跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/02 20:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:傅國霖
研究生(外文):Kuo-Lin Fu
論文名稱:針對n次偵測測試的低峰值功率自動測試樣本產生和測試壓密
論文名稱(外文):Low Peak Power ATPG and Test Compaction for n-Detection Test
指導教授:王行健
指導教授(外文):Sying-Jyan Wang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:資訊科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:47
中文關鍵詞:自動測試樣本產生測試壓密低功率掃描測試
外文關鍵詞:ATPGTest CompactionLow Power Scan Test
相關次數:
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
n次偵測測試(n-detection test)引人注意的地方在於針對所有類型的電路和不同的錯誤模型時,藉由簡單的自動測試樣本產生(Automatic Test Pattern Generation, ATPG)程序,它就可以達到高的缺陷涵蓋率(defect coverage)。這個方法的缺陷就是需要一個較大的測試集合;除此之外,測試的功率也是需要我們注意的問題。因為n次偵測測試集合的資料量通常是非常多的,然而我們有可能讓測試樣本的訊號轉換被分散在所有的樣本之中,這樣就可以有較低的峰值擷取功率。低峰值功率的電路有較佳的效能,因為其可以降低由於IR drop和晶片過熱造成無效的測試的風險。
本篇論文中,我們提出一個低擷取功率的自動測試樣本產生和一個考慮功率的測試壓密方法。藉由提出的自動測試樣本產生達到兩個目標:(1)測試樣本數量的成長小於偵測次數n。(2)當n增加時峰值功率下降。而測試壓密演算法又更進一步地減少資料量和平均擷取功率。利用ISCAS’89的某些電路來說明我們提出的方法的效能。實驗結果指出我們達成了前面提及的兩個目標;而且當n變大,平均功率消耗也會有所改善。
The n-detection test is attractive as it achieves high defect coverage for all types of circuits and different fault models by using an easy ATPG procedure. The drawback of this approach is that it requires a significantly larger test set; besides, the test power is also a concern. Since the size of an n-detection test set is usually very large, it is possible to organize the test patterns in such a way that signal transitions are distributed more evenly among all patterns; thus, a lower peak capture power can be achieved. The reduction in peak power is very desirable, as it reduces the risk of invalid test due to IR-drop and chip overheating.
In this paper, we present a low capture power ATPG and a power-aware test compaction method. Two goals are achieved by the proposed ATPG. (1) The growth of test pattern count is lower than the detection number n. (2) The peak power becomes smaller as the detection number n increases. The test compaction algorithm further reduces the number test patterns as well as the average capture power. The efficiency of the proposed method is illustrated through experiments with some ISCAS’89 benchmark circuits. Experimental results show that the aforementioned two goals are achieved; furthermore, the average power consumption is also improved when n becomes larger n.
第一章 簡介 1
1.1 研究動機與目標 1
1.2 貢獻與成果簡述 3
1.3 內容大綱 3
第二章 背景知識與相關研究 4
2.1 可測試度計算(Testability Calculation) 4
2.2 獨立錯誤集合(Independent Fault Sets) 5
2.3 低功率非明確位元填值(Low Power X-Filling) 6
2.4 測試壓密(Test Compaction) 7
第三章 問題描述與定義 10
3.1 問題描述 10
3.2 問題定義 12
3.2.1 錯誤模型 12
3.2.2 功率消耗評估 13
3.2.3 低功率測試向量產生 14
第四章 方法介紹及實作 15
4.1 LCP n-detection ATPG總覽 15
4.2 必需設定的計算(Necessary Assignment Calculation) 16
4.3 多個獨立錯誤集合(Multiple Independent Fault Sets) 18
4.4 動態錯誤排序(Dynamic Fault Ordering) 19
4.5 測試樣本產生(Test Pattern Generation) 20
4.6 錯誤偵測次數為導向之低功率叢集 23
4.7 LCP n-detection ATPG演算法概述及流程圖 27
第五章 實驗結果 30
第六章 結論與未來工作 42
6.1 結論 42
6.2 未來工作 42
參考文獻 43
[1]I. Pomeranz and S. M. Reddy, “On the use of fault dominance in n-detection test generation,” in Proc. VLSI Test Symp., pp. 352-357, May 2001.
[2]I. Polian, I. Pomeranz and B. Becker, “Exact computation of maximally dominating faults and its application to n-detection tests,” in Proc. Asian Test Symp., pp. 9-14, Nov. 2002.
[3]G. Tromp, “Minimal Test Sets for Combinational Circuits,” in Proc. Int''l Test Conf., pp. 204-209, Oct. 1991.
[4]I. Pomeranz, L. N. Reddy and S. M. Reddy, “COMPACTEST: A Method to Generate Compact Test Sets for Combinational Circuits,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, Vol. 12, No. 7, pp. 1040-1049, July 1993.
[5]S. Kajihara, I. Pomeranz, K. Kinoshita and S. M. Reddy, “On compacting test sets by addition and removal of test vectors,” in Proc. VLSI Test Symp., pp. 202-207, April 1994.
[6]S. Kajihara, I. Pomeranz, K. Kinoshita and S. M. Reddy, “Cost-Effective Generation of Minimal Test Sets for Stuck-at Faults in Combinational Logic Circuits,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, Vol. 14, No. 12, pp. 1496-1504, Dec. 1995.
[7]I. Hamzaoglu and J. H. Patel, “Test Set Compaction Algorithms for Combinational Circuits,” in Proc. Int’l Conf. Computer-Aided Design, pp. 283-289, Nov. 1998.
[8]I. Pomeranz and S. M. Reddy, “An approach to test compaction for scan circuits that enhances at-speed testing,” in Proc. Design Automation Conf., pp. 156-161, 2001.
[9]Lin Xijiang, J. Rajski, I. Pomeranz and S. M. Reddy, “On static test compaction and test pattern ordering for scan designs,” in Proc. Int’l Test Conf., pp. 1088-1097, Nov. 2001.
[10]A. H. El-Maleh and Y. E. Osais, “Test vector decomposition based static compaction algorithms for combinational circuits,” ACM Trans. Design Automat. Electron. Syst., pp. 430-459, Aug. 2003.
[11]I. Pomeranz and S. M. Reddy, “A new approach to test generation and test compaction for scan circuits,” in Design, Automation and Test in Europe Conference and Exhibition, pp. 1000-1005, 2003.
[12]Y. E. Osais and A. H. El-Maleh, “A static test compaction technique for combinational circuits based on independent fault clustering,” in Proc. Int’l Conf. on Electronics, Circuits and Systems, vol. 3, pp. 1316-1319, Dec. 2003.
[13]A. El-Maleh and S. Khursheed, “Efficient test compaction for combinational circuits based on Fault detection count-directed clustering,” IET Computers & Digital Techniques, vol. 1, No. 4, pp.364-368, July 2007.
[14]I. Pomeranz and S. M. Reddy, “Generalization of independent faults for transition faults,” in Proc. VLSI Test Symp., pp. 7-12, April 1992.
[15]S. Kajihara, K. Ishida and K. Miyase, “Test Vector Modification for Power Reduction during Scan Testing,” in Proc. VLSI Test Symp., pp. 160-165, 28 April-2 May 2002.
[16]X. Wen, Y. Yamashita, S. Morishima, S. Kajihara, L.-T. Wang, K. K. Saluja and K. Kinoshita, “Low-capture-power test generation for scan-based at-speed testing,” in Proc. Int''l Test Conf., 10 pp., Nov. 2005.
[17]X. Wen, Y. Yamashita, S. Kajihara, L.-T. Wang, K. K. Saluja and K. Kinoshita, “On Low-Capture-Power Test Generation for Scan Testing,” in Proc. VLSI Test Symp., pp. 265-270, May 2005.
[18]N. Badereddine, P. Girard, S. Pravossoudovitch, C. Landrault, A. Virazel and H.-J. Wundcrlich, “Minimizing Peak Power Consumption during Scan Testing: Test Pattern Modification with X-Filling Heuristics,” Design and Test of Integrated Systems in Nanoscale Technology, International Conference on, pp. 359-364, 2006.
[19]X. Wen, S. Kajihara, K. Miyase, T. Suzuki, K. K. Saluja, L.-T. Wang, K. S. Abdel-Hafez and K. Kinoshita, “A New ATPG Method for Efficient Capture Power Reduction During Scan Testing,” in Proc. VLSI Test Symp., pp. 6 pages, 30 April-4 May 2006.
[20]N. Badereddine, P. Girard, S. Pravossoudovitch, C. Landrault, A. Virazel and H.-J. Wunderlich, “Structural-Based Power-Aware Assignment of Don’t Cares for Peak Power Reduction during Scan Testing,” Very Large Scale Integration, 2006 IFIP International Conference on, pp. 403-408, Oct. 2006.
[21]X. Wen, K. Miyase, T. Suzuki, S. Kajihara, Y. Ohsumi and K. K. Saluja, “Critical-Path-Aware X-Filling for Effective IR-Drop Reduction in At-Speed Scan Testing,” in Proc. Design Automation Conf., pp. 527-531, June 2007.
[22]N.-C. Lai and S.-J. Wang, “Low-Capture-Power Test Generation by Specifying a Minimum Set of Controlling Inputs,” in Proc. Asian Test Symp., pp. 413-418, Oct. 2007.
[23]S. Remersaro, X. Lin, S. M. Reddy, I. Pomeranz and Janusz Rajski, “Low Shift and Capture Power Scan Tests,” in Proc. VLSI Design, pp. 793-798, Jan. 2007.
[24]M.-F. Wu, K.-S. Hu and J.-L. Huang, “An Efficient Peak Power Reduction Technique for Scan Testing,” in Proc. Asian Test Symp., pp. 111-114, Oct. 2007.
[25]S. Wang and W. Wei, “A Technique to Reduce Peak Current and Average Power Dissipation in Scan Designs by Limited Capture,” in Proc. Asia and South Pacific Design Automation Conf., pp. 810-816, Jan. 2007.
[26]J. Li, Q. Xu, Yu Hu and X. Li, “On Reducing Both Shift and Capture Power for Scan-Based Testing,” in Proc. Asia and South Pacific Design Automation Conf., pp. 653-658, Jan. 2008.
[27]J. Grason, “TMEAS, A Testability Measurement Program,” in Proc. Design Automation Conf., pp. 156-161, June 1979.
[28]L. H. Goldstein and E. L. Thigpen, “SCOAP: Sandia Controllability/Observability Analysis Program,” in Proc. Design Automation Conf., pp. 190-196, June 1980.
[29]R. G. Bennetts, C. M. Maunder and G. D. Robinson, “CAMELOT: a computer aided measure for logic testability,” IEE Proc. Pt. E, Vol. 128, No. 5, pp. 177-189, 1981.
[30]A. El-Maleh and A. Al-Suwaiyan, “An Efficient Test Relaxation Technique for Combinational & Full-Scan Sequential Circuits,” in Proc. VLSI Test Symp., pp. 53-59, 28 April-2 May 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top