跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 10:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊子逸
研究生(外文):Tzu-Yi Yang
論文名稱:結合三維對極式導電度量測法之毛細管電泳晶片的開發
論文名稱(外文):Development of Capillary Electrophoresis Integrated with 3D Pair-Electrode Conductivity Detection
指導教授:吳靖宙
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物產業機電工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:75
中文關鍵詞:毛細管電泳ITO電極三維對極式熱壓合
外文關鍵詞:capillary electrophoresisITO electrode3D pair-electrodehot bonding
相關次數:
  • 被引用被引用:1
  • 點閱點閱:105
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究開發三維對極式導電度毛細管電泳晶片,此晶片以ITO玻璃為基材,利用光微影蝕刻技術製作出所需要的電極晶片,在電極晶片上塗佈負光阻SU8-3010作為構成毛細管微泳道的材料,並利用90 ℃的溫度再次軟化未完全交聯的SU8並施予20 kgf維持2 min進行晶片的熱壓合,壓合後管道的變形量小於4.76%,且壓合成功率為90 % 。此外,去耦合電極將會電沉積上吸附氫能力佳的Pd材料,其結果顯示在電沉積5 min的條件,可使去耦合電極能耐受100 V/cm的電場強度而不引起氫氣泡的生成。此三維對極式電極的槽常數為12.48 /cm,在5 mM MES/His的背景電解液中,目前可分離並測得樣本濃度為0.5 mM K+與0.5 mM Na+,其S/N比分別為75與17。在未來將可依檢測樣本濃度選擇適當的背景電解液,使得在檢測訊號上更加靈敏,以利於更低濃度樣本的檢測。
In the study, we fabricated a conductimetry-integrated capillary electrophoresis chip with 3D pair-electrodes. The chip was made by using photo lithography techniques on ITO glasses and the negative photo resist (SU8-3010) was used for forming the microchannel walls. Following the hot bonding at 90℃with 20 kgf for 2 min, the successful ratio of the chip bonded was 90% and the deformation of channel width was 4.76%. Moreover, the decoupler electrode was electrodeposited with palladium material to adsorb the hydrogen. The experimental results showed that the decoupler with 5 min electrodeposition of palladium can prevent the formation of hydrogen bubbles under the electric field of 100 V/cm. The cell constant of 3D pair-electrode calculated is 12.48/cm. Present, the detection concentration was 0.5 mM K+ (S/N:75) and 0.5 mM Na+(S/N:17) in 5 mM MES/His running buffer, respectively. We can adjust the composition of running buffer so as to obtain the lower detection limit and the better sensitivity for the detection of lower concentration samples.
誌謝……………………………………………………i
摘要………………………………………………………………………..ii
Abstract…………………………………………………………………...iii
目錄……………………………………………………………………….iv
圖目錄………………………………………………………xi
表目錄………………………………………………………………viii
第1章 緒論……………………………………………1
1.1 前言 ……………………………………………………………..1
1.2 毛細管電泳的發展……………………………………………... 2
1.2.1 毛細管電泳的發展史………………………………….. 2
1.2.2 毛細管電泳的原理…………………………………….. 3
1.2.3 電雙層的現象………………………………………….. 4
1.2.4 CE中離子的移動現象……………………………….. 7
1.3 CE分離方式的探討……………………………………………. 12
1.3.1毛細管區帶電泳法……………………………………..12
1.3.2 毛細管等電電泳法…………………………………….12
1.3.3 微胞電動層析法……………………………………….12
1.3.4 毛細管凝膠電泳法…………………………………….13
1.3.5 毛細管等電聚焦……………………………………….13
1.4分離效能評估…………………………………………………...14
1.4.1 分離時間的探討……………………………………….14
1.4.2 分離效率的探討……………………………………….15
1.4.3 解析度的探討………………………………………….16
1.5晶片式CE的電極位置與操作法……………………………….17
1.5.1 毛細管電泳電壓給予的方式………………..………...20
1.6.1 結合CE的光學量測法…………..……………………22
1.6.2 結合CE的電化學量測法………..……………………23
1.6.3 導電度法原理………………………..………………...27
1.6.4 導電度法的應用…………………..…………………...29
1.7 研究目的與架構………………………………………………..31
第2章 材料與方法………………………………………………………33
2.1 研究設備與實驗藥劑…………………………………………..33
2.1.1實驗試劑………………………………………………..33
2.1.2 設備…………………………………………………….35
2.3 導電度感測晶片的製作………………………………………..37
2.4 微管道的製作…………………………………………………..39
2.5 還原電位的判定與電鍍……………..…………………………40
2.6 晶片的壓合……………………………………………………..42
2.6.1 熱壓合的方式………………………………………….42
2.6.2 介質接合輔助………………………………………….43
2.7量測系統的與檢測時電壓給定…………………………………44
第3章 結果與討論………………………………………………………45
3.1晶片製作特性探討……………….……………………………..45
3.1.1 表面的平整度對晶片壓合的影響…………………….45
3.1.2 曝光計量的探討……………………………………….46
3.1.3 壓合情況的討論……………………..………………...50
3.2 晶片EOF特性的評估…………………………………………51
3.3偵測工作條件的探討………………………..…………………53
3.3.2 檢測電壓的選擇………………………………………55
3.4去耦合效應的探討…………………...…………………………56
3.5金屬離子Na+,K+之各別之偵測………………………………60
3.5.1 背景電解液濃度的選擇……………………………….60
3.5.2注入時間的判定………………………………………..63
3.5.3 Na+、K+量測之檢量線與偵測極限……………………64
第4章 結論………………………………………………………………67
參考文獻…………………………………………………………68
1. R. M. Guijt, E. Baltussen, G. der Steen, R. B. M. Schasfoort, S. Schlautmann, H. A. H. Billiet, J. Frank, G. W. K. van Dedem and A. van den Berg, New Approaches for Fabrication of Microfluidic Capillary Electrophoresis Devices with On-Chip Conductivity Detection, Electrophoresis 22 (2001) 235-241.
2. A. Tiselius, A New Apparatus for Electrophoretic Analysis of Colloidal Mixtures, Trans. Faraday. Soc. 33 (1937) 524-531.
3. S. Hjerten, Free Zone Electrophoresis, Chromatogr. Rev. 9 (1967) 122-219.
4. R. Virtanen, Zone Electrophoresis in a Narrow-Bore Tube Employing Potentiometric Detection, Acat. Polytech. Scand. 123 (1974) 1-67.
5. J. W. Jorgenson and K. D. Lukacs, High Resolution Separation Based on Electrophoresis and Electroosmosis, J. Chromator. 218 (1981) 209-216.
6. J. W. Jorgenson and K. D. Lukacs, Zone Electrophoresis in Open-Tubular Glass Capillaries, Anal. Chem. 53 (1981) 1298-1302.
7. J. W. Jorgenson and K. D. Lukacs, Capillary Zone Electrophoresis, Science 222 (1983) 266-272.
8. 黃進益, 電化學原理與應用, Vol. 初版 台北 高立.
9. A. J. Bard and L. R. Faulkner, Electrochemical Methods Fundamentals and Applications, Vol. 2. (2001) America John Wiley.
10. P. D. Grossman and J. C. Colburn, Capillary Electrophoresis:Theory and Practice, (1992) USA Academic Press, San Diego.
11. J. L. Beckers and P. Bocek, Sample Stacking in Capillary Zone Electrophoresis: Principles, Advantages and Limitations, Electrophoresis 21 (2000) 2747-2767.
12. S. Terabe, K. Otsuka, K. Ichikawa, A. Tsuchiya and T. Ando, Electrokinetic Separations with Micellar Solutions and Open-Tubular Capillaries, Anal. Chem. 56 (1984) 111-113.
13. F. Tagliaro, G. Manetto, F. Crivellente and F. P. Smith, A Brief Introduction to Capillary Electrophoresis, Science 92 (1998) 75-88.
14. 呂明泰, 可供有機與無機離子分離級檢測之導電度式CE晶片之研發, 國立成功大學醫學工程研究所 94年6月.
15. D. R. Baker, Capillary Electrophoresis, Vol. 21 (1995) New York.
16. J. W. Jorgenson and K. D. Lukacs, Zone Electrophoresis in Open Tubular Glass Capillaries, Anal. Chem. 53 (1981) 1298-1302.
17. R. M. Guijt, E. Baltussen, G. van der Steen, H. Frank, H. Billiet, T. Schalkhammer, F. Laugere, M. Vellekoop, A. Berthold, L. Sarro and G. W. K. van Dedem, Capillary Electrophoresis with On-Chip Four-Electrode Capacitively Coupled Conductivity Detection for Application in Bioanalysis, Electrophoresis 22 (2001) 2537-2541.
18. W. R. Vandaveer IV, S. A. Pasas-Farmer, D. J. Fischer, C. N. Frankenfeld and S. M. Lunte, Recent Dvelopments in Electrochemical Detection for Microchip Capillary Electrophoresis, Electrophoresis 25 (2004) 3528-3549.
19. S. R. Wallenborg, L. Nyholm and C. E. Lunte, End-Column Amperometric Detection in Capillary Electrophoresis: Influence of Separation-Related Parameters on the Observed Half-Wave Potential for Dopamine and Catechol, Anal. Chem. 71 (1999) 544-549.
20. X. H. Huang, R. N. Zare, X. H. Huang and R. N. Zare, End-Column Detection for Capillary Zone Electrophoresis, Anal. Chem. 63 (1991) 189-192.
21. Y. Liu, J. A. Vickers and H. S. Charles, Simple and Sensitive Electrode Design for Microchip Electrophoresis/Electrochemistry, Anal. Chem. 76 (2004) 1513-1517.
22. M. P. Drew, Y. Mitsumori, A. G. Ewing, Characterization of Electrode Fouling and Surface Regeneration for a Platinum Electrode on an Electrophoresis Microchip, Anal. Chem. 75 (2003) 4572-4577.
23. M. R. Scott, K. L. Ratzlaff, B. H. Huynh and S. M. Lunte, In-Channel Electrochemical Detection for Microchip Capillary Electrophoresis Using an Electrically Isolated Potentiostat, Anal. Chem. 74 (2002) 1136-1143.
24. N. A. Lacher and S. M. Lunte, Development of a Microfabricated Palladium Decoupler/Electrochemical Detector for Microchip Capillary Electrophoresis Using a Hybrid Glass/Poly(dimethylsiloxane) Device, Anal. Chem. 76 (2004) 2482-2491.
25. C. X. Zhang and A. Manz, Narrow Sample Channel Injectors for Capillary Electrophoresis on Microchips, Anal. Chem. 73 (2001) 2656-2662.
26. S. C. Jacobson and J. M. Ramsey, Integrated Microdevice for DNA Restriction Fragment Analysis, Anal. Chem. 68 (1996) 720-723.
27.S. M. Lunte, C. E. Lunte and P. T. Kissinger, in: P. T. Kissinger, W. R. Heineman (Eds.), Laboratory Techniques in Electroanalytical Chemistry, New York, Marcel Dekker (1996) 813-853.
28.C. C. Wu, R. G. Wu, J. G. Huang, Y. C. Lin and H. C. Chang, Three-Electrode Electrochemical Detector and Platinum Film Decopler Integrated with a Amperometric Detection, Anal. Chem. 75 (2003) 947-952.
29.Y. Liu, D. O. Wipf and S. H. Charles, Conductivity Detection for Monitoring Mixing Reactions in Microfluidic Devices, Analyst 126 (2001) 1248-1251.
30.M. Galloway, W. Stryjewski, H. Alyssa, S. M. Ford, S. Llopis, R. L. McCarley and S. A. Soper, Contact Conductivity Detection in Poly(methylmethacylate)-Based Microfluidic Devices for Analysis of Mono- and Polyanionic Molecules, Anal. Chem. 74 (2002) 2407-2415.
31.J. E. Prest, S. J. Baldock, P. R. Fielden and B. J. Treves Brown, Determination of Metal Cations on Miniaturised Planarpolymeric Separation Devices Using Isotachophoresis with Integrated Conductivity Detection, Analyst 126 (2001) 433-437.
32. R. M. Guijt, C. J. Evenhuis, M. Macka and P. R. Haddad, Conductivity Detection for Conventional and Miniaturized Capillary Electrophoresis Systems, Electrophoresis 25 (2004) 4032-4057.
33. A. J. Zemann, Conductivity Detection in Capillary Electrophoresis, Anal. Chem. 20 (2001) 6-7.
34.C. J. Huang, Y. K. Su and S. L. Wu, The Effect of Solvent on the Etching of ITO Electrode, Mater. Chem. Phys. 84 (2004) 146-150.
35.C. C. Joseph Lai, C. C. Chen and F. H. Ko, In Channel Dual Electrode Amperometric Detection in Electrophoretic Chips with a Palladium Film Decoupler, J. Chromatogr. A 1023 (2004) 143-150.
36. N. Chiem, L. Lockyear-Shultz, P. Andersson, C. Skinner and D. J. Harrison, Room Temperature Bonding of Micromachined Glass Devices for Capillary Electrophoresis, Sens. Acturators B Chem. 63 (2000) 147-152.
37.J. J. Zhj, F. Qun and L. F. Zhao, Bonding of Glass Microfluidic Chips at Room Temperatures, Anal. Chem. 76 (2004) 5597-5602.
38. Y. Akiyamal, K. Morishima, A. Kogi1, Y. Kikutani, M. Tokeshil and T. Kitamoril, Rapid Bonding of Pyrex Glass Microchips, Electrophoresis 28 (2007) 994-1001.
39. F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu and K. Mayora, Novel Three-Dimensional Embedded SU-8 Microchannels Fabricated Using a Low Temperature Full Wafer Adhesive Bonding, J. Micromech. Microeng. 14 (2004) 1047-1056.
40. Z. L. Huang, J. C. Sanders, C. Dunsmor, H. Ahmadzadeh and J. P. Landers, A Method for UV-Bonding in the Fabrication of Glass Electrophoretic Microchips, Electrophoresis 22 (2001) 3924-3929.
41.X. Huang, M. J. Gordon, and R. N. Zare, Current Monitoring Method for Measuring the Electroosmotic Flow Rate in Capillary Zone Electrophoresis, Anal. Chem. 60 (1998) 1837-1838.
42.W. Wang, L. Zhao, J. R. Zhang and J. J. Zhu, Indirect Amperometric Measurement of Electroosmotic Flow Rates and Effective Mobilities in Microchip Capillary Electrophoresis, J. Chromatogr. A 1142 (2007) 209-213.
43.E. X. Vrouwe, R. Luttge, W. Olthuis, and A. van den Berg, Rapid Inorganic ion analysis using quantitative microchip capillary electrophoresis, J. Chromatogr. A 1102 (2006) 287-293.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top