of the cassava mosaic disease in Uganda. Journal of General Virology 82, 655–61.
Rajamäki ML, Valkonen JPT, 1999. The 6K2 protein and the VPg of Potato virus A are determinants of systemic infection in Nicandra physaloides. Molecular Plant-Microbe Interaction 12, 1074-81.
Restrepo-Hartwig MA, Carrington JC, 1994. The tobacco etch potyvirus 6-kilodaltons protein is membrane bound-associated and involved in viral replication. Journal of Virology 68, 2388-97.
Ribeiro SG., Ambrozevicius B, Avil AC, Bezerra IC, Calegario RF, Fernandes JH, Lima MF, de Mello RN, Rocha H, F Zerbini.M, 2003. Distribution and genetic diversity of tomato infecting begomoviruses in Brazil. Archives of Virology 148, 281–95.
Riechmann JL, Lain S, Garcia JA, 1992. Highlights and prospects of potyvirus molecular biology. Journal of General Virology 73, 1-16.
Rigden JE, Krake LR, Rezaian MA, Dry I, 1994. ORF C4 of tomato leaf curl geminivirus is a determinant of symptom severity. Virology 204, 847-50.
Rodrígues-Cerezo E, Ammar ED, Pirone TP, Shaw JG, 1993. Association of the non-structural P3 viral protein with cylindrical inclusions in potyvirus-infected cells. Journal of General Virology 74, 1945-9.
Rojas MR, Zerbini FM, Allison RF, Gilbertson RL, Lucas WJ, 1997. Capsid protein and helper component-proteinase function as potyvirus cell-to-cell movement proteins. Virology 237, 283-95.
Sanz AI, Fraile A, Garcia-Arenal F, Zhou X, Robinson DJ, Khalid S, Butt T, Harrison BD, 2000. Multiple infection, recombination and genome relationships among begomovirus isolates found in cotton and other plants in Pakistan. Journal of General Virology 81, 1839–49.
Schaad MC, Haldeman-Cahill R, Cronin S, Carrington JC, 1996. Analysis of the VPg-proteinase (NIa) encoded by the tobacco etch potyvirus: Effects on mutations on subcellular transport, proteolytic processing, and genome amplification. Journal of Virology 70, 7039-48.
Settlage SB, See RG, Hanley-Bowdoin L, 2005. Geminivirus C3 protein: replication enhancement and protein interactions. Journal of Virology 79, 9885-95.
Shih SL, Green SK, Lee LM, Wang JT, Tsai WS, Ledesma DR, Chen JT, 2004. On-farm evaluation of tomato leaf curl disease control measures in Taiwan. Plant Protection Bulletin, ROC 46, 417-8.
Shukla DD, Ward CW, 1989. Structure of potyvirus coat proteins and its application in the taxonomy of potyvirus group. Advances in Virus Research 36, 273-314.
Shukla DD, Ward CW, Brunt AA, 1994. The Potyviridae. Oxon, UK: CAB International, 1-26.
Snyder JC, Carter CD, 1985. Trichomes on leaves of Lycopersicon hirsutum, L. esculentum and their hybrids. Euphytica 34, 53-64.
Torres-Pacheco I, Garzón-Tiznado JA, Herrera-Estrella L, Bustamante-Rivera RF, 1993. Complete nucleotide sequence of pepper huasteco virus: analysis and comparison with bipartite geminiviruses. Journal of General Virology 74, 2225–31.
Umaharan P, Padidam M, Phelps RH, Beachy RN, Fauquet CM, 1998. Distribution and diversity of geminiviruses in Trinidad and Tobago. Phytopathology 88, 1262–68.
Urcuqui-Inchima S, Haenni A-L, Bernardi F, 2001. Potyvirus proteins: a wealth of functions. Virus Research 74, 157-75.
Varma A, Malathi VG, 2003. Emerging geminivirus problems: A serious threat to crop production. Annals of Applied Biology 142, 145-64.
Verchot J, Carrington JC, 1995. Evidence that the P1 proteinase functions in tran as an accessory factor for genome amplification. Journal of Virology 69, 3668-74.
Verchot J, Koonin EV, Carrington JC, 1991. The 35-kDa protein from the N-terminus of the potyviral polyprotein functions as a third virus encoded proteinase. Virology 185, 527-30.
Wang H, Buckley KJ, Yang X, Buchmann RC, Bisaro, DM, 2005. Adenosine kinase inhibition and suppression of RNA silencing by geminivirus AL2 and L2 protein. Journal of Virology 79, 7410-8.
Wittman S, Chatel H, Fortin MG, Laliberte J-F, 1997. Interaction of the viral protein genome linked of turnip mosaic potyvirus using the yeast two-hybrid system. Virology 234, 84-92.
Xie Y, Zhou XP, 2003. Molecular characterization of squash leaf curl Yunnan virus, a new begomovirus and evidence for recombination. Archives of Virology 148, 2047–54.
Zamir D, Eksteinmichelson I, Zakay Y, Navot N, Zeidan M, Sarfatti M, Eshed Y, Harel E, Pleban T, Vanoss H, Kedar N, Rabinowitch HD, Czosnek H, 1994. Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, Ty-1. Theoretical and Applied Genetics 88, 141-6.
Zhou X, Liu Y, L Calvert, Munoz D, Otim-Nape GW, Robinson DJ, Harrison BD, 1997. Evidence that DNA-A of a geminivirus associated with severe Cassava mosaic disease in Uganda has arisen by interspecific recombination. Journal of General Virology 78, 2101-11.

Chapter 2
References
AVRDC, 1984. Progress Report 1982. Shanhua, Tainan, Taiwam, ROC: AVRDC-the World Vegetable Center, 41-3.
AVRDC, 2002. Progress Report 2001. Shanhua, Tainan, Taiwam, ROC: AVRDC-the World Vegetable Center, 2-8.
AVRDC, 2004. Progress Report 2003. Shanhua, Tainan, Taiwam, ROC: AVRDC-the World Vegetable Center, 67-9.
Chang L-S, Lee Y-S, Su H-J, Hung T-H, 2003. First Report of Papaya leaf curl virus Infecting Papaya Plants in Taiwan. Plant Disease 87, 204.
Cheng YH, Huang EL, Chang CA, 2004. Molecular characterization of a geminivirus infecting common Zinnia in Taiwan. Plant Pathology Bulletin, ROC 13, 353.
Chung ML, Liao CH, Chen MJ, Chiu RJ, 1985. The isolation, transmission and host range of sweet potato leaf curl disease agent in Taiwan. Plant Protection Bulletin 27, 333-41.
Czosnek H, 1999. Tomato yellow leaf curl virus-Israel. CMI/AAB Descriptions of plant viruses No. 368. Kew, UK: Commonwealth Mycological Institute.
Czosnek H, Laterrot H, 1997. A worldwide survey of tomato yellow leaf curl viruses. Archives of Virology 142, 1391-406.
Fauquet CM, Briddon RW, Brown JK, Moriones E, Stanley J. Zerbini M, Zhou X, 2008. Geminivirus strain demarcation and nomenclature. Archives of Virology 153, 783-821.
Fauquet CM, Mayo CM, Maniloff J, Desselberger U, Ball LA, 2005. Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Viruses. San Diego, CA, USA: Elsevier Academic Press, 301-26.
Gilbertson RL, Rojas MR, Kon T, Jaquez J, 2007. Introduction of Tomato yellow leaf curl virus into the Dominican Republic: the development of a successful integrated pest management strategy. In: Czosnek H, ed. Tomato Yellow Leaf Curl Virus Disease: Management, molecular biology, breeding for resistance. Dordrecht, the Netherlands: Springer, 279-303.
Gilbertson RL, Rojas MR, Russell DR, Maxwell DP, 1991. Use of the asymmetric polymerase chain reaction and DNA sequencing to determine genetic variability of bean golden mosaic geminivirus in the Dominican Republic. Journal of General Virology 72, 2843-8.
Green SK, Shanmugasundaram S, 2007. AVRDC’s international networks to deal with the tomato yellow leaf curl disease: the needs of developing countries. In: Czosnek H, ed. Tomato Yellow Leaf Curl Virus Disease: Management, molecular biology, breeding for resistance. Dordrecht, the Netherlands: Springer, 417-39.
Green SK, Sulyo Y, Lesemann DE, 1987. Outbreaks and New Records: Leaf curl virus on tomato in Taiwan Province. FAO Plant Protection Bulletin 35, 62.
Green SK, Tsai WS, Shih SL, Black LL, Rezaian A, Rashid MH, Roff MMN, Myint YY, Hong LTA, 2001. Molecular characterization of begomoviruses associated with leaf curl disease in Bangladesh, Laos, Malaysia, Myanmar, and Vietnam. Plant Disease 85, 1286.
Green SK, Tsai WS, Shih SL, Huang YC, Lee LM, 2005. Diversity of begomoviruses of tomato and weeds in Asia. In: Ku T-Y, Wang C-L, Chang C-A, eds. Proceeding of the International Seminar on Whitefly Management and Control Strategy. Taipei, Taiwan, ROC: Food and Fertilizer Technology Center for the Asian and Pacific Region, 19-66.
Hajdukiewicz P, Svab Z, Maliga P, 1994. The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Molecular Biology 25, 989-94.
Hanson PM, Green SK, Kuo G, 2006. Ty-2, a gene on chromosome 11 conditioning geminivirus resistance in tomato. Report of the Tomato Genetics Cooperative 56, 17-8.
Jan F-J, Green SK, Shih SL, Lee LM, Ito H, Kimbara J, Hosoi K, Tsai WS, 2007. First report of Tomato yellow leaf curl Thailand virus in Taiwan. Plant Disease 91, 1363.
Kirthi N, Maiya SP, Murthy MRN, Savithri HS, 2002. Evidence for recombination among the tomato leaf curl virus strains/species from Bangalore, India. Archives of Virology 147, 255-72.
Liao J-Y, Hu C-C, Lin T-K, Chang C-A, Deng T-C, 2007. Identification of Squash leaf curl Philippines virus on Benincasa hispida in Taiwan. Plant Pathology Bulletin, ROC 16, 11-8.
Makkouk KM, Shehab S, Majdalani SE, 1979. Tomato yellow leaf curl: Incidence, yield losses and transmission in Lebanon. Journal of Phytopathology 96, 263-7.
Martin DP, Williamson C, Posada D, 2005. RDP2: Recombination detection and analysis from sequence alignment. Bioinformatics 21, 260-2.
Maruthi, MN, Rekha AR, Cork A, Colvin J, Alam SN, Kader KA, 2005. First report of Tomato leaf curl New Delhi virus infecting tomato in Bangladesh. Plant Disease 89, 1011.
Moriones E, Navas-Castillo J, 2000. Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Research 71, 123-34.
Nakhla MK, Maxwell DP, Martinez RT, Garvalho MG, Gilbertson RL, 1994. Widespread occurrence of the eastern Mediterranean strain of tomato yellow leaf curl geminivirus in tomatoes in the Dominican Republic. Plant Disease 78, 726.
Navas-Castillo J, Sanchez-Campos S, Noris E, Louro D, Accotto GP, Moriones E, 2000. Natural recombination between Tomato yellow leaf curl virus-Is and Tomato leaf curl virus. Journal of General Virology 81, 2797-801.
Navot N, Pichersky E, Zeidan M, Zamir D, Czosnek H, 1991. Tomato yellow leaf curl virus: A whitefly-transmitted geminivirus with a single genomic component. Virology 185, 151-61.
Osaki T, Inouye T, 1981. Tobacco leaf curl virus. CMI/AAB Descriptions of plant viruses No. 232. Kew, UK: Commonwealth Mycological Institute.
Padidam M, Sawyer S, Fauquet CM, 1999. Possible emergence of new geminiviruses by frequent recombination. Virology 165, 218-25.
Picó B, Díez MJ, Nuez F, 1996. Viral diseases causing the greatest economic losses to the tomato crop. II. The tomato yellow leaf curl virus – a review. Scientia Horticulturae 67, 151-96.
Polston JE, Anderson PK, 1997. The emergence of whitefly-transmitted geminiviruses in tomato in the Western Hemisphere. Plant Disease 81, 1358-69.
Rojas MR, Gilbertson RL, Russell DR, Maxwell DP, 1993. Use of degenerate primers in the polymerase chain reaction to detect whitefly-transmitted geminiviruses. Plant Disease 77, 340-7.
Rojas A, Kvarnheden A, Marcenaro D, Valkonen JPT, 2005. Sequence characterization of Tomato leaf curl Sinaloa virus and Tomato severe leaf curl virus: Phylogeny of New World begomoviruses and detection of recombination. Archives of Virology 150, 1281-99.
Shih SL, Green SK, Lee LM, Wang JT, Tsai WS, Ledesma DR, Chen JT, 2004. On-farm evaluation of tomato leaf curl disease control measures in Taiwan. Plant Protection Bulletin, ROC 46, 417-8.
Shih SL, Wang JT, Chiang BT, Green SK, 1995. Distribution of tomato leaf curl virus in Taiwan. Plant Protection Bulletin, ROC 37, 445.
Tsai WS, Shih SL, Green SK, Jan F-J, 2007. Occurrence and molecular characterization of Squash leaf curl Philippines begomovirus in Taiwan. Plant Disease 91, 907.
Varma A, Malathi VG, 2003. Emerging geminivirus problems: A serious threat to crop production. Annals of Applied Biology 142, 145-64.
Xie Y, Jiang T, Zhou X, 2006. Agroinoculation shows Tobacco leaf curl Yunnan virus is a monopartite begomovirus. European Journal of Plant Pathology 115, 369-75.
Yuanfu JI, Scott JW, Hanson P, Graham E, Maxwell DP, 2007. Sources of resistance, inheritance, and location of genetic loci conferring resistance to members of the tomato-infecting begomoviruses. In: Czosnek H, ed. Tomato Yellow Leaf Curl Virus Disease: Management, molecular biology, breeding for resistance. Dordrecht, the Netherlands: Springer, 343-62.

Chapter 3
References
AVRDC, 1984. Progress Report 1982. Shanhua, Tainan, Taiwam, ROC: AVRDC-the World Vegetable Center, 41-3.
Baldin ELL, Vendramim JD, Lourencao AL, 2005. Resistance of tomato genotypes to the whitefly Bemisia tabaci (Gennadius) biotype B (Hemiptera: Aleyrodidae). Neotropical Entomology 34, 435-41.
Channarayappa, Shivashankar G, Muniyappa V, Frist RH, 1992. Resistance of Lycopersicon species to Bemisia tabaci, a tomato leaf curl virus vector. Canada Journal of Botany 70, 2184-92.
Chen J-T, 2007. Tomato leaf curl virus: development of resistant cultivars. Agriculture World 289, 40-60. (in Chinese)
Czosnek H, 1999. Tomato yellow leaf curl virus-Israel. CMI/AAB Descriptions of plant viruses No.368. Kew, UK: Commonwealth Mycological Institute.
Czosnek H, Laterrot H, 1997. A worldwide survey of tomato yellow leaf curl viruses. Archives of Virology 142, 1391-406.
Fauquet CM, Briddon RW, Brown JK, Moriones E, Stanley J. Zerbini M, Zhou X, 2008. Geminivirus strain demarcation and nomenclature. Archives of Virology 153, 783-821.
Fauquet CM, Mayo CM, Maniloff J, Desselberger U, Ball LA, 2005. Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Viruses. San Diego, CA, USA: Elsevier Academic Press, 301-26.
Gilbertson RL, Rojas MR, Russell DR, Maxwell DP, 1991. Use of the asymmetric polymerase chain reaction and DNA sequencing to determine genetic variability of bean golden mosaic geminivirus in the Dominican Republic. Journal of General Virology 72, 2843-8.
Green SK, Shanmugasundaram S, 2007. AVRDC’s international networks to deal with the tomato yellow leaf curl disease: the needs of developing countries. In: Czosnek H, ed. Tomato Yellow Leaf Curl Virus Disease: Management, molecular biology, breeding for resistance. Dordrecht, the Netherlands: Springer, 417-39.
Green SK, Sulyo Y, Lesemann DE, 1987. Outbreaks and new records: Leaf curl virus on tomato in Taiwan Province. FAO Plant Protection Bulletin 35, 62.
Green SK, Tsai WS, Shih SL, Black LL, Rezaian A, Rashid MH, Roff MMN, Myint YY, Hong LTA, 2001. Molecular characterization of begomoviruses associated with leaf curl disease in Bangladesh, Laos, Malaysia, Myanmar, and Vietnam. Plant Disease 85, 1286.
Hajdukiewicz P, Svab Z, Maliga P, 1994. The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Molecular Biology 25, 989-94.
Hanson PM, Bernacchi D, Green SK, Tanksely SD, Muniyappa V, Padmaja AS, Chen H-M, Guo G, Fang D, Chen J-T, 2000. Mapping a wild tomato introgression associated with tomato yellow leaf curl virus resistance in a cultivated tomato line. Journal of the American Society for the Horticultural Science 125, 15-20.
Hanson PM, Green SK, Kuo G, 2006. Ty-2, a gene on chromosome 11 conditioning geminivirus resistance in tomato. Report of the Tomato Genetics Cooperative 56, 17-8.
Li ZH, Zhou XP, Zhang X, Xie Y, 2004. Molecular characterization of tomato-infecting begomoviruses in Yunnan, China. Archives of Virology 149, 1721-32.
Makkouk KM, Shehab S, Majdalani SE, 1979. Tomato yellow leaf curl: Incidence, yield losses and transmission in Lebanon. Journal of Phytopathology 96, 263-67.
Moriones E, Navas-Castillo J, 2000. Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Research 71, 123-34.
Nakhla MK, Maxwell DP, 1998. Epidemiology and management of tomato yellow leaf curl disease. In: Hadidi A, Khetarpal RK, and Koganezawa H, eds. Plant virus disease control. Minnesota, USA: The America Phytopathological Society, 565-83.
Navot N, Pichersky E, Zeidan M, Zamir D, Czosnek H, 1991. Tomato yellow leaf curl virus: A whitefly-transmitted geminivirus with a single genomic component. Virology 185, 151-61.
Osaki T, Inouye T, 1981. Tobacco leaf curl virus. CMI/AAB Descriptions of plant viruses No.232. Kew, UK: Commonwealth Mycological Institute.
Picó B, Díez MJ, Nuez F, 1996. Viral diseases causing the greatest economic losses to the tomato crop. II. The Tomato yellow leaf curl virus – a review. Scientia Horticulturae 67, 151-96.
Poleston JE, Bois D, Serra C-A, Concepcion S, 1994. First report of a tomato yellow leaf curl-like geminivirus in the Western Hemisphere. Plant Disease 78, 831.
Polston JE, McGovern RJ, Brown LG, 1999. Introduction of tomato yellow leaf curl virus in Florida and implications for the spread of this and other geminiviruses of tomato. Plant Disease 83, 984-8.
Rochester DE, DePaulo JJ, Fauquet CM, Beachy RN, 1994. Complete nucleotide sequence of the geminivirus tomato yellow leaf curl virus, Thailand isolate. Journal of General Virology 75, 477-85.
Rochester DE, Kositratana W, Beachy RN, 1990. Systenmic movement and symptom production following agroinoculation with a single DNA of tomato yellow leaf curl geminivirus (Thailand). Virology 178, 520-26.
Rojas MR, Gilbertson RL, Russell DR, Maxwell DP, 1993. Use of degenerate primers in the polymerase chain reaction to detect whitefly-transmitted geminiviruses. Plant Disease 77, 340-7.
Sawangjit S, Chatchawankanphanich O, Chiemsombat P, Attathom T, Dale J, Attathom S, 2005. Molecular characterization of tomato-infecting begomoviruses in Thailand. Virus Research 109, 1-8.
Shih SL, Green SK, Lee LM, Wang JT, Tsai WS, Ledesma DR, Chen JT, 2004. On-farm evaluation of tomato leaf curl disease control measures in Taiwan. Plant Protection Bulletin, ROC 46, 417-8.
Shih SL, Wang JT, Chiang BT, Green SK, 1995. Distribution of tomato leaf curl virus in Taiwan. Plant Protection Bulletin, ROC 37, 445.
Varma A, Malathi VG, 2003. Emerging geminivirus problems: A serious threat to crop production. Annals of Applied Biology 142, 145-64.
Xie Y, Jiang T, Zhou X, 2006. Agroinoculation shows Tobacco leaf curl Yunnan virus is a monopartite begomovirus. European Journal of Plant Pathology 115, 369-75.

Chapter 4
References
Benigno DA, 1979. Leaf curl disease of squash. Philippine Agriculture 61, 304-5.
Chellappan P, Masona MV, Vanitharani R, Taylor NJ, Fauquet CM, 2004. Broad spectrum resistance to ssDNA viruses associated with transgene-induced gene silencing in cassava. Plant Molecular Biology 56, 601–11.
Clark MF, Adams AN, 1977. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. Journal of General Virology 34, 475-83.
De Barro PJ, Hidayat SH, Frohlich D, Subandiyah S, Ueda S, 2008. A virus and its vector, pepper yellow leaf curl virus and Bemisia tabaci, two new invaders of Indonesia. Biological Invasions 10, 411-33.
Dolores LM, Bajet NB, 1995. Isolation and transmission of tomato leaf curl virus in the Philippines. Philippine Phytopathology 31, 40-51.
Dolores LM, Pissawan C, 1994. Detection of leaf curl virus in pepper by using non-productive DNA probe. Philippine Journal of Crop Science 19, 80.
Dolores LM, Valdez RB, 1988. Identification of squash viruses and screening for resistance. Philippine Phytopathology 24, 43-52.
FAO, 2006. FAOSTAT, Food and Agriculture Organization of the United Nations. http://faostat.fao.org.
Fauquet CM, Briddon RW, Brown JK, Moriones E, Stanley J, Zerbini M, Zhou X, 2008. Geminivirus strain demarcation and nomenclature. Archives of Virology 153, 783-821.
Gilbertson RL, Rojas MR, Russell DR, Maxwell DP, 1991. Use of the asymmetric polymerase chain reaction and DNA sequencing to determine genetic variability of bean golden mosaic geminivirus in the Dominican Republic. Journal of General Virology 72, 2843-8.
Green SK, Shanmugasundaram S, 2007. AVRDC’s international networks to deal with the tomato yellow leaf curl disease: the needs of developing countries. In: Czosnek H, ed. Tomato Yellow Leaf Curl Virus Disease: Management, molecular biology, breeding for resistance. Dordrecht, the Netherlands: Springer, 417-39.
Green SK, Tsai WS, Shih SL, Black LL, Rezaian A, Rashid MH, Roff MMN, Myint YY, Hong LTA, 2001. Molecular characterization of begomoviruses associated with leaf curl disease in Bangladesh, Laos, Malaysia, Myanmar, and Vietnam. Plant Disease 85, 1286.
Kon T, Dolores LM, Murayama A, Bajet NB, Hase S, Takahashi H, Ikegami M, 2002. Genome organization of an infectious clone of Tomato leaf curl virus (Philippines), a new monopartite Begomovirus. Journal of Phytopathology 150, 587-91.
Kon T, Dolores LM, Bajet NB, Hase S, Takahashi H, Ikegami M, 2003. Molecular characterization of a strain of Squash leaf curl China virus from the Philippines. Journal of Phytopathology 151, 535-9.
Makkouk KM, Shehab S, Majdalani SE, 1979. Tomato yellow leaf curl: Incidence, yield losses and transmission in Lebanon. Journal of Phytopathology 96, 263-7.
Picó B, Díez MJ, Nuez F, 1996. Viral diseases causing the greatest economic losses to the tomato crop. II. The tomato yellow leaf curl virus – a review. Scientia Horticulturae 67, 151-96.
Polston JE, Anderson PK, 1997. The emergence of whitefly-transmitted geminiviruses in tomato in the Western Hemisphere. Plant Disease 81, 1358-69.
Praveen S, Mishra AK, Antony G, 2006. Viral suppression in transgenic plants expressing chimeric transgene from tomato leaf curl virus and cucumber mosaic virus. Plant Cell, Tissue and Organ Culture 84, 47-53.
Retuerma ML, Pableo GO, Price WC, 1971. Preliminary study of the transmission of Philippine tomato leaf curl virus by Bemisia tabaci. Philippine Phytopathology 7, 29-34.
Rojas MR, Gilbertson RL, Russell DR. Maxwell DP, 1993. Use of degenerate primers in the polymerase chain reaction to detect whitefly-transmitted geminiviruses. Plant Disease 77, 340-7.
Saikia, A.K. & Muniyappa, V, 1989. Epidemiology and control of tomato leaf curl virus in southern India. Tropical Agriculture (United Kingdom) 66, 350-4.
Shih SL, Tsai WS, Green SK, Singh D, 2007. First report of tomato leaf curl Joydebpur virus infecting Chilli in India. Plant Pathology 56, 341.
Shih SL, Dolores LM, Nakhla MK, Maxwell DP, Green SK, 1997. A new geminivirus associated with leaf curl disease of tomato in the Philippines. Plant Protection Bulletin, ROC 39, 394-5.
Soriano JM, Villareal RL, Roxas VP, 1989. Tomato and pepper production in the Philippines. In: Green SK, ed. Tomato and pepper production in the tropics. Proceeding of the International Symposium on Integrated Management Practices. Shanhua, Tainan, Taiwan, ROC:AVRDC-the World Vegetable Center, 549-60.
Stanley J, Bisaro DM, Briddon RW, Brown JK, Fauquet CM, Harrison BD, Rybicki EP, Stenger DC, 2005. Geminiviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA, eds. Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Viruses. San Diego, CA, USA: Elsevier Academic Press, 301-26.
Sulandari S, Suseno R, Hidayat SH, Harjosudarmo J, Sosromarsono S, 2006. Detection and host range study of virus associated with pepper yellow leaf curl disease. HAYATI Journal of Biosciences 13, 1–6.
Tenllado F, Llave C, Díaz-Ruíz JR, 2004. RNA interference as a new biotechnological tool for the control of virus diseases in plants. Virus Research 102, 85–96.
Varma A, Malathi VG, 2003. Emerging geminivirus problems: A serious threat to crop production. Annals of Applied Biology 142, 145-64.
Yuan B, Latek R, Hossbach M, Tuschi T, Lewitter F, 2004. siRNA selection server: an automated siRNA oligonucleotide prediction server. Nucleic Acids Research 32, W130-4.
Zeidan M, Green SK, Maxwell DP, Nakhla MK, Czosnek H, 1998. Molecular analysis of whitefly-transmitted tomato geminiviruses from Southeast and East Asia. Tropical Agriculture Research and Extension 1, 107-15.


Chapter 5
References
Anfoka G, 2007.Gene silencing of tomato yellow leaf curl virus. In: Czosnek H, ed. Tomato Yellow Leaf Curl Virus Disease: Management, molecular biology, breeding for resistance. Dordrecht, the Netherlands: Springer, 391-405.
Anon, 2007. Agricultural Statistics Yearbook 2006. Council of Agriculture, Executive Yuan, ROC, 76-7
Beachy RN, 1997. Mechanisms and applications of pathogen-derived resistance in transgenic plants. Plant Biotechnology 8, 215-20.
Bendahmane M, Gronenborn B, 1997. Engineering resistance against tomato yellow leaf curl (TYLCV) using antisense RNA. Plant Molecular Biology 33, 351-7.
Brunetti A, Tavazza M, Noris E, Tavazza R, Caciagli P, Ancora G, Crespi S, Accotto GP, 1997. High expression of truncated viral Rep protein confers resistance to tomato yellow leaf curl virus in transgenic tomato plants. Molecular Plant-Microbe Interaction 10, 571-9.
Czonek H, Laterrot H, 1997. A worldwide survey of tomato leaf curl viruses. Archives of Virology 142, 1391-406.
Dong X, Wezel RV, Stanley J, Hong Y, 2003. Functional characterization of the nuclear localization signal for a suppressor of posttranscriptional gene silencing. Journal of Virology 77, 7026-33.
Doyle JJ, Doyle JL, 1990. Isolation of plant DNA from fresh tissue. Focus 12, 13-5.
Fauquet CM, Mayo CM, Maniloff J, Desselberger U, Ball LA, 2005. Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Viruses. San Diego, CA, USA: Elsevier Academic Press, 301-26.
Fauquet CM, Briddon RW, Brown JK, Moriones E, Stanley J, Zerbini M, Zhou X, 2008. Geminivirus strain demarcation and nomenclature. Archives of Virology 153, 783-821.
Green SK, Shanmugasundaram S, 2007.AVRDC’s international networks to deal with the tomato yelloe leaf curl disease: the needs of developing countries. In: Czosnek H, ed. Tomato Yellow Leaf Curl Virus Disease: Management, molecular biology, breeding for resistance. Dordrecht, the Netherlands: Springer, 417-39.
Green SK, Sulyo Y, Lesemam DE, 1987. Leaf curl virus on tomato in Taiwan Province. FAO Plant Protection Bulletin 35, 62.
Hanley-Bowdoin L, Settlage SB, Orozco BM, Nagar S, Robertson D, 2000. Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Biochemistry and Molecular Biology 35,105-40.
Hanson PM, Green SK, Kuo G, 2006. Ty-2, a gene on chromosome 11 conditioning geminivirus resistance in tomato. Report of the Tomato Genetics Cooperative 56, 17-8.
Hao L, Wang H, Sunter G., Bisaro DM, 2003. Geminivirus AL2 and L2 protein interact with and inactivate SNF1 kinase. Plant Cell 15, 1034-48.
Jan F-J, Fagoaga F, Pang S-Z, Gonsalves D, 2000. A single chimeric transgene derived from two distinct viruses confers multi-virus resistance in transgenic plants through homology-dependent gene silencing. Journal of General Virology 81, 2103-9.
Kunik T, Salomon R, Zamir D, Navot N, Zeidan M, Michelson I, Gafni Y, Czosnek H, 1994. Transgenic tomato plants expressing the tomato yellow leaf curl virus capsid protein are resistant to the virus. Biotechnology 12, 500-4.
Lucioli A, Noris E, Brunetti A, Tavazza R, Ruzza V, Castillo AG., Bejarano ER, Accotto GP, Tavazza M, 2003. Tomato yellow leaf curl Sardinia virus Rep-derived resistance to homologous and heterologous geminiviruses occurs by different mechanisms and is overcome if virus-mediated transgene silencing is activated. Journal of Virology 77, 6785-98.
Murashige T, Skoog F, 1962. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiology Plant 15, 473-97.
Noris, E, Accotto G.P, Tavazza R, Brunetti A, Crespi S, Tavazza M, 1996. Resistance to tomato yellow leaf curl geminivirus in Nicotiana benthamiana plants transformed with a truncated viral C1 gene. Virology 224, 130-8.
Padidam M, Sawyer S, Fauquet CM, 1999. Possible emergence of new geminiviruses by frequent recombination. Virology 265, 218-25.
Pooggin M, Shivaprasad PV, Veluthambi K, Hohn T, 2003. RNAi targeting of DNA virus in plants. Nature Biotechnology 21, 131-2.
Pooggin M, Hohn T, 2004. Fighting geminiviruses by RNAi and vice versa. Plant Molecular Biology 55, 149-52.
Praveen S, Mishra AK, Antony G, 2006. Viral suppression in transgenic plants expressing chimeric transgene from tomato leaf curl virus and cucumber mosaic virus. Plant Cell, Tissue and Organ Culture 84, 47-53.
Shih SL, Wang JT, Chiang BT, Green SK, 1995. Distribution of tomato leaf curl virus in Taiwan and its host range. Plant Protection Bulletin, ROC 37, 445.
Sunter G., Sunter J, Bisaro DM, 2001. Plants expressing tomato golden mosaic virus AL2 or beet curly top virus L2 transgenes show enhanced susceptibility to infection by DNA and RNA viruses. Virology 285, 59-70.
van Wezel R, Liu H, Wu Z, Stanley J, Hong Y, 2003. Contribution of the zinc finger to zinc and DNA binding by a suppressor of posttranscriptional gene silencing. Journal of Virology 77, 696-700.
Voinnet O, Pinto YM, Baulcombe DC, 1999. Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proceedings of the National Academy of Science of the United States of America 96, 14147-52.
Wang H, Buckley KJ, Yang X, Buchmann RC, Bisaro, DM, 2005. Adenosine kinase inhibition and suppression of RNA silencing by geminivirus AL2 and L2 protein. Journal of Virology 79, 7410-8.
Xue B, Gonsalves C, Provvidenti R, Slightom JL, Fuchs M, Gonsalves D, 1994. Development of transgenic tomato expressing a high level of resistance to cucumber mosaic virus strains of subgroups I and II. Plant Disease 78, 1038-41.
Yang Y, Sherwood TA, Patte CP, Hiebert E, Polston JE, 2004. Use of tomato yellow leaf curl virus (TYLCV) Rep gene sequences to engineer TYLCV resistance in tomato. Phytopathology 94, 490-6.
Zeidan M, Green SK, Maxwell DP, Nakhla MK, Czosnek H, 1998. Molecular analysis of whitefly-transmitted tomato geminiviruses from Southeast and East Asia. Tropical Agricultural Research and Extension 1, 107-15.

Chapter 6
References
Abu Kassim AB, 1986. Virus diseases of horticultural crops in Malaysia. In:FFTC, ed. Food and Fertilizer technology Center Book Series. No. 33. Taipei, Taiwan: Food and Fertilizer Technology Center for the Asian and Pacific Region, 3-6.
Agranovsky AA, 1993. Virus diseases of pepper (Capsicum annuum L.) in Ethiopia. Journal of Phytopathology 138, 89-97.
Ahn HI, Yoon JY, Hong JS, Kim MJ, Ha JH, Rhie MJ, Choi JK, Park WM, Ryu KH, 2006. The complete genome sequence of Pepper severe mosaic virus and comparison with other potyviruses. Archives of Virology 152, 2037-45.
Anindya R, Joseph J, Gowri TDS, Savithri HS, 2004. Complete genomic sequence of Pepper vein banding virus (PVBV): a distinct member of the genus Potyvirus. Archives of Virology 149, 625-32.
Atreya PL, Atreya CD, Pirone TP, 1991. Amino acid substitutions in the coat protein result in loss of insect transmissibility of a plant virus. Proceeding of the National Academy of Sciences, USA 88, 7887-91.
Atreya PL, López-Moya JJ, Chu M, Atreya CD, Pirone TP, 1995. Mutational analysis of the coat protein N-terminal amino acids involved in potyviral transmission by aphids. Journal of General Virology 76, 265-70.
Brunt AA, Kenten RH, 1971. Pepper veinal mottle virus: a new member of the potato Y group from peppers (Capsicum annuum L. and C. frutescens L.) in Ghana. Annals of Applied Biology 69, 235-43.
Chellappan P, Masona MV, Vanitharani R, Taylor NJ, Fauquet CM, 2004. Broad spectrum resistance to ssDNA viruses associated with transgene-induced gene silencing in cassava. Plant Molecular Biology 56, 601-11.
Chen J, Chen J, Adams MJ, 2001. A universal PCR primer to detect members of the Potyviridae and its use to examine the taxonomic status of several members of the family. Archives of Virology 146, 757-66.
Chiemsombat P, Sae-Ung N, Attathom S, Patarapuwadol S, Siriwong P, 1998. Molecular taxonomy of a new potyvirus isolated from chilli pepper in Thailand. Archives of Virology 143, 1855-63.
Clark MF, Adams AN, 1977. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. Journal of General Virology 34, 475-83.
de Bokx JA, Huttinga H, 1981. Potato virus Y. CMI/AAB Descriptions of Plant Viruses No. 242. Kew, UK: Commonwealth Mycological Institute.
Fauquet CM, Mayo CM, Maniloff J, Desselberger U, Ball LA, 2005. Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Viruses. San Diego, CA, USA: Elsevier Academic Press, 819-29.
Feldman JM, Gracia O, 1977. Pepper severe mosaic virus: a new potyvirus from pepper in Argentina. Journal of Phytopathology 89, 146-60.
Fernandez-Northcote EN, Fulton WR, 1980. Detection and characterization of Peru tomato virus strains infecting pepper and tomato in Peru. Phytopathology 70, 315-20.
Fire A, Xu S, Montgomery MK, Kotas SA, Driver SE, Mello CC, 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811.
Frenkel MJ, Ward CW, Shukla DD, 1989. The use of 3’ non-coding nucleotide sequences in the taxonomy of potyviruses: application to Watermelon mosaic virus and Soybean mosaic virus-N. Journal of General Virology 70, 2775-83.
Green SK, Kim JS, 1991. Characteristics and Control of Viruses Infecting Peppers: a Literature Review. Tainan, Taiwan: Asian Vegetable Research and Development Center: Technical Bulletin No. 18.
Green SK, Hiskias Y, Lesemann DE, Vetten HJ, 1999. Characterization of Chilli veinal mottle virus as a potyvirus distinct from Pepper veinal mottle virus. Petria 9, 332.
Harrison BD, Robinson DJ, 1988. Molecular variation in vector-borne plant viruses: epidemiological significance. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 321, 447-62.
Hiskias Y, 1998. Characterization of Potyvirus Isolates From Hot Pepper and Tomato in Ethiopia. Gottingen, Germany: Institute of Plant Pathology and Plant Protection, Georg-August University, PhD thesis.
Inoue-Nagata A, Fonseca MEN, Resende RO, Boiteux LS, Monte DC, Dusi AN, de Ávila AC, van der Vlugt RAA, 2002. Pepper yellow mosaic virus, a new potyvirus in sweet pepper, Capsicum annuum. Archives of Virology 147, 849-55.
Jan F-J, Fagoaga C, Pang SZ, Gonsalves D, 2000. A single chimeric transgene derived from two distinct viruses confers multi-virus resistance in transgenic plants through homology-dependent gene silencing. Journal of General Virology 81, 2103-9.
Joseph J, Savithri HS, 1999. Determination of 3’-terminal nucleotide sequence of Pepper vein banding virus RNA and expression of its coat protein in Escherichia coli. Archives of Virology 144, 1679-87.
Ladera P, Lastra R, Debrot EA, 1982. Purification and partial characterization of potyviruses infecting peppers in Venezuela. Journal of Phytopathology 104, 97-103.
López-Moya JJ, Wang RY, Pirone TP, 1999. Context of the coat protein DAG motif affects potyvirus transmissibility by aphids. Archives of Virology 80, 3281-8.
Moury B, Palloix A, Caranta C, Gognalons P, 2005. Serological, molecular, and pathotype diversity of Pepper veinal mottle virus and Chili veinal mottle virus. Phytopathology 95, 227-32.
Nelson MR, Wheeler RE, Zitter TA,1982. Pepper mottle virus. CMI/AAB Descriptions of Plant Viruses No. 253. Kew, UK: Commonwealth Mycological Institute.
Nono-Womdim R, Swai IS, Chadha ML, Gebre SK, Marchoux G, 2001. Occurrence of Chili veinal mottle virus in Solanum aethiopicum in Tanzania. Plant Disease 85, 801.
Ong CA, Ting WP, 1977. A review of plant virus diseases in Peninsular Malaysia. Symposium on Virus Diseases of Tropical Crops, Tropical Agriculture Researches Series 10, 155-64.
Ong CA, Varghese G, Poh TW, 1979. Aetiological investigation on a veinal mottle virus of chilli (Capsicum annuum L.) newly recorded from Peninsular Malaysia. Malaysian Agriculture Research and Development Intitute Research Bulletin 7, 78-88.
Ong CA, Varghese G, Poh TW, 1980. The effect of Chilli veinal mottle virus on yield of chilli (Capsicum annuum L.). Malaysian Agriculture Research and Development Institute Research Bulletin 8, 7479.
Purcifull DE, Hiebert E, 1982. Tobaco etch virus. CMI/AAB Descriptions of Plant Viruses No. 258. Kew, UK: Commonwealth Mycological Institute.
Ravi KS, Joseph J, Nagaraju N, Krishna PS, Reddy HR, Savithri HS, 1997. Characterization of a Pepper vein banding virus from chilli pepper in India. Plant Disease 81, 673-6.
Sharp PA, 1999. RNAi and double-strand RNA. Genes & Development 13, 139-41.
Shukla DD, Ward CW, 1989. Structure of potyvirus coat proteins and its application in the taxonomy of the potyvirus group. Advances in Virus Research 36, 273-314.
Shukla DD, Frenkel MJ, Ward CW, 1991. Structure and function of the potyvirus genome with special reference to the coat protein coding region. Canadian Journal of Plant Pathology 13, 178-91.
Shukla DD, Ward CW, Brunt AA, 1994. The Potyviridae. Oxon, UK: CAB International.
Siriwong P, Kittipakorn K, Ikegami M, 1995. Characterization of Chilli vein-banding mottle virus isolated from pepper in Thailand. Plant Pathology 44, 718-27.
Spetz C, Taboada AM, Darwich S, Ramsell J, Salazar LF, Valkonen JPT, 2003. Molecular resolution of a complex of potyviruses infecting solanaceous crops at the centre of origin in Peru. Journal of General Virology 84, 2565-78.
Tenllado F, Llave C, Díaz-Ruíz JR, 2004. RNA interference as a new biotechnological tool for the control of virus diseases in plant. Virus Research 102, 85-96.
Urcuqui-Inchima S, Haenni A-L, Bernardi F, 2001. Potyvirus proteins: a wealth of functions. Virus Research 74, 157-75.
Wang J, Liu Z, Niu S, Peng M, Wang D, 2006. Natural Occurrence of Chilli veinal mottle virus on Capsicum chinense in China. Plant Disease 90, 377.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top