跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/26 07:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭貽文
研究生(外文):Yi-Wun Jheng
論文名稱:不同茶樹品種(系)與採製方式對茶葉兒茶素、咖啡因含量與抗氧化能力之影響
論文名稱(外文):Variety and Brewing Techniques Influence Catechins, Caffeine and Antioxidant Capacity of Tea.
指導教授:陳宗禮陳宗禮引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:農藝學系所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:50
中文關鍵詞:品種採製方式
外文關鍵詞:TeaVarietyBrewing Techniques
相關次數:
  • 被引用被引用:6
  • 點閱點閱:3515
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
茶是全世界最受歡迎的嗜好料作物之一,茶葉所含的化合物含量受各種不同因素影響,包括茶樹品種、生長採製季節、葉齡、栽培管理方式、生育氣候以及加工發酵過程等。本試驗以不同茶樹品種(系)茶葉為原料,比較不同採製方式對總多元酚類、兒茶素、咖啡因含量及抗氧化能力之差異,以作為品種選育及日後製茶流程控制參考之依據,結果摘述如下:
1、比較不同紫色芽茶樹品系製成紅茶與包種茶總兒茶素與咖啡因含量之差異,結果發現不同品系所含兒茶素與咖啡因含量有顯著差異。包種茶中所含總兒茶素含量較紅茶高,咖啡因含量則反之。進一步比較不同成茶抗氧化能力之差異,包種茶總酚類含量較紅茶高,但抗氧化能力則以紅茶較包種茶高。
2、分別於92年5月13日及7月27日採製三個不同茶樹品系(B-56-70-66-1、B-56-70-211-1、B-69-80-21)與適製紅茶之台茶十八號茶菁皆調製成紅茶,製程中揉捻與發酵時間,分別達150分鐘與180分鐘處理。分析不同品種(系)採製紅茶中兒茶素與咖啡因含量的變化,及測定其抗氧化能力之差異。兒茶素、咖啡因含量與抗氧化能力在不同品種(系)茶樹間均呈現顯著差異,不同採製期亦顯著影響紅茶中兒茶素、咖啡因含量與抗氧化能力,但揉捻與發酵並未顯著影響兒茶素、咖啡因含量與抗氧化能力。
3、以青心烏龍及台茶十二號兩茶樹品種製成包種茶,並比較製茶期間四次不同攪拌處理兒茶素與咖啡因含量的變化及其對抗氧化能力的影響。結果得知,青心烏龍在四次攪拌的過程中兒茶素與咖啡因含量與抗氧化能力皆較台茶十二號高,不同攪拌次數與靜置時間會影響兒茶素含量之升降,但對於咖啡因含量的影響並不顯著。
Tea plants are widely cultivated and its product is one of the most popular beverages in the world because of its attractive aroma, taste, and healthy effects. The composition of tea varies with species, season, age of the leaf, climate, agronomic practice, and manufacture process. In the present study, a gradient HPLC procedure was developed for simultaneous determination for the composition of catechins and caffeine in various tea samples extracted by water. In addition, levels of total phenol, and antioxidant capacity in the samples of black and Pouchong tea made from different varieties, pluking, seasons, and fermentation processes were also investigated. Total phenolics from water extract were determined by the Folin-Ciocalteu procedure and antioxidant activity was evaluated by ferryl myoglobin/ABTS assays, using Trolox as standards.
To compare catechins, caffeine, total phenols, and antioxidant activity among 39 purple shoot tea lines harvested by different seasons and manufactured by different fermentation processes, resulting data showed considerable variability in total catechins, range from 40.83 to 107.58 mg/g in Pouchong teas and 5.13 to 79.17 mg/g in black teas, caffeine, range from 17.54 to 28.36 mg/g in Pouchong teas and 15.74 to 50.57 mg/g in black teas, total phenolics, range from 61.93 to 118.43 mg/g in Pouchong teas and 66.38 to 99.16 mg/g in black teas, antioxidant activity, range from 6.11 to 6.56 mg Trolox/g in Pouchong teas and 8.58 to 9.22 mg Trolox /g in black teas. Caffeine contents and antioxidant activity of summer black teas were significantly higher than in less fermented spring Pouchong teas, whereas total catechins and phenolics of spring Pouchong teas were significantly higher than in summer black teas. Black tea extracts made from different varieties, pluking seasons, rolling, and fermentation processes have been studies for their catechins, caffeine, total phenols, and antioxidant activity. The results indicated that there are significant different in chemical composition and antioxidant activity among varieties and harvested date. Rolling and fermentation had little effects on the levels of chemical composition and antioxidant activity in black tea samples. To compare chemical composition in the same Pouchong tea but manufactured by different withering and shaking time, experimental results showed that there were no significant different in individual catechin, caffeine, total phenolics, and antioxidant activity but total catechins increased during fermentation process. Caffeine, total catechins, and total phenolics of Chinshin Oolong were significantly higher than Taicha No. 12.
中文摘要 I
英文摘要 II
目次 IV
表目次 VII
圖目次 VIII
壹、 前言 1
貳、 前人研究 3
ㄧ、茶樹與生長環境 3
二、茶樹品種及其特性 4
三、茶葉分類及採製過程 5
(一)茶葉的分類 5
(1)不發酵茶 5
(2)部分發酵茶 5
(3)全發酵茶 5
(二)茶葉採製過程 6
(1)萎凋 6
(2)炒菁 6
(3)揉捻 6
(4)乾燥 6
四、茶葉之化學成分與影響因子 6
(一)茶葉之化學成分 6
(1)蛋白質與游離胺基酸 6
(2)植物鹼 7
(3)碳水化合物 7
(4)脂質 7
(5)維生素 7
(6)色素成分 7
(7)揮發性化合物 7
(8)無機物與微量元素 7
(9)多元酚類 7
(二)影響茶葉化學成分之因子 7
(1)茶樹品種 8
(2)產製季節 8
(3)製程 9
(4)萃取條件 10
(5)葉齡 10
五、茶葉中化學組成及其抗氧化之特性 11
參、材料與方法 13
ㄧ、供試材料 13
二、製茶流程及取樣 13
三、總酚類化合物含量之測定 13
(一)檢品製備 13
(二)測定方法 14
四、兒茶素與咖啡因含量分析方法與條件 14
(一)檢品製備 14
(二)分析條件 14
(三)標準品溶液之調配及檢量線之繪製 14
五、抗氧化能力測定 15
六、資料分析 15
肆、結果 16
一、兒茶素與咖啡因檢量線之建立 16
二、茶樣中兒茶素與咖啡因含量差異之分析 18
(一)不同紫色芽品系之紅茶與包種茶兒茶素與咖啡因含量之差異 18
(二)不同茶樹品種與採製方法對紅茶兒茶素與咖啡因含量之影響 24
(三)攪拌處理對包種茶茶葉兒茶素與咖啡因含量之影響 27
三、不同茶樣抗氧化能力之比較 32
(一)不同紫色芽品系抗氧化能力之差異 32
(二)不同品種(系)採製紅茶抗氧化能力之比較 38
(三)攪拌處理對包種茶抗氧化能力之影響 40
(三)攪拌處理對包種茶抗氧化能力之影響 40
伍、討論 42
陸、 參考文獻 45
行政院農業委員會農糧署。http://www.afa.gov.tw/index.asp。
朱湧岳、邱瑞騰。1984。台茶七號及八號新品種之紅茶製造法研究。台灣茶業研究彙報3:39-53。
阮逸明。1991。茶葉可溶成分及主要化學成分萃取之研究。台灣茶業研究彙報10:89-108。
吳振鐸。1985。臺灣茶葉的分類。臺灣茶業研究彙報4:155-158。
吳振鐸、楊盛勳。1982。七十年度命名茶樹新品種台茶十二號及台茶十三號試驗報告。台灣茶業研究彙報1:1-14。
李志仁。2002。茶菁室內靜置萎凋時兒茶素類的變化。茶業專訊41期。行政院農業委員會茶業改良場。pp. 12。
李淑美、陳右人。2001。溫度對茶樹芽葉生育之影響。台灣茶業研究彙報20:175-184。
李淑美、陳右人。2003。溫度對茶樹茶菁產量和品質之影響。台灣茶業研究彙報22:43-56。
李淑美、陳坤龍、張清寬。2000。不同被覆資材對茶樹春茶採摘期及產量之影響。台灣茶業研究彙報19:77-87。
林木連、蔡右任、張清寬、陳國任、楊盛勳、陳英玲、賴正南、陳玄、
張如華。2003。台灣的茶葉。pp. 96-97。遠足文化。
邱垂豐、蔡俊明、張清寬、蔡貴鈞、曾玲蓉。2000。光照對茶樹生育及開花之影響-光週期。年報。pp. 38-41。行政院農業委員會茶業改良場編印。
陳國任、吳聲舜。2000。東部茶區季節性製茶品質特徵及技術改良。台灣茶業研究彙報19:115-124。
陳國任、陳俊良。2004。不同攪拌次數對白毫烏龍茶感官品評與水色色差値之影響。台灣茶業研究彙報23:107-114。
陳國任、蔡文福。1992。缺水及不同溫度處理對茶樹芽葉主要化學成分及製茶品質之影響。台灣茶業研究彙報11:45-56。
黃志煜、吳志鴻、張振生、葉永廉、張上鎮。2003。製程與採收季節對茶葉抽出物抗氧化活性之影響。臺大實驗林研究報告17:231-237。
馮鑑淮、沈明來。1990。茶樹育種提早選種指標的研究II.品種芽葉農藝性狀與產量及綠茶兼包種茶以及紅茶品質之關係。臺灣茶業研究彙報9:7-20。
廖慶樑。2001。台灣茶葉的發展與推廣。台茶研究發展與推廣研討會
專刊。pp. 8-13。行政院農業委員會茶業改良場編印。
蔡永生、區少梅、張如華。1990。不同品種包種茶官能品質與化學組成之特徵與判別分析。台灣茶業研究彙報9:79-97。
蔡永生、張如華、林建森。2000。台灣現有產製茶類主要化學成分含量之分析與判別。台灣茶業研究彙報19:139-154。
蔡永生、劉士綸、王雪芳、區少梅。2004a。台灣主要栽培茶樹品種兒茶素含量與抗氧化活性之比較。台灣茶業研究彙報23:115-132。
蔡俊明、張清寬、陳右人、陳國任、蔡右任、邱垂豐、林金池、范宏杰。2004b。2004年度命名茶樹新品種台茶19號及台茶20號試驗報告。台灣茶業研究彙報23:57-78。
蔡俊明。2007。茶樹品種及其特性。茶樹整合管理。pp. 15-28。農委會藥毒所。
蔡憲宗、蔡依真、廖文如、張清寬、王裕文。2004c。台灣地區青心烏龍品種外表型及AFLP標記變異之研究。台灣茶業究彙報23:21-30。
劉熙。1985。茶樹栽培與茶葉初製。五洲出版社。台北市。
Ainsworth, E. A., and K. M. Gillespie. 2007. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat. Protoc. 2:875-877.
Benzie, I. F. F., and Y. T. Szeto. 1999. Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. J. Agric. Food Chem. 47:633-636.
Bonnely, S., A. L. Davis, J. R. Lewis, and C. Astill. 2003. A model oxidation system to study oxidised phenolic compounds present in black tea. Food Chem. 83:485-492.
Bronner, W. E., and G. R. Beecher. 1998. Method for determining the content of catechins in tea infusions by high-performance liquid chromatography. J. Chromatogr. A. 805:137-142.
Burns, J., P. T.Gardner, J. O’Neil, S. Crawford, I. Morecroft, D. B. McPhail, C. Lister, D. Matthews, M. R. MacLean, M. E. J. Lean, G. G. Duthie, and A. Crozier. 2000. Relationship among antioxidant activity, vasodilation capacity, and phenolic content of red wines. J. Agric. Food Chem. 48:220-230.
Cabrera, C., R. Artacho, and R. Giménez. 2006. Beneficial effects of green tea - a review. J. Am. College Nutr. 25:79–99.
Castelluccio, C., G. Paganga, N. Melikian, G. bolwell, J. Pridham, J. Sampson, and C. A. Rice-Evans. 1995. Antioxidant potential of intermediates in phenylpropanoid metabolism in higher plants. FEBS Lett. 368:188-192.
Chen, C. N., C. M. Liang, J. R. Lai, Y. J. Tsai, J. S. Tsay, and J. K. Lin. 2003. Capillary electrophoretic determination of theanine, caffeine and catechins in fresh tea leaves and oolong tea and their effects on rat neurosphere adhesion and migration. J. Agric. Chem. 51:7495-7503.
Chiu, F. L., and J. K. Lin. 2005. HPLC analysis of naturally occurring methylated catechins, 3" -and 4" -methyl-epigallocatechin gallate, in various fresh tea leaves and commercial teas and their potent inhibitory effects on inducible nitric oxide synthase in macrophages. J. Agric. Food Chem. 53:7035-7042.
Dufresne, C., and E. Farnworth. 2000. Tea, kombucha, and health : a review. Food Res. Int. 33:409-421.
Farhoosh, R., G. A. Golmovahhed, and M. H. H. Khodaparast. 2007. Antioxidant activity of various extracts of old tea leaves and black tea wastes (Camellia sinensis L.). Food Chem. 100:231-236.
Gulati, A., and S. D. Ravindranath. 1996. Seasonal variations in quality of
Kanara tea (Camellia sinensis (L.) O. Kuntze) in Himachal Pradesh. J. Sci. Food Agric. 71:231-236.
Higdon, J.V., and B. Frei. 2003. Tea catechins and polyphenols: health effects, metabolish, and antioxidant functions. Crit. Rev. Food Sci. Nutr. 43:89-143.
Horie, H., and K. Kohata. 1998. Application of capillary electrophoresis to tea quality estimation. J. Chromatogr. A. 802:219-233.
Jovanovic, S. V., S. Steeden, M. Tosic, B. Marjanovic, and M. G. Simicg. 1994. Flavonoids as antioxidants. J. Am. Chem. Soc. 116:4846-4851.
Kalt, W., C. F. Forney, A. Martin, and R. L. Prior. 1999. Antioxidant capacity, Vitamin C, phenolics and anthocyanins after fresh storage of small fruits. J. Agric. Food Chem. 47:4638-4644.
Khokhar, S., and S. G. M. Magnusdottir. 2002. Total phenol, catechin, and caffeine contents of teas commonly consumed in the United Kingdom. J. Agric. Food Chem. 50:565-570.
Kohlmeier, L. 1997. Has the tea been ruined? Br. J. Nutr. 78:1-3. Terada1987.
Kim, E. S., Y. R. Liang, J. Jin, Q. F. Sun, J. L. Lu, Y. Y. Du, and C. Lin. 2007. Impact of heating on chemical compositions of green tea liquor. Food Chem. 103:1263-1267.
Labbé, D., A. Tremblay, and L. Bazinet. 2006. Effect of brewing temperature and duration on green tea catechin solubilization: basis for production of EGC and EGCG-enriched fractions. Sep. Purif. Technol. 49:1-9.
Lin, J. K., C. L. Lin, Y. C. Liang, S. Y. Lin Shiau, and I. M. Juan. 1998. Survey of catechins, gallic acid, and methylxanthines in green, oolong, pu-erh, and black tea. J. Agric. Food Chem. 46:3635-3642.
Lin, Y. S., Y. J. Tsai, J. S. Tsay, and J. K. Lin. 2003. Factors affecting the levels of tea polyphenols and caffeine in tea leaves. J. Agric. Chem. 51:1864-1873.
Mamati, G. E., Y. Liang, and J. Lu. 2006. Expression of basic genes involved in tea polyphenol synthesis in relation to accumulation of catechins and total tea polyphenols. J. Sci. Food Agric. 86:459-464.
Malec, L. S., and M. S. Vigo. 1988. Seasonal variations in theaflavin, thearubigin and caffeine contents of Argentinian black tea. J. Sci. Food Agric. 45:185-190.
Manzocco, L., M. Anese, and M. C. Nicoli. 1998. Antioxidant properties of tea extracts as affected by processing. Lebensm. Wiss. U. Technol. 31:694-698.
Muthumani, T., and R. S. Senthil Kumar. 2007. Influence of fermentation time on the development of compounds responsible for quality in black tea. Food Chem. 101:98-102.
Obanda, M., P. O. Owuor, and R. M. Oka. 2001. Changes in the chemical and sensory quality parameters of black tea due to variations of fermentation time and temperature. Food Chem. 75:395-404.
Perva-Uzunalić, A., M. Skerget, Z. Knez, B. Weinreich, F. Otto, and S. Gruner. 2006. Extraction of active ingredients from green tea (Camellia sinensis):extraction efficiency of major catechins and caffeine. Food Chem. 96:597-605.
Peterson, J., J. Dwyer, P. Jacques, W. Rand, R. Prior, and K. Chui. 2004. Tea variety and brewing techniques influence flavonoid content of black tea. J. Food Compos. Anal. 17:397-405.
Prior, R. L., X. Wu, and, K. Sohaich. 2005. Standardized methods for the determination of antioxidant capacity and phenolios in foods and dietary supplements. J. Agric. Food Chem. 53:4290-4302.
Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice- Evans. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26:1231-1237.
Sanchez-Moreno, C., M. T. Satue-Gracia, and E. N. Frankel, 2000. Antioxidant activity of selected Spanish wines in corn oil emulsions. J. Agric. Food Chem. 48:5581-5587.
Saravanan, M., K. M. Maria John, R. R. Kumar, P. K. Pius, and R. Sasikumar. 2005. Genetic diversity of UPASI tea clones (Camellia sinensis (L.) O. Kuntze) on the basis of total catechins and their fractions. Phytochem. 66:561-565.
Sharma, V., A. Gulati, S. D. Ravindranath, and V. Kumar. 2005. A simple and convenient method for analysis of tea biochemicals by reverse phase HPLC. J. Food Compos. Anal. 18:583-594.
Suzuki, T., and G. R. Waller. 1986. Total nitrogen and purine alkaloids in the tea plant throughout the year. J. Sci. Food Agric. 37:862-866.
Taga, M. S., E. E. Miller, and D. E. Pratt. 1984. Chia seeds as a source of natural lipid antioxidants. J. Am. Oli. Chem. Soc. 61:928-931.
Tomlins, K. I., and A. Mashingaidze. 1997. Influence of withering, including leaf handling, on the manufacturing and quality of black teas-a review. Food Chem. 60:573-580.
Turkmen, N., F. Sari, and Y. S. Velioglu. 2006. Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin–Ciocalteu methods. Food Chem. 99:835-841.
Wang, H., G. J. Provan, and K. Helliwell. 2003. HPLC determination of catechins in tea leaves and tea extracts using relative response factors. Food Chem. 81:307-312.
Wiseman, S. A., D. A. Balentine, and B. Frei. 1997. Antioxidants in tea. Crit. Rev. Food Sci. Nut. 37:705-718.
Yao, L., N. Caffin, B. Ď . Arcy, Y. Jiang, J. Shi, R. Singanusong, X. Lin, N. Datta, Y. Kakuda, and Y. Xu. 2005. Seasonal variations of phenolic compounds in Australia-grown tea (Camellia sinensis). J. Agric. Food Chem. 53:6477-6483.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top