跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/02 01:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭鳳瑞
研究生(外文):Feng-Jui Kuo
論文名稱:超音波應用於果汁品質之檢測
論文名稱(外文):Measurements of Juice Quality Using Ultrasonic Technology
指導教授:盛中德盛中德引用關係
學位類別:博士
校院名稱:國立中興大學
系所名稱:生物產業機電工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:69
中文關鍵詞:超音波混合果汁糖度黏度
外文關鍵詞:ultrasoundreconstituted juicesugar contentviscosity
相關次數:
  • 被引用被引用:7
  • 點閱點閱:244
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
糖度及黏度是食品加工製造過程中,口感好壞重要性的科學指標。因此,加工過程中,如果能即時進行上述的量測,並據以進行調整製程參數,便可達到最佳的產品品質。本研究是利用低功率超音波量測,配合研發的硬體及軟體,可同時量測波速及衰減係數,不會對被檢測物產生任何微結構上的破壞,評估波速與衰減係數兩項超音波特性與糖度值及黏度值彼此之間的關係,建立最佳應用模式,達到產品品質監控的功能。
不同濃度糖水實驗量測方法,溫度控制在30℃之條件下,進行量測糖度值及黏度值,採用回波法,並探討超音波波速、衰減係數與糖度及黏度間之關係。實驗結果顯示,超音波波速會隨著糖度及黏度的增加而增加,都呈現正相關性,波速與糖度及黏度線性關係良好,判定係數分別高達0.966及0.9099。但在同樣實驗條件之下,超音波衰減係數與糖度及黏度彼此的相關性較低。在相同實驗操作下,進一步對混合西瓜汁及混合柳丁汁進行糖度及黏度檢測。檢測結果得知,超音波波速隨著混合西瓜汁及柳丁汁之糖度及黏度的增加而增加,波速與混合西瓜汁内所含糖度及黏度的線性關係良好,判定係數分別高達0.9882及0.9621。混合柳丁汁以回波法及穿透法進行檢測,波速與糖度呈線性正相關,判定係數分別高達0.9877及0.9978;波速與黏度也呈現正相關,判定係數分別為0.957及0.9867。超音波波速可精確評估混合西瓜汁及混合柳丁汁內的糖度值及黏度值,可提供一套非破壞且即時應用於混合果汁生產製程設計上的參考。
The sugar content and the viscosity are an important scientific sensory indicator for processed foods. Food products can arrive at an optimum sensory quality if the production process can be adjusted on line through monitoring the above two factors in real time. Thus, it is the objective of this study to develop a real-time ultrasonic monitoring system that provides information about the sugar content and viscosity in juices via the detected ultrasonic velocity and power attenuation. The two sensory indices are estimated using the ultrasonic measurements with derived mathematic equations.
The study was initiated in aqueous sugar solutions. Ultrasonic measurements were conducted using the pulse-echo (PE) or the transmission-through (TT) schemes at a temperature-controlled environment of 30℃. The velocity of ultrasound increases proportionally to increased sugar content and viscosity in the solution. The power attenuation coefficient does not show rational relationship with the two sensory indices. The velocity of ultrasound has strong linear correlations with the sugar content at R2=0.966 and with the viscosity at R2=0.9099. The established procedures were applied to watermelon and orange juices at various sugar contents and viscosities. In a PE scheme, the velocity of ultrasound exhibits R2=0.9882 for sugar content and R2=0.9621 for viscosity in watermelon juice and R2=0.9877 for sugar content and R2=0.957 for viscosity in orange juice. In a TT scheme, the coefficients of determinant are 0.9978 and 0.9867 for sugar content and viscosity respectively in orange juice. The strong correlation and the convenience in equipment operation would allow the use of ultrasound in on-line monitoring for automated juice production and furthermore, other food processing.
摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VII
符號表 VIII
第一章 緒論 1
1-1前言 1
1-2研究目的 3
第二章 文獻探討 4
2-1超音波特性 4
2-1-1超音波的模態 4
2-1-2超音波的頻率、波速與波長 6
2-1-3超音波功率強度 7
2-1-4超音波的衰減 8
2-1-5超音波的生成 9
2-2超音波技術 11
2-2-1非破壞性檢測技術上的應用 11
2-2-2液體黏度與糖度量測上的應用 13
2-2-3農業上的應用 14
2-2-4洗淨上的應用 15
2-2-5乳製品檢測上的應用 15
第三章 超音波量測系統 17
3-1理論基礎與量測方法 17
3-1-1超音波對糖度及黏度的檢測 17
3-1-2超音波回波法的量測 19
3-1-3超音波穿透法的量測 21
3-2超音波量測系統設備 24
第四章 糖水及果汁特性的量測 28
4-1實驗儀器設備 28
4-2實驗材料 29
4-3物理特性的量測方法 30
4-3-1糖度的量測方法 30
4-3-2黏度的量測方法 31
4-4糖水的準備與量測方法 31
4-4-1糖水的準備 31
4-4-2超音波對糖水的量測方法 33
4-5超音波在果汁量測上的應用 34
4-5-1果汁樣本的準備 34
4-5-2超音波對果汁的量測方法 34
第五章 結果與討論 36
5-1糖水的量測 36
5-1-1糖水糖度、黏度及密度與濃度的關係 36
5-1-2超音波波速與糖水密度、糖度及濃度的關係 38
5-1-3超音波波速與糖水黏度的關係 40
5-1-4超音波衰減係數與糖水糖度及黏度的關係 42
5-1-5超音波波速檢測在糖水糖度與黏度上的應用 44
5-2西瓜汁的量測 45
5-2-1超音波波速與西瓜汁密度及糖度的關係 45
5-2-2超音波波速與西瓜汁黏度的關係 47
5-2-3超音波衰減係數與混合西瓜汁糖度及黏度的關係 49
5-3柳丁汁的量測 52
5-3-1超音波波速與柳丁汁密度及糖度的關係 52
5-3-2超音波波速與柳丁汁黏度的關係 55
5-3-3超音波衰減係數與混合柳丁汁糖度及黏度的關係 58
第六章 結論與建議 62
6-1結論 62
6-2建議 63
參考文獻 64
附錄 70
A. 量測儀器 70
B. 黏度計實驗步驟 71
1. 艾群、S. Gunasekaran. 1993。利用超音波分析牛奶在凝結過程中的物理性質變化。農業機械學刊 2(2):49-63。
2. 吳學文、黃啟貞、陳必貫、葉競榮。1988。超音波檢測法初級。中華民國非破壞檢測協會。
3. 李允中、王峻禧。1996。罐裝液體食品黏度非破壞檢測系統的自由減振扭轉振動分析。農業機械學刊 5(4):47-55。
4. 周瑞明。2008。超音波檢測豆象蟲害即時監測系統之研究。碩士論文。嘉義:國立嘉義大學生物機電工程研究所。
5. 侯國珅。1990。非破壞檢測法。三版。台北;徐氏基金會。
6. 洪滉祐。2007。超音波應用於農產品與肉品之品質檢測。博士論文。臺北:國立臺灣大學生物產業機電工程學研究所。
7. 郭重裕。1994。以超音波感測器偵測圓筒倉水稻之儲存量。碩士論文。臺北:國立臺灣大學農業機械工程學研究所。
8. 陳永增、鄧惠源。2004。非破壞檢測。修訂版。臺北;全華科技圖書股份有限公司。
9. 陳見秋。2006。超音波應用於組培瓶清洗效果之研究。碩士論文。嘉義:國立嘉義大學生物機電工程研究所。
10. 陳金樹。1993。研製-Brix度數表供由反光儀測定值來換算柑澄汁中固型物含量。農業機械學刊 2(1):1-14。
11. 感測器實習教材。2005。臺中:中教工業有限公司。
12. 鄭光庭。2001。利用超音波清洗薄膜結垢。碩士論文。台南:國立成功大學機械工程研究所。
13. 鄭振東。1999。超音波工程。初版。臺北:全華科技圖書股份有限公司。
14. 劉慧瑛。1992。果蔬甜度、糖度、可溶性固形物與糖含量的論析。臺灣省農業試驗所技術服務季刊 10(3)。
15. 賴耿陽。1992。超音波工學理論及實務。再刷版。臺南:復漢出版社。
16. Ay, C. and S. Gunasekaran. 1994. Ultrasonic measurements for estimating milk coagulation time. Transactions of the ASAE, 37(3): 857-862.
17. Ay, C. and S. Gunasekaran. 2003. Numerical method for determining ultrasonic wave diffu-sivity through coagulating milk gel system. Journal of Food Engineering, 58: 103-110.
18. Benedito, J., J. Carcel, G. Clemente, and A. Mulet. 2000. Cheese maturity assessment using ultrasonics. Journal of Dairy Science, 83: 248-254.
19. Beyer, R. T. and S. V. Letcher. 1969. Physical Ultrasonics. 79-87. New York: Academic Press.
20. Bhardwaj, M. C. 2001. Non-contact ultrasound: the nal frontier in nondestructive testing and evaluation. In Biderman, A., (Eds.), Encyclopedia of Smart Materials. Wiley, New York.
21. Bhardwaj, M. C. 2002. Non-contact ultrasound: the nal frontier in non-destructive analysis. SecondWave Systems, Boalsburg, PA USA.
22. Cai, T. D. and K. C. Chang. 1998. Characteristics of production-scale tofu as affected by soymilk coagulation. Food Research International, 31(4): 289-295.
23. Cartwright, D. 1998a. Off-the-shelf ultrasound instrumentation for the food industry. In Povey, M. J. W. and T. J. Mason. (Eds.), Ultrasound in Food Processing, Chapter 2. Blackie, London.
24. Cartwright, D. 1998b. Rapid determination of food material properties. In Povey, M. J. W. and T. J. Mason. (Eds.), Ultrasound in Food Processing, Chapter 3. Blackie, London.
25. Cho, B. K. and J. M. K. Irudayaraj. 2003. A noncontact ultrasound approach for mechanical property determination of cheeses. Journal of Food Science, 68(7): 2243-2247.
26. Contreras Montes de Oca, N. I., P. Fairley, D. J. McClements, and M. J. W. Povey. 1992. Analysis of the sugar content of fruit juices and drinks using ultrasonic velocity measurements. International Journal of Food Science and Technology, 27: 515-529.
27. Dukhin, A. S., P. J. Goetz, and B. Travers. 2005. Use of ultrasound for characterizing dairy products. Journal of Dairy Science, 88(4): 1320-1334.
28. Dwyer, C., L. Donnelly, and V. Buckin. 2005. Ultrasonic analysis of rennet-induced pre-gelation and gelation processes in milk. Journal of Dairy Research, 72: 303-310.
29. Ewing, M. B. 1993. Thermophysical properties of uids from acoustic measurements. Pure and Applied Chemistry, 65: 907-912.
30. Gan, T. H., P. Pallav, and D. A. Hutchins. 2006. Non-contact ultrasonic quality measurements of food products. Journal of Food Engineering, 77: 239-247.
31. Gekko, K. and K. Yamagami. 1991. Flexibility of food proteins as revealed by compressibility. Journal of Agricultural and Food Chemistry, 39: 57-62.
32. Giles, D. K., M. J. Delwiche, and R. B. Dodd. 1987. Control of orchard spraying based on electronic sensing of target characteristics. Transactions of the ASAE, 30(6): 1624-1630.
33. Greenwood, M. S., J. D. Adamson, and L. J. Bond. 2006. Measurement of the viscosity–density product using multiple reections of ultrasonic shear horizontal waves. Ultrasonics, 44: e1031-e1036.
34. Gunasekaran, S. and C. Ay. 1996. Milk coagulation cut-time determination using ultrasonics. Journal of food Process Engineering, 19(1): 63-73.
35. Harker, F. R., K. B. Marsh, H. Young, S. H. Murray, F. Gunson, and S. Walker. 2002. Sensory interpretation of instrumental measurements 2: sweet and acid taste of apple fruit. Postharvest Biology and Technology, 24(3): 241–250.
36. Herzfeld, F. K. and T. A. Litovitz. 1959. Absorption and Dispersion of Ultrasonic Waves. p174, New York: Academic press.
37. Hueter, T. F., H. Morgan, and M. S. Cohen. 1953. Ultrasonic attenuation in biological suspensions. Journal of Acoustic Society of America, 25(6): 1200-1201.
38. Kaye, G. W. C. and T. H. Laby. 1972. Table of Physical and Chemical Constants. P62, London: Willian Clowes & Sons.
39. Kamiyama, T. and K. Gekko. 1997. Compressibility and volume changes of lysozyme due to guanidine hydrochloride denaturation. Chemistry Letters, 10: 1063-1064.
40. Kim, J. O. and H. H. Bau. 1989. Instrument for simultaneous measurement of density and viscosity. Review of Scientific Instruments. 60(6): 1111-1115.
41. Knorr, D., M. Zenker, V. Heinz, and D. Lee. 2004. Applications and potential of ultrasonics in food processing. Trends in Food Science and Technology, 15: 261-266.
42. Kuster, G. T. and M. N. Toksoz. 1974. Velocity and Attenuation of Seismic Waves in two Phase Media. Geophysics. 39︰587-617.
43. Lynnworth, L. C. 1989. Ultrasonic measurements for process control Techniques: Applications. New York: Academic Press.
44. Mason, T. J., L. Paniwnyk, and J. P. Lorimer. 1996. The uses of ultrasound in food technology. Ultrasonics Sonochemistry, 3: S253-S260.
45. McClements, D. J. and M. J. W. Povey. 1987. Solid fat content determination using ultrasonic velocity measurements. International Journal of Food Science and Technology, 22: 419-428.
46. McClements, D. J. 1995. Adavances in the application of ultrasound in ood analysis and processing. Trends in Food Science and Technology, 6: 293-299.
47. Mizrach, A., N. Galili, and G. Rosenhouse. 1989. Determination of fruit and vegetable properties by ultrasonic excitation. Transactions of the ASAE, 32(6): 2053-2058.
48. Mizrach, A. 2000. Determination of avocado and mango fruit properties by ultrasonic technique. Ultrasonics, 38: 717-722.
49. Mohsenin, N. N. 1986. Physical properties of plant and animal materials. (2nd ed.). New York: Gordon and Breach, Science Publishers, Inc.
50. N¨olting, B. 1995. Relation between adiabatic and pseudoadiabatic compressibility in ultrasonic velocimetry. Journal of Theoretical Biology, 175: 191-196.
51. Nyborg, W. L. 2002. Safety of medical diagnostic ultrasound. Seminars in Ultrasound, CT, and MRI, 23(5): 377-386.
52. Papadakis, E. P. 1976. Ultrasonic velocity and attenuation: measurement methods with scientific and industrial applications, physical Acoustics Vol. XII. ed. W. P. Mason, 277-374. New York: Academic Press.
53. Pinder, A. C. and G. Godfrey. 1993. Food process monitoring Systems. London: Blackie Academic & Professional.
54. Pryor, A. W. and R. Roscoe. 1954. The velocity and absorption of sound in aqueous sugars. Proceedings of the Physical Society. Section B, 67(1): 70-81.
55. Rodriguez-Saona, L. E., F. S. Fry, M. A. McLaughlin, and E. M. Calveyb. 2001. Rapid analysis of sugars in fruit juices by FT-NIR spectroscopy. Carbohydrate Rssearch, 336(1): 63-74.
56. Saggin, R. and J. N. Coupland. 2001. Concentration measurement by acoustic reflectance. Journal of Food Science, 66(5): 681-685.
57. Saggin, R. and J. N. Coupland. 2002. Measurement of solid fat content by ultrasonic reflectance in model systems and chocolate. Food Research Internation, 35(10): 999-1005.
58. Sarvazyan, A. P. 1991. Ultrasonic velocimetry of biological compounds. Annual Review of Biophysics and Biophysical Chemistry, 20: 321–342.
59. Sayan, P. and J. Ulrich. 2002. The effect of particle size and suspension density on the measurement of ultrasonic velocity in aqueous solutions. Chemical Engineering and Processing, 41: 281-287.
60. Sheen, S. H., H. T. Chien, and A. C. Raptis. 1994. An in-line ultrasonic viscometer. Proceedings of 21st Annual Review of Progress in Quantitative Nondestructive Evaluatuin, Snowmass Village, Colorado, July 31-August 5, 1994.
61. Studman, J. 2001. Computers and electronics in postharvest technology - a review. Computers and Electronics in Agrculture, 30: 109-124.
62. Suslick, K. S. 1990. Sonochemistry. Science, 247: 1439–1445.
63. USDA. 1995. United States Standards for Grades of Concentrated Tangerine Juice for Manufacturing. Technical Report 20 FR 7281, U.S. Department of Agriculture, Washington D.C., USA.
64. Valero, M., N. Recrosio, D. Saura, N. Munõz, N. Martí, and V. Lizama. 2007. Effects of ultrasonic treatments in orange juice processing. Journal of Food Engineering, 80: 509-516.
65. Wood, A. B. 1964. A Textbook of Sound. Bell, London, 3rd edition.
66. Zhao, B., O. A. Basir, and G. S. Mittal. 2003. Correlation analysis between beverage apparent viscosity and ultrasound velocity. International Journal of Food Properties, 6(3): 443–448.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top