跳到主要內容

臺灣博碩士論文加值系統

(18.206.76.226) 您好!臺灣時間:2021/07/30 22:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃道原
研究生(外文):Dao-Yuan Huang
論文名稱:利用雷射視覺量測技術之3D形狀重建系統
論文名稱(外文):A System of 3D Shape Reconstruction by Laser Vision Measurement
指導教授:黃博惠黃博惠引用關係
指導教授(外文):Pow-Hei Huang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:資訊科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:41
中文關鍵詞:雷射雷射視覺3D形狀重建
外文關鍵詞:LaserLaser Vision3DShape Reconstruction
相關次數:
  • 被引用被引用:2
  • 點閱點閱:176
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本文的主要目標為建立一套架構簡單、量測快速的主動式深度量測系統,偵測並重建待測物體的3D形狀,用以應用於高精確度的工業元件檢測。本系統平台採用基礎三角法的架構,由一具可三維移動的CCD鏡頭、一線雷射光束與一台個人電腦所組成。本系統並不限制雷射組件的架設角度,只要先設定一件測量物為基準,計算出雷射線間隔距離相對於物體厚度的轉換公式,就可以運用此公式計算出其他待測物體的厚度。本系統採用放大倍率較大的鏡頭,因此在取像之後,必須先做雷射條紋形狀的萃取,再運用Otsu演算法做二值化運算,搭配型態學影像處理,骨架化與Hough轉換,計算雷射線的相隔距離,再透過前述的公式轉換待測物體的厚度值。本系統對標準單位板做實測,計算表面重建的誤差值約為5%(0.01mm),證明本系統有相當好的精確度。
This paper proposes an active depth measure system with speedy operation and simple structure that can be used in Industrial inspection. The system is built in basic triangulation principle and comprises one CCD camera which can move in three dimensions, one laser beam and one personal computer. We do not restrict the angle when erecting the laser device, but calculate the “laser spacing to object thickness” transfer formula instead. Then we can use that formula to get thickness information of inspecting objects. Because of the high magnification camera, we have to extract the laser streak from the obtained images fist, then we can get the line position of laser streak by using Otsu’s method , morphology, skeletonization and Hough transform from the images of inspecting object. The system shows a good performance of getting only 5% error to the reconstructed surface of the standard board. This paper addresses our system works in high accuracy industrial inspecting.
目錄
誌謝 II
摘要 III
Abstract IV
目錄 V
表目錄 VII
圖目錄 VII
第一章 緒論 1
1.1研究動機與目的 1
1.2論文架構 2
第二章 文獻回顧 3
2.1研究背景 3
2.2量測技術 5
2.2.1結構光法 5
2.2.2點量測法 7
2.2.3對焦測深與對焦成形 8
2.2.4動態規劃法對焦成形 9
第三章 系統建構 12
3.1系統流程 12
3.2硬體設備環境 13
3.3標準單位板厚度量測估計 13
3.3.1標準版雷射取像 14
3.3.2 Otsu演算法 15
3.3.3形態學影像處理 18
3.3.4 Hough轉換 21
3.4待測物體厚度量測 23
3.4.1待測物體取像 23
3.4.2雷射條紋擷取 25
3.5待測物體3D形狀重建 28
3.5.1待測物體面積計算 30
3.5.2待測物體體積計算 30
3.6形狀精確度之驗證 30
3.6.1驗證目標物形狀重建 30
3.6.2誤差計算 32
第四章 比較與分析 33
4.1動態規劃對焦成形系統 35
4.2雷射視覺3D形狀重建系統 35
第五章 結論及未來展望 38
參考文獻 39

表目錄
表3-1、標準單位板3D重建之評估數據 32
表4-1、系統數據比較表 34

圖目錄
圖2-1、非接觸式量測法分類表 4
圖2-2、基礎三角法 5
圖2-3、二元碼照明法示意圖 7
圖2-4、基本成像示意圖 9
圖2-5、做完對焦測量之後的對焦強度立方體 10
圖2-6、2D的x-i切面 10
圖2-7、計算左邊和與右邊和 11
本論文第四章擬採用動態規劃對焦成形系統與本研究所提出之雷射視覺3D形狀重建系統做物體3D形狀重建的效能分析與比較。 11
圖3-1、系統流程圖 12
圖3-2、設備架構圖 13
圖3-3、標準單位板 14
圖3-4、取像流程圖 14
圖3-5、線雷射光束照射示意圖 15
圖3-6、標準單位板雷射取像 15
圖3-7、前景和背景的灰階分布圖 16
圖3-8、(a)取R頻段灰階的標準板雷射影像、(b)灰階分布圖、 17
(c)最佳二值化影像 17
圖3-9、(a)3×3 圓盤(disk)形狀結構元素、(b)19×19 圓盤形狀結構元素 18
圖3-10、(a) 3×3形態濾波結果、(b) 對(a)做19×19形態濾波結果、 19
(c)邊緣平滑化結果 19
圖3-11、(a)雷射區塊骨架、(b)骨架剪除分支 20
圖3-12、R-θ Hough Trans.表達的涵義 22
圖3-13、Hough轉換找出的三條直線,右側為兩條靠在一起的直線 22
圖3-14、影像序列取像示意圖 23
圖3-15、(a)印刷電路板上的錫膏、(b)錫膏實照圖、(c)對錫膏做雷射取像 24
圖3-16、(a)錫膏雷射條紋二值化、(b)對(a)做完形態濾波的結果、 26
(c)區塊連結後的完整雷射條紋 26
圖3-17、5×5圓盤狀結構元素 26
圖3-18、(a)底板雷射條紋以R頻段取二值化、(b)運用形態濾波強化、 27
(c)垂直結構元素做閉合與斷開運算 27
圖3-19、(a)合併之後的完整雷射條紋、(b)形態學邊界偵測取得的雷射輪廓、 28
(c)左側輪廓 28
圖3-20、對錫膏做3D形狀重建 29
圖3-21、以灰階值顯現重建錫膏的表面厚度 29
圖3-22、標準單位板3D形狀重建結果 31
圖3-23、以灰階值顯現重建物體的表面厚度 32
圖4-1、標準單位板3D重建 33
圖4-2、錫膏3D重建 34
圖4-3、遮蔽示意圖 36
圖4-4、錫膏邊緣的雷射取像 36
圖4-5、(a)錫膏的雷射取像、(b)萃取的雷射條紋分隔為四個區塊、(c)模擬連結後的結果 37
[1]JS Son and MR Cutkosky. “Comparison of Contact Sensor Localization Abilities during Manipulation,” Robotics and Autonomous Systems 17 (1996), pp. 217–233.
[2]B. Bidanda, S. Motavalli and K. Harding, “Reverse Engineering: An Evaluation of Prospective Non-Contact Technologies and Applications in Manufacturing Systems,” Int. J. Comput. Integ. Manufact. 4 (1991), pp. 143–156.
[3]El-Hakim,S.F., Beraldin,J.-A., and Blais,F., 1995. “A comparative evaluation of the performance of passive and active 3-D vision systems,” In: St. Petersburg Great Lakes Conference on Digital Photogrammetry and Remote Sensing, St. Petersburg, Russia, June 25-30, Proc. SPIE 2646, pp. 14-25.
[4]F. W. DePiero and M. M. Trivedi, “3-D Computer Vision Using Structured Light: Design, Calibration and Implementation Issues,” Adv. in Comput., vol. 43, pp. 243-278, 1996.11
[5]D. W. Manthey, K. N. Knapp, and D. Lee, “Calibration of a Laser Range Finding Coordinate Measuring Machine,” Opt. Eng., vol. 33, no. 10, pp. 3272-2379, Oct. 1994.
[6]P. J. Besl, “Active optical range imaging sensors,” Advances in Machine Vision, Springer-Verlag New York, Inc., New York, NY, 1988
[7]Lau K.-T., Baldwin S., O''Toole M., Shepherd R., Yerazunis W.J., Izuo S., Ueyama S., Diamond D. “A Low-Cost Optical Sensing Device Based on Paired Emitter-Detector Light Emitting Diodes,” (2006) Analytica Chimica Acta, 557 (1-2), pp. 111-116.
[8]H. Inoue, T. Tachikawa and M. Inaba, “Robot Vision System with a Correlation Chip for Real-Time Tracking, optical flow and depth map generation,” In: Proceedings 1992 IEEE International Conference on Robotics and Automation (1992).
[9]P. Vuylsteke and A. Oosterlinck, “Range Image Acquisition with a Single Binary-Encoded Light Pattern,” Pattern Analy. Mach. Intell. 12 2 (1990), pp. 148–163.
[10]He X., Zou D., Liu S., Guo Y. “Phase-Shifting Analysis in Moiré Interferometry and Its Applications in Electronic Packaging,” (1998) Optical Engineering, 37 (5), pp. 1410-1419.
[11]C. Chen, Y. Hung, C. Chiang and J. Wu, “Range Data Acquisition Using Color Structured Lighting and Stereo Vision,” Image Vision Comput. 15 (1997), pp. 445–456.
[12]J. Salvi, J. Pagés, J. Batlle. “Pattern Codification Strategies in Structured Light Systems,” Pattern Recognition 37(4), pp. 827--849, April 2004.111
[13]Scharstein and Szeliski, 2003 D. Scharstein and R. Szeliski, “High-Accuracy Stereo Depth Maps Using Structured Light,” Conference on Computer Vision and Pattern Recognition (2003) (1), pp. 195–202.
[14]D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, "Estimation of Optical Pathlength Through Tissue from Direct Time-of-Flight Measurements," Phys. Med. Biol. 33, 1433-1442 (1988).
[15]T. Darrell and K. Wohn, "Pyramid Based Depth from Focus," Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 504-509, June 1988.
[16]J.H. Nurre and E.L. Hall, “ Encoded Moire Inspection Based On a Computer Solid Model ”, IEEE Trans. On PAMI, Vol.14, No 12, pp.1214~1218, 1992
[17]Hsu-Nan Yen, Du-Ming Tsai and Jun-Yi Yang, “Full-filed 3-D Measurement of Solder Pastes Using LCD-Based Phase Shifting Techniques”, IEEE Transactions on Electronics Packaging Manufacturing, Vol. 29, No. 1, pp. 50 -057, 2006.
[18]R. R. J. Lathrop, “Solder Paste Print Qualification Using Laser Triangulation,” IEEE Trans. Compon., Packag., Manuf. Technol., vol. 20, pp. 174-182, 1997.
[19]Nayer SK, Nakagawa Y (1994) “Shape from focus,” IEEE Trans PAMI 16(8):824-831
[20]C.Gonzalez Ragael and E.Woods Richard, “ Digital Image Processing ”, Second Edition, ISBN:0-13-094650-8, Prentic-Hall Inc, 2003
[21]Gonzalez RWREESL: “Digital Image Processing Using Matlab,” New Jersey, Pearson Prentice Hall; 2004.
[22]McAndrew A: “Introduction to Digital Image Processing with Matlab,” Boston, MA, Thomson Course Technology; 2005.
[23]Muhammad Bilal Ahmad and Tae-Sun Choi, “A Heuristic Approach for Finding Best Focused Shape,” IEEE Transactions on Circuit System for Video Technologies (to be published in April 2005 issue).
[24]R. Kowarschik, P. Kuhmstedt, J. Gerber, W. Schreiber and G. Notni, “Adaptive Optical Three-Dimensional Measurement with Structured Light,” Opt Eng 39 (2000), pp. 150–158.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top