跳到主要內容

臺灣博碩士論文加值系統

(34.236.36.94) 您好!臺灣時間:2021/07/24 21:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳豐佑
研究生(外文):Fong-You Wu
論文名稱:一個改良的切換式中值濾波器由高污染影像移除脈衝雜訊
論文名稱(外文):An Improved Switching Median Filter for Impulse NoiseRemoval from Extremely Corrupted Images
指導教授:吳俊霖吳俊霖引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:資訊科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:53
中文關鍵詞:切換式中值濾波器脈衝雜訊邊界差異雜訊偵測器迴旋積遮罩
外文關鍵詞:switching median filterimpulse noiseBDNDconvolution kernel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:200
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文對於切換式中值濾波器提出一個新的脈衝雜訊偵測演算法,此演算法結合了兩種脈衝雜訊偵測器,第一種脈衝雜訊偵測器是產生六個方向的迴旋積遮罩,其利用一維拉普拉斯運算元計算後找出最小值,來判斷目前考慮的像素是否有受到脈衝雜訊的污染以保留邊界資訊,第二種脈衝雜訊偵測器是基於邊界差異的雜訊偵測器(Boundary Discriminative Noise Detection) 簡稱BDND,BDND 演算法主要是將目前考慮的像素及其鄰近的像素利用兩個計算出來的邊界值,將這些像素群分成三群,分別是低濃度像素群、中濃度像素群、高濃度像素群,如果目前考慮的像素被分類到低濃度像素群或是高濃度像群,則判定目前考慮的像素受到脈衝雜訊的污染,反之若被分類到中濃度像素群,則判定目前考慮的像素沒有受到脈衝雜訊的污染。
脈衝雜訊偵測完成後將產生兩個二位元的脈衝雜訊圖,如果目前考慮的像素皆被判定受到脈衝雜訊的污染,我們使用中值濾波器將脈衝雜訊移除,反之則以原像素輸出結果,實驗結果顯示,本論文所提的切換式中值濾波演算法,能有效的移除脈衝雜訊,並保留絕大部份的細節,另一方面在0%到70% 這高範圍的脈衝雜訊濃度中,本論文所提的切換式中值濾波演算法相較於其他切換式中值濾波演算法,不論在細節、線條、或是邊界部份等的脈衝雜訊移除,都有相當優秀的表現。
A novel impulse noise detector technique for switching median filters is presented, which is combine with two impulse noise detectors .The first detector is based on the minimum absolute value of six convolution kernels obtained using one-dimensional Laplacian operators. The second detector is base on the boundary discriminative noise detection (BDND), the BDND algorithm first classifies the pixels of a localized window, centering on the current pixel, into three groups—lower intensity impulse noise, uncorrupted pixels, and higher intensity impulse noise. The center pixel will then be considered as “uncorrupted,” provided that it belongs to the “uncorrupted”pixel group, or “corrupted.” two boundaries that discriminate these three groups require to be accurately determined for yielding noise detection accuracy.
After these detections, two binary impulse noise maps will be produced. Finally,if noise maps both decided the current pixel was impulse noise, we can realize the pixel was corrupted by impulse noise. If the current pixel was corrupted by impulse noise, we use median filter to remove the noise, else we output the original pixels. Extensive
simulation experiments show that the proposed switching median filter may be used for efficient restoration of digital images corrupted by impulse noise without distorting the useful information, and conducted images under a wide range (from 0% to 70%) of noise corruption clearly show that our proposed switching median filter substantially outperforms all existing median-based filters.
第一章.. 1
緒論.. 1
1.1 背景說明.. 1
1.2 研究動機與目的.. 2
1.3 論文架構.. 3
第二章.. 4
影像復原理論與相關文獻研究.. 4
2.1 前言.. 4
2.2 數位影像表示法.. 4
2.3 常見的雜訊模型.. 5
2.4 影像品質估測.. 7
2.5 傳統影像雜訊消除方法.. 8
第三章.. 12
切換式中值濾波器介紹.. 12
3.1 前言.. 12
3.2 基於中值差異之切換式中值濾波器.. 13
3.3 BDND 切換式中值濾波器.. 14
3.3.1 BDND 雜訊偵測器介紹.. 14
3.3.2 BDND 雜訊偵測器在邊界部份可能產生的問題.. 19
3.4 基於迴旋積之切換式中值濾波器.. 23
3.4.1 基於迴旋積雜訊偵測器介紹.. 23
3.4.2 基於迴旋積雜訊偵測器在邊界部份可能產生的問題.. 25
3.5 基於迴旋積雜訊偵測器改進方法.. 27
3.6 所提的切換式中值濾波器.. 30
第四章.. 33
實驗結果與討論.. 33
4.1 前言... 33
4.2 固定胡椒鹽式脈衝雜訊下與其他濾波器比較.. 35
4.3 高範圍脈衝雜訊濃度下PSNR 比較與執行時間整理.. 48
第五章.. 51
結論與未來展望.. 51
參考文獻.. 52
[1] R. C. Gonzalez and R. E. Woods, “Digital Image Processing” 2002 edition.
[2] T. Chen and H. R. Wu, “Space variant median filters for restoration of impulse noise corrupted images,” IEEE Transactions on Circuits and systems, vol. 48, no. 8, pp. 784-789, 2001.
[3] K. Arakawa, “Median filter based on fuzzy rules and its application to image restoration,” Fuzzy Sets and Systems, vol. 77, pp. 3-13, 1996.
[4] R. Lukac, “Adaptive vector median filtering,” Pattern Recognition Letters, vol. 24, pp. 1889-1899, 2003.
[5] J. Y. Chang and J. L. Chen, “Classified-augmented median filters for image restoration,” IEEE Transactions on Instrumentation and Measurement, vol. 53, no. 2, pp. 351-356, 2004.
[6] M. I. Vardavoulia, I. Andreadis, and Ph. Tsalides, “A new vector median filter for colour image processing,” Pattern Recognition Letters, vol. 22, no. 6-7, pp.675-689, 2001.
[7] T. Sun and Y. Neuvo, “Detail-preserving median based filters in image processing,” Pattern Recognit. Lett.,vol. 15, no. 4, pp. 341–347, Apr. 1994.
[8] D. A. Florencio and R. W. Schafer, “Decision-based median filter using local signal statistics,” in Proc. SPIE Vis. Commun. Image Process., vol. 2308, Sep. 1994, pp. 268–275.
[9] T. Chen, K. K. Ma, and L. H. Chen, “Tri-state median filter for image denoising,” IEEE Trans. Image Process., vol. 8, no. 12, pp. 1834–1838, Dec. 1999.
[10] Z. Wang and D. Zhang, “Progressive switching median filter for the removal of 5 3 impulse noise from highly corrupted images,” IEEE Trans. Circuits Syst. II, vol.46, no. 1, pp. 78–80, Jan. 1999.
[11] S. Zhang and M. A. Karim, “A new impulse detector for switching median filters,” IEEE Signal Process. Lett.,vol. 9, no. 4, pp. 360–363, Nov. 2002.
[12] H. L. Eng and K. K. Ma, “Noise adaptive soft-switching median filter,”IEEE Trans. Image Process., vol. 10, no. 2, pp. 242–251, Feb. 2001.
[13] G. Pok, J. C. Liu and, A. S. Nair, “Selective removal of impulse noise based on homogeneity level information,” IEEE Trans. Image Processing, vol. 12, no. 1, pp. 85–92, Jan. 2003.
[14] H. Hwang and R. A. Haddad, “Adaptive median filters: New algorithms and results,” IEEE Trans. Image Procfess., vol. 4, no. 4, pp. 499–502, Apr. 1995.
[15] 許志遠,基於軟式計算技術之智慧型影像濾波器,國立成功大學,資訊工程研究所,碩士論文,2004。
[16] F. Russo, “Noise removal from image data using recursive neurofuzzy filters”, IEEE Transactions on Instrumentation and Measurement Vol 49, Issue 2, April
2000 pp.307 - 314.
[17] 蕭進松,「數位影像處理」,台北,全華科技股份圖書有限公司,民88。
[18] P. E. Ng, and K. K. Ma, “A Switching Median Filter With Boundary Discriminative Noise Detection for Extremely Corrupted Images,” IEEE Trans. Image Processing, vol. 15, no. 6, pp. 1506–1516, June. 2006.
[19] 吳上立,「C 語言數位影像處理」,台北,全華科技股份圖書有限公司,民 95。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top