跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/07/28 04:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許槐烟
研究生(外文):Hwai-Yan Shyu
論文名稱:繞線考量之不對稱機率掃描鏈架構分析與設計
論文名稱(外文):Design and Analysis of Routing-Aware Skew Probability Scan Chain Architecture
指導教授:王行健
指導教授(外文):Sying-Jyan Wang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:資訊科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:43
中文關鍵詞:測試壓縮掃描鏈
外文關鍵詞:Test compressionScan chain
相關次數:
  • 被引用被引用:0
  • 點閱點閱:105
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著晶片日益複雜,測試資料量的成長,測試資料壓縮是許多學者致力研究的主題,過往文獻中已經提出許多壓縮的方法。[1]中作者提出不對稱機率掃描鏈架構,可用以增進編碼壓縮的壓縮率,本文的目標在增進編碼壓縮的壓縮率,並同時考量繞線長度的減少。
本論文使用ISCAS’89的電路進行實驗,使用繞線考量之不對稱機率掃描鏈,可以在不同編碼壓縮法增加壓縮率( Golomb、FDR、Partial Dictionary、Huffman減少14.67%、20.84%、1.27%、15.73%的資料量),同時也可以讓繞線長度的影響大幅下降。
第一章 簡介 1
1.1. 研究動機與目標 1
1.2. 內容大綱 2
第二章 相關研究與背景知識 3
2.1. 測試資料壓縮架構 3
2.2. 現行測試資料壓縮方法 4
2.3. 不對稱機率之掃描鏈 10
2.4. 壓縮極限評估-熵(ENTROPY) 12
第三章 繞線考量之不對稱機率掃描鏈 14
3.1. 位元提升 15
3.2. 不對稱機率掃描鏈分割 16
3.3. 掃描細胞重新排序 18
3.4. 繞線長度的減短 20
3.5. 繞線長度與壓縮率的交易 22
第四章 掃描鏈建構方法 23
第五章 其他測試資料集的適用性分析 26
第六章 實驗結果與分析 29
6.1. 不對稱機率掃描鏈實驗結果 29
6.2. 適用其他資料集實驗結果 36
第七章 結論與未來工作 38
7.1. 結論 38
7.2. 未來工作 38
參考文獻 39
[1]S. J. Wang, S. C. Chen, and S. M. Li, “Design and analysis of skewed-distribution scan chain partition for improved test data compression,” in Proc. Int. Symp. Circuits and System , pp. 2641-2644, May 2008.
[2]R. Chandramouli and S. Pateras, “Testing systems on a chip,” IEEE Spectrum, vol. 11, no. 11, pp. 42-47, Nov. 1996.
[3]N. A. Touba, “Survey of test vector compression techniques,” IEEE Design & Test of Computers , vol. 23, no. 4, pp. 294-303, Apr. 2006.
[4]T. Hiraide, K. O. Boateng, H. Konishi, K. Itaya, M. Emori, H. Yamanaka, and T. Mochiyama, “BIST-aided scan test - a new method for test cost reduction,” in Proc. VLSI Test Symp., pp. 359-364, May 2003.
[5]L. T. Wang, C. W. Wu, and X. Wen, VLSI Test Principles and Architectures, Morgan Kaufmann Publishers, 2006.
[6]L. T. Wang,, C. E. Stroud, and N.A. Touba, System on chip test architectures., Morgan Kaufmann Publishers, 2007.
[7]S. M. Reddy, K. Miyase, S. Kajihara, and I. Pomeranz, “On test data volume reduction for multiple scan chain designs,” in Proc. VLSI Test Symp., pp. 103-108, May 2002.
[8]Lei Li and K. Chakrabarty, “Test data compression using dictionaries with fixed-length indices,” in Proc. VLSI Test Symp., pp. 219-224, Apr. 2003.
[9]D. A. Huffman, “A method for the construction of minimum redundancy codes,” in Proc. IRE, vol. 40, no. 9, pp. 1098-1101, Sep. 1952.
[10]A. Jas, J. Ghosh-Dastidar, M. Ng, and N.A. Touba, “An efficient test vector compression scheme using selective Huffman coding,” IEEE Trans on. Compuer-Aided Design of Integrated Circuits and Systems, vol. 22, no. 6, pp. 797-806, Jun. 2003.
[11]A. Jas and N. A. Touba, “Test vector compression via cyclical scan chains and its application to testing core-based designs,” in Proc. Int. Test Conf., pp. 458-464, Oct. 1998.
[12]A. Chandra and K. Chakrabarty, “Test data compression for system-on-a-chip using Golomb codes,” in Proc. VLSI Test Symp, pp. 113-120, Apr. 2000.
[13]A. Chandra and K. Chakrabarty, “System-on-a-chip test-data compression and decompression architectures based on Golomb codes,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 20, no. 3, pp. 355-368, Mar. 2001.
[14]A. Chandra and K. Chakrabarty, “Frequencey-Directed Run-length (FDR) Codes with Application to Systems-on-a-Chip Test Data Compression,” in Proc. VLSI Test Symp., pp.42-47, 2001.
[15]A. El. Maleh and R. Al-Abaji, “Extended frequency-directed run-length codes with improved application to system-on-a-chip tset data compression,” in Proc. Int. Conf. on Electronic Circuits Systems, pp. 449-452, Sep. 2002
[16]A. Chandra and K. Chakrabarty, “Test data compression and test resource partitioning for system-on-a-chip using frequency- directed run-length (FDR) codes,” IEEE Trans. Computers, vol. 52, no. 8, pp. 1076-1088, Aug. 2003.
[17]A. Chandra and K. Chakrabarty, “A unified approach to reduce SoC test data volume, scan power, and testing time,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 22, no. 3, pp. 352-363, Mar 2003.
[18]Balakrishnan K. J. and Touba N. A., “Relationship between entropy and test data compression,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 2, pp. 386-395, Feb. 2007
[19]A. Chandra, K. Chakrabarty, and R.A. Medina, “How effective compression codes for reducing test data volume?, ” in Proc.VLSI Test Symp., pp. 91-96, May 2002.
[20]B. Ayari and B. Kaminska, “A New Dynamic Test Vector Compaction for Automatic Test Pattern Generation,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol.13, no. 3, pp. 353-358, Mar. 1994.
[21]J. S. Chang and C. S. Lin, “Test set compaction for combinational circuits, ” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 14, no. 11, pp. 1370-1378, Nov. 1995
[22]I. Hamzaoglu and J. H. Patel, “Test Set Compaction Algorithms for Combinational Circuits,” in Proc. Int’l Conf. Computer-Aided Design, pp. 283-289, Nov. 1998.
[23]Y. E. Osais and A. H. El-Maleh, “A static test compaction technique for combinational circuits based on independent fault clustering,” in Proc. Int’l Conf. on Electronics, Circuits and Systems, vol. 3, pp. 1316-1319, Dec. 2003.
[24]K. D. Boese, A. B. Kahng, and R-S. Tsay, “Scan chain optimization: heuristic and optimal solutions,” Research Report UCLA CS Dept., Oct. 1994.
[25]M. Feuer and C. C. Koo, “Method for rechaining shift register latches which contain more than one physical book,” IBM Tech. Disclosure Bulletin, Vol. 25, No. 9, pp. 4818-4820, 1983.
[26]K. H. Lin, C. S. Chen, and T. T. Hwang, “Layout driven chaining of scan flip-flops,” in Proc. Computers and Digital Techn., vol. 143, No. 6, pp. 421-425,1996.
[27]C. S. Chen and T. T. Hwang, “Layout driven selection and chaining of partial scan flip-flops,” J. of Electron. Test, vol. 13, no. 1, pp. 19-27, 1998.
[28]K. Lee and D. S. Ha, "Atalanta: an Efficient ATPG for Combinational Circuits,", Technical Report, 93-12, Dep''t of Electrical Eng., Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 1993
[29]A. El-Maleh and S. Khursheed, “Efficient test compaction for combinational circuits based on Fault detection count-directed clustering,” IET Computers & Digital Techn., vol. 1, no. 4, pp. 364-368, Jul. 2007.
[30]F. Brglez, D. Bryan and K. Kozminski. “Combinatorial profiles of sequential benchmark circuits,” in Proc. Int. Symp. On Circuits and Systems, pp. 1129-1234, 1989.
[31]H. K. Lee and D. S. Ha, “HOPE:An efficient parallel fault simulator for synchronous sequential circuits,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems., vol. 15, no. 9, pp. 1048-1058, Sep. 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top