跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/08/02 13:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪明偉
研究生(外文):Ming-Wei Hong
論文名稱:強健網路控制系統之設計
論文名稱(外文):Design of Robust Network Control Systems
指導教授:林俊良林俊良引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:96
語文別:英文
論文頁數:41
中文關鍵詞:網路控制系統傳輸通訊協定使用者資料協定氣壓缸系統穩定性
外文關鍵詞:Active queue managementTCPUDPPneumatic systemstability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:93
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於網路的迅速發展,網路控制方面的研究議題也受到重視。在控制上,即時控制的強健性是影響系統效能的一個重要因素。而在網路上,往往有不可避免的時間延遲存在。所以在網路控制系統中,時間延遲會造成系統效能降低,甚至會造成系統不穩定。針對這問題,本論文分兩個部分加以研究,分別為網路流量控制和網路系統(受控體)控制。
第一部分為網路流量控制。首先,分別建構傳輸通訊協定(加入傳輸資料確認程序的傳輸方式)和使用者資料協定(不計較資料傳輸的正確性,專注於資料傳遞的傳輸方式)的通訊協定下的網路流量控制系統模式。並設計一個網路控制器,控制路由器緩衝區的封包數量,進而縮短網路的延遲時間。由於網路的蓬勃發展,大量的封包量可能會使路由器超出負擔。因此,我們也架構一大型網路的模型,並利用Lyapunov穩定理論推導大型網路系統的穩定條件。
第二部分為網路系統控制。在第一部分介紹中,延遲時間必定存在在網路中。因此在史密斯估測器的結構下,採用氣壓缸為系統的受控體,並使用模糊PID控制器和類神經網路分別維持系統效能和補償時間延遲對穩定性的影響;最後,將理論實現並進行實驗驗證。
Active queue management (AQM) allows for the detection of network congestion and the queue control in router buffer. In this thesis, AQM controller is proposed to manage the queue size and to maintain the overall loop stability. The control design procedure and stability analysis are presented to verify feasibility of the communication network with mixed transmission control protocol (TCP) and user datagram protocol (UDP) traffic. In addition, the uncertainties of network are also considered to guarantee the system stability using the AQM controller proposed in this thesis. The effectiveness of the proposed controller is demonstrated by conducting numerical experiments along with simulation results. In addition, this paper extends AQM control design for single network systems to large-scale network systems with time delay at each communication channel. A system model consisted of several local networks is constructed, and stability conditions are derived using Lyapunov stability theory.
This thesis also concerns with control design for network pneumatic systems with uncertain communication delays. In the practical networked control systems (NCSs), there are usually unavoidable plant and communication delays. It has been known that time delays may not only deteriorate the system performance, but also destabilize the controlled plant. To alleviate the influence resulting from time delays while maintaining performance, a mixed fuzzy-PID/neural network compensating scheme is applied to the pneumatic system with communication delays. Real-world experiments verify effectiveness and superiority of our proposed approach.
誌謝 i
中文摘要 ii
Abstract iii
Contents iv
List of Figures vi
List of Tables ix
Nomenclature x
Chapter 1 Introduction 1
1.1 Active Queue Management Scheme 1
1.2 Large-Scale Network 3
1.3 Networked Pneumatic System 3
1.4 Thesis Organization 4
Chapter 2 Time-Delay System Modeling 6
2.1 Mixed TCP and UDP modeling 6
2.2 Large-Scale Network Modeling 7
2.3 Modeling of Networked Pneumatic System 9
2.3.1 NCS model 9
2.3.2 Pneumatic System 10
Chapter 3 Network Control Design 12
3.1 Network Controller for Mixed TCP and UDP Model 12
3.2 Network Controller in Large-Scale Network 13
3.3 Fuzzy-PID Controller in Pneumatic Systems 14
3.4 Time-Delay Compensator in Pneumatic Systems 15
3.4.1 Smith Predictor 15
3.4.2 Neural Network 15
3.4.3 Learning Rule of Neural Network 17
Chapter 4 Stability Analysis 19
4.1 Mixed TCP and UDP Model 19
4.2 Large-Scale Network 21
4.3 Network Control for Pneumatic Systems 23
Chapter 5 Analysis and Verification 28
5.1 Mixed TCP and UDP Model 28
5.1.1 Fixed network parameters 28
5.1.2 Uncertain network parameters 29
5.2 Large-Scale Network 30
5.3 Network Control for Pneumatic Systems 33
5.3.1 Experimental Setup 33
5.3.2 Experimental Verification 34
Chapter 6 Discussions 36
Chapter 7 Conclusions 39
References 40
[1]Deb, S. and Srikant, R., “Global stability of congestion controllers for the Internet,” IEEE Transactions on Automatic Control, vol. 48, pp. 1055-1060 (2003).
[2]Tan, L., Pugh, A.C. and Yin, M., “Rate-based congestion control in ATM switching networks using a recursive digital filter,” Control Engineering Practice, vol. 11, pp. 1171-1181 (2003).
[3]Kaplan, G., “Ethernet’s winning ways,” IEEE Spectrum, vol. 38, pp. 113-115 (2001).
[4]Walsh, G.C., Hong, Y. and Bushnell, L.G., “Stability analysis of networked control systems,” IEEE Transactions on Control Systems Technology, vol. 10, pp. 438-446 (2002).
[5]Wang, Z., Yang, J., Tan, D. and Wang, X., “Compensation for the networked control systems with the long time delays,” In: Proceedings of IEEE Conference on Systems, Man and Cybernetics, Washington, DC, vol. 4, pp. 3170-3175 (2003).
[6]Braden, B. et al., “Recommendations on queue management and congestion avoidance in the Internet,” IETF Request Comments, vol. 2309 (1998).
[7]Floyd, S. and Jacobson, V., “Random early detection gateways for congestion avoidance,” IEEE/ACM Transactions on Networking, vol. 1, pp. 397-413 (1993).
[8]Bonald, T., May, M. and Bolot, J.-C., “Analytic evaluation of RED performance,” Proceedings of IEEE Conference on INFOCOM, vol. 3, pp. 1415-1424 (2000).
[9]Hollot, C.V., Misra, V., Towsley, D. and Gong, W., “Analysis and design of controllers for AQM routers supporting TCP flows,” IEEE Transactions on Automatic Control, vol. 47, pp. 945-959 (2002).
[10]Al-Zubaidy, H. and Omari, T., “RED performance evaluation using stochastic modeling and fluid-based analysis,” Canadian Conference on Electrical and Computer Engineering, pp. 1413-1418 (2006).
[11]Peng, Y., Yuan, G. and Ozbay, H., “A variable structure control approach to active queue management for TCP with ECN,” IEEE Transactions on Control Systems Technology, vol. 13, pp. 203-215 (2005).
[12]Chen, Q. and Yang, O.W.W., “On designing self-tuning controllers for AQM routers supporting TCP flows based on pole placement,” IEEE Journal on Selected Areas in Communications, vol. 22, pp. 1965-1974 (2004).
[13]Shao, L., Basar, T. and Srikant, R., “Exponential-RED: a stabilizing AQM scheme for low- and high-speed TCP protocols,” IEEE/ACM Transactions on Networking, vol. 13, pp. 1068-1081 (2005).
[14]Quet, P.F. and Ozbay, H., “On the design of AQM supporting TCP flows using robust control theory,” IEEE Transactions on Automatic Control, vol. 49, no, 6, pp. 1031-1036 (2004).
[15]Chiera, B.A. and White, L.B., “A subspace predictive controller for end-to-end TCP congestion control,” Proceedings of the 6th Australian Communications Theory Workshop, Brisbane, Australia, pp. 42-48 (2005).
[16]Wu, H., “Decentralized adaptive robust control for a class of large-scale systems including delayed state perturbations in the interconnections,” IEEE Transactions on Automatic Control, vol. 47, no. 10, pp. 1745-1751 (2002).
[17]Misra, V., Gong, W.B. and Towsley, D., “Fluid-based analysis of a network of AQM routers supporting TCP flows with an application to RED.” In: Proceedings of ACM/SIGCOMM, Stockholm, Sweden, vol. 30, p. 151-160 (2000).
[18]Noritsugu, T., “Development of PWM mode electro-pneumatic servomechanism. Part II: Position control of a pneumatic cylinder,” Journal of Fluid Control, vol. 17, pp. 7-31 (1986).
[19]Laughlin, D.L., Rivera, D.E. and Morari, M., “Smith predictor design for robust performance,” International Journal of Control, vol. 46, pp. 477-504 (1987).
[20]Huang, J.Q. and Lewis, F.L., “Neural-network predictive control for nonlinear dynamic systems with time-delay,” IEEE Transactions on Neural Networks, vol. 14, pp. 377-389 (2003).
[21]Mascolo, S., “Smith’s predictor for congestion control in TCP internet protocol,” In: Proceedings of American Control Conference, San Diego, California, pp. 4441-4445 (1996).
[22]Wei, Z., Branicky, M.S. and Phillips, S.M., “Stability of networked control systems,” IEEE Control Systems Magazine, vol. 21, pp. 84-99 (2001).
[23]Lin, C.L., Chen, C.H. and Liu, V.T., “A new time-delay compensating scheme for electro-hydraulic systems,” International Journal of Fluid Power, vol. 6, pp. 19-27 (2005).
[24]Lin, C.T. and George Lee, C.S. Neural Fuzzy Systems, Prentice-Hall Inc, Upper Saddle River (1996).
[25]Zurada, J.M. Introduction to Artificial Neural Systems, West Publishing Co., St. Paul (1992), pp. 210-211.
[26]Vidyasagar, M. Control System Synthesis: A Factorization Approach, MIT Press, Cambridge (1985).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊