跳到主要內容

臺灣博碩士論文加值系統

(3.235.185.78) 您好!臺灣時間:2021/07/27 18:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱漢興
研究生(外文):Hann-Shing Ju
論文名稱:無人飛機之飛行與自動著陸控制器設計
論文名稱(外文):Flight and Auto-Landing Controllers Design for Unmanned Aerial Vehicles
指導教授:蔡清池
學位類別:博士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:131
中文關鍵詞:飛行控制適應性控制自動著路控制
外文關鍵詞:flight controladaptive controlauto-landing control
相關次數:
  • 被引用被引用:1
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文的目的是在探討無人飛機之飛行控制器設計,並使用適應性倒逆步(adaptive backstepping)控制方法及模糊控制法則設計相關飛行控制器,其中包括全空域(full-envelope)飛行控制、光電酬載(optical payload)導引飛行控制、自動著陸控制及著陸平滑控制(flare)等研究。第一種為利用適應性倒逆步控制方法結合飛行品質(flying qualities)規範之設定,設計出全空域縱向飛行控制器,以預先規劃之全空域品質規範要求,作為飛行控制器參數設計之依據。第二種主要是利用模糊控制及追蹤導引(pursuit guidance)控制法則,設計出以光電酬載導引無人飛機自動飛行之控制器,使無人飛機在光電酬載操作員的操縱下,確保無人飛機的飛行軌跡為最佳化,進而保持目標物影像在視域範圍內,有效觀測、搜索地面的目標物。第三種主要是設計無人飛機縱向自動著陸控制器,包括下滑道(glide-slope)導引及平滑控制(flare control)。以適應性倒逆步控制方法設計自動著陸控制器,以飛行路徑角作為從下滑道導引到平滑控制的控制命令取代以高度為主的命令產生器,配合推力的控制,在陣風干擾下,自動著陸控制器配合飛行路徑角的命令產生器,在安全著陸規範之下,有效導引飛機自動下降及平滑落地。第四種則為利用推導不同的飛行路徑角(flight-path angle)命令作為自動著陸控制器的控制命令,配合既有的自動著陸控制器,透過控制命令中的參數變化,能產生出不同效果的平滑控制命令,提供了自動著陸時不同的俯仰與高度變化的平滑軌跡。全空域飛行、光電酬載導引飛行及自動著陸飛行皆可以視為無人飛機之主要飛行任務,本論文針對以上這三種控制器及著陸命令產生器進行研究,透過電腦模擬及數據分析證實,本論文所提之控制器具有良好的性能。
This dissertation presents methodologies and techniques for flight control and autolanding of unmanned aerial vehicles (UAVs), thereby carrying out three major missions, including full-envelope flight, optical payload following, and auto-landing. The four control laws of UAV are then developed using adaptive backstepping and intelligent fuzzy logic; they are full-envelope flight control, flight path following the optical payload, auto-landing, and flare control with flight path command. First, the full-envelope flight control is designed via adaptive backstepping for achieving good flying qualities in longitudinal axis for all flight conditions; such an adaptive controller works well for the purpose of accomplishing desired responses under a wide range of flight envelope. Second, the intelligent flight control is proposed to accomplish aircraft following optical payload which is manipulated by an operator; this intelligent strategy combines fuzzy logic control and pursuit guidance such that the target within the camera (optical payload) field-of-view can be observed by an automatic flight maneuver. Third, the auto-landing controller is constructed for glide-slope tracking and the flare maneuver via adaptive backstepping design, and a flight path command generator is established for indirect altitude control in order to provide precise altitude trajectories. This kind of adaptive controller is used to control aircraft from glide-slope to flare by following the flight path angle command for indirect altitude control via elevator and maintaining the constant airspeed control via throttle. Fourth, the two flight-path angle command generators are investigated via adaptive backstepping controller. The landing profiles are shown by the parameters of the command generation to achieve desired touchdown performance, including pitch and altitude trajectories. Aside from theoretical development, numerous simulations and results analyses are provided to show the performance and effectiveness of the proposed controllers.
Chapter 1 Introduction 1
1.1 Background 1
1.2. Literature Review 4
1.2.1 Literature Review of Full-Envelope Flight Control 4
1.2.2 Literature Review for Flight Path Guidance with Optical Payload 5
1.2.3 Literature Review for Auto-Landing of Flight Control 6
1.3 Motivation and Objectives 7
1.4 Contributions of the Dissertation 8
1.5 Organization of the Dissertation 9
Chapter 2 Longitudinal Flight Control Law Design 11
2.1 Introduction 11
2.2 Aircraft Dynamics 14
2.2.1 Aircraft Dynamics Model 15
2.2.2 Flight Envelope of the Aircraft 16
2.3 Backstepping Control Design 17
2.3.1 Integral Backstepping 17
2.3.2 Adaptive Control Design 22
2.3.3 Parameters Selection via Performance Specifications 24
2.4 Computer Simulations and Results Analysis 28
2.4.1 Flying Qualities Analysis 29
2.4.2 Dynamic Performance Analysis 30
2.4.3 Robustness Analysis 30
2.5 Concluding Remarks 32
Chapter 3 Intelligent Flight Control for Payload Following 48
3.1 Introduction 48
3.2 Aircraft/Payload Dynamics 50
3.2.1 Aircraft Dynamic Model 50
3.2.2 Gimbal Dynamic Model 51
3.2.3 Orientation of Coordinate Model 52
3.3 Intelligent Control Strategy 53
3.3.1 Fuzzy Logic Control 54
3.3.2 Pursuit Guidance 56
3.3.3 Fuzzy Logic Control without Pursuit Guidance 57
3.4 Simulation Results and Discussion 59
3.5 Concluding Remarks 60
Chapter 4 Longitudinal Auto-Landing Controller Design 64
4.1. Introduction 64
4.2 Control Architecture and System Models 68
4.2.1. Aircraft Dynamics Model 69
4.2.2 Wind Turbulence Model 70
4.3 Command Generation 71
4.3.1 Glide-Slope Mode 73
4.3.2 Flare Mode 74
4.4 Backstepping Control Design 79
4.4.1 Forward Speed PI Control 80
4.4.2 Backstepping Auto-Landing Control Law Design 80
4.4.3 Adaptive Control Design 87
4.5 Computer Simulations and Discussion 91
4.6 Concluding Remarks 94
Chapter 5 Auto-Landing Flare Controller Design 101
5.1. Introduction 101
5.2. Aircraft Dynamics 102
5.3 Landing Flare Commands 103
5.3.1 Exponential Path (EXP) 103
5.3.2 Constant Rate of Change of Height (CRCH) 104
5.4 Landing Flare Control Law 105
5.5 Computer Simulations and Discussion 105
5.5.1 Landing Flare Performance Analysis 105
5.5.2 Sensitivity Study of Parameters in Command Generation 107
5.6 Concluding Remarks 108
Chapter 6 Conclusions and Future Work 117
6.1 Conclusions 117
6.2 Future Work 119
Bibliography 122
[1]J. Watson,“Fly-by-Wire flight control system design considerations for the F-16 flight aircraft,” AIAA Guidance and Control Conference, San Diego, CA, AIAA-76-1915, 1976.
[2]J. S. Shamma, and M. Athans,“Analysis of gain scheduled control for nonlinear plants,” IEEE Transaction on Automatic Control, vol. 35, no. 8, pp. 898-907, 1990.
[3]P. G. Gonsalves, and G. L. Zachariisa,“Fuzzy logic gain scheduling for flight control,” Proceedings of the IEEE Conference on Fuzzy Systems, Orlando, FL, vol. 2, pp. 952-957, 1994.
[4]F. Z. Wu, P.N. Nikiforuk, and M. M. Gupta,“A design of a flight control system using fuzzy gain-scheduling,” Proceedings of AIAA Guidance Navigation and Control Conference, New Orleans, LA, AIAA-97-3760, 1997.
[5]R. J. Adams, and S. S. Banda,“Robust flight control design using dynamic inversion and structured singular value synthesis,” IEEE Transactions on Control Systems Technology, vol. 1, no. 2, pp. 80-92, 1993.
[6]B .J. Bacon, A. J. Ostroff, and S. M. Joshi,“Reconfigurable NDI controller using inertial sensor failure detection and isolation,” IEEE Transactions on Aerospace and Electronic Systems, vol. 37, no. 4, pp. 1373-1383, 2001.
[7]H. C. Lee, and J. W. Choi,“Linear time-varying eigenstructure assignment with flight control application,” IEEE Transactions on Aerospace and Electronic Systems, vol. 40, no. 1, pp. 145-157, 2004.
[8]S. N. Singh, M. Steinberg, and R. Digirolamo,“Variable structure robust flight control system for the F-14,” IEEE Transactions on Aerospace and Electronic Systems, vol. 33, no. 1, pp. 77-84, 1997.
[9]X. Y. Lu, S. K. Spurgeon, and I. Postlethwaite,“Robust variable structure control of a PVTOL aircraft,” International Journal of Systems Science, vol. 28, no. 6, pp. 547-558, 1997.
[10]E. M. Jafarov, and R. Tasaltin,“Robust sliding-mode control for the uncertain MIMO aircraft model F-18,” IEEE Transactions on Aerospace and Electronic Systems, vol. 36, no. 4, pp. 1127-1141, 2000.
[11]O. Harkegard, and T. Torkel Glad,“A backstepping design for flight path angle control,” Proceedings of the IEEE Conference on Decision and Control, Sydney, NSW, Australia, vol. 4, pp. 3570-3575, 2000.
[12]T. Lee, and Y. Kim,“Nonlinear adaptive flight control using backstepping and neural networks controller,” AIAA Journal of Guidance, Control, and Dynamics, vol. 24, no. 4, pp. 675-682, 2001.
[13]M. Sharma, and D.G. Ward,“Flight-path angle control via neuro-adaptive backstepping,” AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, California, AIAA2002-4451, 2002.
[14]A. G. Sparks, J. M. Buffington, and S. S. Banda,“Fighter aircraft lateral axis full envelope control law design,”Proceedings of IEEE Conference on Control Applications, Vancouver, BC, Canada, vol. 1, pp. 21-26, 1993.
[15]O. R. Reynolds, M. Pachter, and C. H. Houpis,“Full envelope flight control system design using QFT,”Proceedings of the American Control Conference, Baltimore, MD, vol. 1, no. 29, pp. 350-354, 1994.
[16]J. D.Blight, D. Gangsaas, and T. M. Richardson,“Control law synthesis for an airplane with relaxed static stability,”AIAA Journal of Guidance, Control, and Dynamics, vol. 9, no. 5, pp. 546-554, 1986.
[17]H. S. Ju, C. C. Tsai, and S. W. Liu,“Design of longitudinal axis full envelope control law by adaptive backstepping,” Proceedings of the 2004 IEEE International Conference on Networking, Sensing and Control, Taipei, Taiwan, vol. 2, pp. 755-760, 2004.
[18]J. Roskam, Airplane Flight Dynamics & Automatic Flight Control. Kansas University Press, pp. 412-441, 1979.
[19]R. W. Pratt, and P. Zarchan, Flight Control System. Reston VA, AIAA, pp. 1-20, 2000.
[20]M. Sharma, and A. J. Calise,“Adaptive backstepping control for a class of nonlinear systems via multilayered neural networks,”Proceedings of the American Control Conference, Anchorage, AK, vol. 4, pp. 2683-2688, 2002.
[21]J. Dahlgren,“Robust Nonlinear Control Design for a Missile Using Backstepping,”Linkoping University Electronic Press, pp. 3-11, 2002.
[22]J. Farrell, M. Sharma, and M. Polycarpou,“On-line Approximation Based Aircraft Longitudinal Control,”Proceedings of the American Control Conference, Denver, Colorado, vol. 2, pp. 1011-1019, 2003.
[23]H. K. Khail, Nonlinear System. Prentice-Hall, Inc., New Jersey, 2nd ed., pp. 588-601, 1996.
[24]I. Kanellakopoulos, and P. T. Krein,“Integral-action nonlinear control of induction motors,”Proceedings of the 12th IFAC World Congress, Sydney, Australia, pp. 251-254, 1993.
[25]M. Krstic, I. Kanellakopoulos and P. Kokotovic, Nonlinear and Adaptive Control Design, John Wiley & Sons, Inc., New York, pp. 87-99, 1995.
[26]P. Mangold, Integration of Handling Quality Aspects into the Aerodynamic Design of Modern Unstable Fighters, AGARD Symposium on Flying Qualities, 1990.
[27]MIL-F-8785C. Military Specification, Flying Qualities of Pilot Airplane, Wright Patterson AFB, pp. 13-21, 1980.
[28]S. N. Phillips, M. Pachter, C. H. Houpis, and S. J. Rasmussen,“A QFT subsonic envelope flight control system design,”Proceedings of IEEE NAECON, Dayton, OH, vol. 1, pp. 537-544, 1995.
[29]W. Siwakosit, S. A. Snell, and R. A. Hess,“Robust Flight Control Design with Handling Qualities Constraints Using Scheduled Linear Dynamic Inversion and Loop Shaping,”IEEE Transactions on Control Systems Technology, vol. 8, pp. 483-494, 2000.
[30]D. McLean, Automatic Flight Control Systems, Prentice-Hall, Inc., New Jersey, pp. 199-206, 1990.
[31]C. C. Jorgensen, and C. Schley,“A neural Network Baseline Problem for Control of Aircraft Flare and Touchdown,”Neural Networks for Control, pp. 402-425, 1991.
[32]G. Schram, J. Iiff, A. J. Krijgsman, and H. B. Verbruggen, “Fuzzy Logic for Flight Control: a Straightforward MINO Design,” In Proceedings AIAA Guidance, Navigation, and Control Conference, San Diego, CA, AIAA-96-3847, 1996.
[33]G. Schram, B. Verschoor, J. M. Sousa, and H. B. Verbruggen, “Flight Control Reconfiguration Using Multiple Fuzzy Controllers,” Proceedings of the 6th IEEE International Conference on, Barcelona, Spain, vol. 1, pp. 111-117, 1997.
[34]A. J. Calise, and R. T. Rysdyk,“Nonlinear Adaptive Flight Control using Neural Networks,”IEEE Control Systems Magazine, vol. 18, no. 6, pp. 14-25, 1998.
[35]L. V. R. Arruda, R. Luders, W. C. Amaral, and F. A. C. Gomide,“A knowledge-based environment for intelligent design and supervision of control systems,”Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Humans, Information and Technology, San Antonio, vol. 3, pp. 2680 – 2685, 1994.
[36]B. Ewers, J. Bordenueve-Guibe, J. P. Garcia, and J. Piquin, “Expert Supervision of Conventional Control System,” Proceeding of 5th IEEE International Conference on Fuzzy Systems, New Orleans, LA, vol. 1, pp. 143-149, 1996.
[37]E. N. Johnson, A. J. Calise, and J. E. Corban, “A Six-Degree-of-Freedom Adaptive Flight Control Architecture for Trajectory Following,” AIAA Guidance, Navigation, and Control Conference, Monterey, California, AIAA-2002-4776, 2002.
[38]J. Korteling, and W. Vanderborg, “Partial Camera Automation in a Simulated Unmanned Air Vehicle,” Proceedings of 1997 IEEE Transactions on Systems, Man, and Cybernetics, vol. 27, no. 2, pp. 256 – 262, 1997.
[39]T. T. Trinh, and J. K. Kuchar, “Study of Visual Cues for Unmanned Aerial Vehicle Waypoint Allocation,” Proceedings of 1999 IEEE Digital Avionics Systems Conference, vol. 1, pp. 4.D.5-1-4.D.5-8, 1999.
[40]F. Austin, G. Carbone, M. Falco and H. Hinz, “Game Theory for Automated Maneuvering During Air-to-Air Combat,” Journal of Guidance, Control, and Dynamics, vol. 3, no. 6, p. 1143-1149, 1990.
[41]Y. Oshman, M. Isakow, “Mini-UAV Altitude Estimation Using an Inertially Stabilized,” IEEE Transactions on Aerospace and Electronic Systems, vol. 35, no. 4, pp. 1191-1203, 1999.
[42]Y. Sugpil Yoon, and J. B. Lundberg, “Equations of motion for a two-axes gimbal system,” IEEE Transactions on Aerospace and Electronic Systems, vol. 37, no. 3, pp. 1083-1091. 2001.
[43]P. J. Kennedy, and R. L. Kennedy, “Direct versus Iindirect Line of Sight (LOS) Stabilization,” IEEE Transactions on Control Systems Technology, vol. 11, no. 1, pp. 3-15, 2003.
[44]R. M. Rogers, Applied Mathematics in Integrated Navigation Systems, AIAA Education Series, 2000.
[45]G. M. Sinouris, Aerospace Avionics System, Academic Press, 1993.
[46]H. J. Kim, R. Vidal, D. H. Shim, O. Shakernia, and S. Sastry, “A Hierarchical Approach to Probabilistic Pursuit-Evasion Games with Unmanned Ground and Aerial Vehicles,” Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, Florida, Dec 2000.
[47]M. Guelman, J. Shinar, and A. Green, ”Qualitative Study of a Planar Pursuit Evasion Game in the Atmosphere,” Journal of Guidance, Control, and Dynamics, vol. 19, no. 1, January-February 1996.
[48]J. D. Boskovic, R. Prasanth, and R. K. Mehra, “A Multi-Layer Control Architecture for Unmanned Aerial Vehicles,” Proceedings of the American Control Conference, Anchorage, AK, May 2002.
[49]R. Rysdyk, “UAV path following for constant line-of-sight,” 2nd AIAA "Unmanned Unlimited" Conference and Workshop and Exhibit, San Diego, California, AIAA-6626, 2003.
[50]J. H. Blakelock, Automatic Control of Aircraft and Missiles, John Wiley & Sons, 1991.
[51]D. Schawe, C. H. Rohardt, and G. Wichmann, “Aerodynamic design assessment of Strato 2C and its potential for unmanned high altitude airborne platforms,” Aerospace Science and Technology, vol. 6, pp. 43-51, 2002.
[52]S. D. Manning, C. E. Rash, P. A. LeDue, R. K. Noback, and J. McKeon , “The role of human causal factors in U.S. army unmanned aerial vehicle accidents,” U.S. Army Medical Research and materiel Command, USAARL, Report no. 2004-11, 2004.
[53]Y. S. Ebrahimi, and E. E. Coleman, “Design of localizer capture and track using classical control techniques,” Proceedings of the IEEE Control System Magazine, vol. 10, n0. 4, pp. 5-12, 1990.
[54]I. Kaminer, and P. P. Khargonekar, “Design of the flare control law for longitudinal autopilot using H∞ synthesis,” Proceedings of the IEEE Conference on Decision and Control, Honolulu, Hawaii, vol. 6, pp. 2981-2986, 1990
[55]C. C. Jorgensen, and C. Schley, “Neural network baseline problem for control of aircraft flare and touchdown,” Neural Networks for Control, Cambridge, MA: MIT Press, 1990.
[56]J. Iiguni, and H. Akiyoshi, “An intelligent landing system based on a human skill model,” IEEE Transaction on Aerospace and Electronic Systems, vol. 34, no. 3, pp. 877-882, 1998.
[57]G. Saini, and S. N. Balakrishnan, “Adaptive critic based neurocontroller for autolanding of aircrafts,” Proceedings of the 1997 American Control Conference, Albuquerque, NM, vol. 2, pp. 1081-1085, 1997.
[58]Y. Ochi, and K. Kanai, “Automatic approach and landing for propulsion controlled aircraft by H∞ control,” Proceedings of the IEEE Conference on Control Applications, Kohala Coast, HI, vol. 2, pp. 997-1002, 1999.
[59]J. G. Juang, and K. C. Cheng, “Wind disturbances encountered during controlled landings using neural network approaches,” Proceedings of the 2001 IEEE International Conference on Control Applications, Mexico City, Mexico, pp. 835-840, 2001.
[60]H. Izadi, M. Pakmehr, and N. Sadati, “Optimal neuro-controller in longitudinal auto-landing of a commercial jet transport,” Proceedings of 2003 IEEE Conference on Control Applications, Istanbul, TURKEY, vol. 1, pp. 492-497, 2003.
[61]K. Nho, and R. K. Agarwal, “Automatic landing system design using fuzzy logic,” Journal of Guidance, Control, and Dynamics, vol. 23, no. 2, pp. 298-304, 2000.
[62]C. Ha, and J. Kim, “Automatic landing under wind shear turbulence in adaptive gain scheduled PID control optimized in genetic algorithm,” AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, California, AIAA-2005-6346, 2005.
[63]R. J. Niewoehner, and I. I. Kaminer, “Design of an autoland controller for an F-14 aircraft using H∞ synthesis,” AIAA Journal of Guidance, Control, and Dynamics, vol. 19, no. 3, pp. 656-663, 1996.
[64]S. P. Shue, and R. K. Agarwal, and P. Shi, “Flight testing robust autoland control laws,” AIAA Guidance, Navigation, and Control Conference and Exhibit, Boston, MA, AIAA-1998-4299, 1998.
[65]S. P. Shue, and R. K. Agarwal, “Design of automatic landing systems using mixed H2/H∞ Control,” AIAA Journal of Guidance, Control, and Dynamics, 1999; vol. 22, no. 1, pp. 103-114, 1999.
[66]J. Che, and D. Chen, “Automatic landing control using H∞ control and stable inversion,” Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, FL, pp. 241-246, 2001.
[67]Y. Li, Z. Wang, N. Sundararajan, and P. Saratchandran, “Fault tolerant neuro-H∞ controller design for aircraft auto-landing,” IEEE Proceedings of the 35th Southeastern Symposium one on System Theory, Murfreesboro, TN, pp. 172-175, 2003.
[68]Y. Li, N. Sundararajan, P. Saratchandran, and Z. Wang, “Robust neuro-H∞ controller design for aircraft auto-landing,” IEEE Transactions on Aerospace and Electronic Systems, vol. 40, no. 1, pp. 158-167, 2004.
[69]M. Ben Ghalia, and A. T. Alouani, “Robust control design of an autolanding system,” IEEE Proceedings of the 25th Southeastern Symposium on System Theory, Tuscaloosa, AL, pp. 248-252, 1993.
[70]H. L. Chou, and D. J. Biezad, “Application of QFT to the problem of failed in-flight controllers during approach and landing of a B-720 aircraft,” IEEE Proceedings of the Aerospace and Electronics Conference, Dayton, OH, pp. 455-461, 1993.
[71]D. Kim, Y. Choi, and J. Suk, “A glidepath tracking algorithm for autolanding of a UAV,” Infotech@Aerospace, Arlington, Virginia, AIAA-2005-6979, 2005.
[72]G. Looye, and H. D. Joos, “Design of autoland controller functions with multiobjective optimization,” AIAA Journal of Guidance, Control, and Dynamics, vol. 29, no. 2, pp. 475-484, 2006.
[73]J. M. Bauschar, W. Moennich, D. Willemsen, and G. Looye, “Flight testing robust autoland control laws,” AIAA Guidance, Navigation, and Control Conference and Exhibit, Montreal, Canada, AIAA-2001-4208, 2001.
[74]G. Loegering, and S. Harris, “Landing dispersion results – Global Hawk auto-land system,” AIAA’s 1st UAV Conference, Portsmouth, Virginia, AIAA-2002-3457, 2002.
[75]F. Lavergne, F. Villaume, M. Jeanneau, S. Tarbouriech, and G. Garcia, “Nonlinear robust autoland,” AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, California, AIAA-2005-5848, 2005.
[76]H. S. Ju, C. C. Tsai, and C. T. Lee, “Flight path control design for glide-slope tracking by backstepping,” Proceedings of the 2005 IEEE International Conference on Mechatronics, Taipei, Taiwan, pp. 887-892, 2005.
[77]D. McLean, Automatic Flight Control Systems, Prentice Hall, Ltd, UK, pp. 16-62, 1990.
[78]A. A. Pashikar, N. Sundararajan, and P. Saratchandran, “Neuro Controller for Aircraft Auto landing Under Severe Wind and Control Surface Failures,” AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA-2005-914, 2005.
[79]M. Jump, and G. D. Padfield, “Tau Flare or not Tau Flare: that is the question: Developing Guidelines for an Approach and Landing Sky Guide,” AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA 2005-6404, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top