跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/28 08:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王泰傑
研究生(外文):Tai-Chien Wang
論文名稱:光纖分碼多工系統之波長時間碼之設計
論文名稱(外文):A new Family of Wavelength-Time Codes for Fiber-Optic CDMA Systems
指導教授:揚谷章
指導教授(外文):Guu-Chang Tang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:96
語文別:英文
論文頁數:36
中文關鍵詞:波長時間碼光纖分碼多工
外文關鍵詞:wavelength-timeO-CDMA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來由於二維編碼技術的發展,光纖網路技術開始受到新的關注。在本篇論文當中提出了一種新式二維光纖碼,此新二維光纖建立於以最大戶相關數值為二的光纖正交碼為時域展頻碼,此架構能夠提供更多的系統用戶數已致能容納更多同步使用者數且能提供更大的碼重而獲得更好的效能。於本論文最後,此新二維光纖碼與我們之前所提出的二維光纖碼做比較,從分析的結果也顯示出新的二維光纖碼比之前的架構有更好的表現。
In this thesis, a new family of wavelength-time codes, which is based on one-dimensional optical orthogonal codes (1D OOCs) of cross-correlation functions of at most two, is proposed. By relaxing the maximum cross-correlation values to two, the new two-dimensional (2D) codes provide larger code cardinality for accommodating more subscribers and support heavier code weight for better code performance. The traditional chip-synchronous assumption used in the analyses of optical codes gives a pessimistic performance upper bound, while the newer chip-asynchronous assumption offers a more accurate performance. The performance of the new 2D codes is here analyzed under both assumptions for comparison. Under certain conditions, our results show that the new wavelength-time codes outperform our recently reported multiple-wavelength OOCs and 2D codes, which were based 1D OOCs of cross-correlation functions of at most one and two, respectively.
Chapter 1 Introduction 1
1.1 Background 1
1.2 Fiber-Optic CDMA Communication System 2
1.3 Outline of Thesis 3
Chapter 2 Construction of new 2D codes 5
2.1 Introduction 5
2.2 Basic algorithm 5
2.3 Construction of 2-D Code 7
2.4 Cardinality 8
2.5 Correlation Properties 10
Chapter 3 Performance Analysis 12
3.1 Chip-Synchronous Assumption 12
3.1.1 Hit Probability for Odd Weight 13
3.1.2 Hit Probability for Even Weight 13
3.1.3 Error Probability Derivation 14
3.2 Chip-Asynchronous Assumption 15
3.3 Numerical Examples 16
Chapter 4
4.1 Conclusions 28
4.2 Future Works 28
Appendix I 29
Appendix II 32
References 34
[1] L.Tančevski and I.Andonovic, “Hybrid wavelength hopping/time spreading schemes for use in massive optical networks with increased security,” J. Llightwave Technol , vol.14, no. 12, pp. 2636-2647, Dec. 1996.
[2]G.-C. Yang and W.C. Kwong, “Performance comparison of multiwavelength CDMA and WDMA+CDMA for fiber-optic networks,” IEEE Trans. Commun., vol. 45, no. 11, pp. 1426-1434, Nov. 1997
[3]G.-C. Yang and W.C. Kwong, Prime Codes With Applications to CDMA Optical and Wireless Networks, Artech House, Norwood, MA, 2002
[4]R.M.H Yim, L.R. Chen, and J. Bajcsy, “Design and performance of 2D codes for wavelength-time optical CDMA,” IEEE Photon. Technol. Lett., vol.14, no. 5, pp. 714-716, May 2002.
[5]W.C. Kwong, G.-C. Yang, V. Baby, C.-S. Brès, and P.R. Prucnal, “Multiple-wavelength optical orthogonal codes under prime-sequence permutation for ptical CDMA,” IEEE Trans. Commun., vol. 53, no. 1, pp. 117-123, Jan 2005.
[6]L. Tančevski and I. Andonovic, “Wavelength hopping/time spreading code division multiple access systems,” Electron. Lett., vol. 30, no. 17, pp. 1388-1390, Aug. 1994.S. P. Wan and Y. Hu, “Two-dimensional optical CDMA differential system with prime/OOC codes,” IEEE Photon. Technol. Lett., vol. 10, no. 12, pp.1373-1375, Dec. 2001.
[7]H. Fathallah, L.A. Rusch, and S. Laroschelle, “Passive optical fast frequency- hop CDMA communication system,” J. Lightwave Technol., vol. 17, pp. 397-405, Mar 1999.
[8]L. R. Chen, “Flexible fiber Bragg grating encoder/decoder for hybrid wavelength-time optical CDMA,” IEEE Photon. Technol. Lett., vol. 13, pp 1233-1235, Nov. 2001.
[9]P. C. Teh, P. Petropoulos, M. Ibsen, and D. Richardson, “A comparative study of the performance of seven- and 63- chip optical code-division multiple- access encoder and decoder based on the superstructured fiber Bragg grating,” J. Lightwave Technol., vol. 19, pp. 1352-1365, Sep. 2001.
[10]J. H. Lee, P. C. Teh, P. Petropoulos, M. Ibsen, D. Richardson, “A grating-based OCDMA coding-decoding system incorporating a nonlinear optical loop mirror for improved code recognition and noise reduction ,” Lighthwave Technol., vol. 20, pp. 36-46, Jan. 2002.
[11]S. Yegnanarayanan, A. S. Bhushan, B. Jalali, “Fast wavelength-hopping time-spreading encoding/decoding for optical CDMA,” IEEE Photon. Technol. Lett., vol. 12, pp. 573-576, May 2000.
[12]K. Yu, J. shin, and N. Park, “Wavelength-time spreading optical CDMA system using wavelength multiplexers and mirrors fiber delay lines, ” IEEE Photon. Technol. Lett., vol. 12,pp. 1278-1280, Sep. 2000.
[13]F.R.K. Chung, J. A. Salehi, and V.K. Wei, “Optical orthogonal codes Design, Analysis, and applications,” IEEE Trans. Inf. Theory, vol. 35, no. 3, pp. 594-604, May 1983.
[14]G.-C. Yang and T. Fuja, “Optical orthogonal codes with unequal auto- and cross-correlation constraints,” IEEE Trans. Inform. Theory, vol. 41, no. 1, pp. 96-106, Jan. 1995.
[15]G.-C. Yang, “Some new families of optical orthogonal codes for code division multiple-acess fiber-optic network ,” IEEE Proc. Commun.., vol. 42, no. 6, pp. 363-367, Dec. 1995.
[16]J.-H. Tien, G-.C. Yang, C.-Y. Chang and W.C. Kwong, “Design and analysis of 2-D code with the maxium cross- correlation value of two for optical CDMA,” to appear in J. Lightwave Technol.
[17]J.-J. Chen and G.-C. Yang, “CDMA fiber-optic systems with optical hard limiters,” Lighthwave Technol., vol. 19, no. 7, pp. 950-958, Jul. 2001.
[18]J. A. Salehi and C. A. Brackett, “Code division multiple-axess techniques in optical fiber networks-part II: system performance analysis,” IEEE Trans. Commun., vol. 37, no. 8, pp. 834-842, Aug. 1989.
[19]M. Azizoglu, J. Sslehi, and Y. Li, “Optical CDMA via temporal codes,” IEEE Trans. Commun., vol. 40, no. 7, pp. 1162-1170, July 1992.
[20]H. M. Kwon, “Optical orthogonal code-division multiple-access system-Part I: APD noise and thermal noise,” IEEE Trans. Commun., vol. 42, no. 7, pp. 2470-2479, July 1994.
[21]H. Gibbs, Optical Bistability: Controlling Light with light. New York :Academic, 1985.
[22]J. Jwell, M. Rushford, and H. Gibbs, “Use of a single nonlinear Fabry-Perot etalon as optical logic gates,” Appl. Phys. Lett., vol. 44, no.2, pp. 172-174, Jan. 1984.
[23]J.-H Wu and J. Wu, “Synchronous fiber-optic CDMA using hard-limiter and BCH codes,” Lighthwave Technol., vol. 13, pp. 1169-1176, June. 1995.
[24]C.-C. Hsu and G.-C. Yang, and W.C. Kwong, “Hard-limiting performance analysis of 2-D optical codes under the chip-asynchronous assumption,” IEEE Trans. Commun., vol. 56, no. 56, pp. 762-768, May 2008.
[25]G.-C. Yang and W.C. Kwong, “Two-dimensional spatial signature patterns,” IEEE Trans. Commun., vol. 44, no. 2, pp. 184-191, Feb. 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top