跳到主要內容

臺灣博碩士論文加值系統

(3.236.68.118) 您好!臺灣時間:2021/08/04 20:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳宗展
研究生(外文):Tsung-Chan Wu
論文名稱:具有積體化變壓器技術之射頻接收器前端電路
論文名稱(外文):RF Receiver Frond-end Circuits with a Integrated Transformer Technique
指導教授:楊清淵楊清淵引用關係
指導教授(外文):Ching-Yuan Yang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:77
中文關鍵詞:壓控振盪器低雜訊放大器變壓器
外文關鍵詞:vcolnatransformer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要在探討以積體化變壓器實現可變電感的可能性,與應用於正交相位振盪器和低雜訊放大器電路中,本論文主要可以分為三個部分分別探討之。
首先是射頻接收機基本架構及效能參數介紹,對各架構做一番剖析,並且說明接收機效能參數之定義。接著,將探討有關於傳統電感-電容式壓控振盪器的架構,及使用電容式變容器的缺點分析,提出可變電感架構,並使用積體化變壓器的概念實現。針對利用積體化變壓器構成的可變電感架構進行分析,對其特性加以探討,並將此理論應用於正交相位壓控振盪器與低雜訊放大器中。
最後一部份將探討頻率合成器的設計,其輸出頻率範圍2.3GHz~2.6GHz,工作電壓為1.8V時的功率消耗為13mW。本晶片以0.18μm CMOS製程製造,面積為1.1mm×0.785mm。
This thesis describes the feasibility study of inductive varactor realized with integrated transformer and applies it in quadrature VCO and low noise amplifier circuits. There are three major parts in this thesis discussed in detail.
Firstly, the basic structures of the RF receiver and efficiency parameter are introduced and analysized, then are state the definition of the efficiency parameters of the receiver. Secondly, discussed the traditional LC VCO applied capacitive varactors and its disadvantages. The thesis proposed the concept of inductive varactor. The proposed structures employ integrated transformers as inductance with voltage-controlled value. The traditional approach of tuning the VCO oscillation frequency by capacitance variation would be sacrificed, and the proposed structure with induction variation will be applied to substitute for quadrature VCO and low noise amplifier.
The last part of all, the work presents the frequency synthesizer. The output frequency ranges from 2.3GHz to 2.6GHz. It consumes 13mW from a 1.8V power supply. The chip is implemented in 0.18μm CMOS technology with the die area 1.1mm×0.785mm.
誌謝 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - i
摘要(中文) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ii
摘要(英文) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -iii
目錄 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - iv
第一章 緒論
1.1 研究動機 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1
1.2 論文概要 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2
第二章 射頻接收機架構及效能參數
2.1 射頻接收機架構 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3
2.1.1 超外差接收機 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3
2.1.2 直接降頻接收機 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5
2.1.3 低中頻接收機 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7
2.2 射頻接收機效能參數 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8
2.2.1 靈敏度 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8
2.2.2 選擇性 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9
2.2.3 雜訊指數 - - - - - - - - - - - - - - - - - - - - - - - - - - - 9
2.2.4 線性度 - - - - - - - - - - - - - - - - - - - - - - - - - - - 11

第三章 變壓器回授之可變電感電路應用於正交相位振盪器

3.1 電感與積體化變壓器 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14
3.1.1 原理分析 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14
3.1.2 電感與變壓器等效模型與模擬 - - - - - - - - - - - - - - - - - - - - - - 16
3.2 差動輸出之電感電容式壓控振盪器 - - - - - - - - - - - - - - - - - 18
3.2.1 應用變容器之電感電容式壓控振盪器架構 - - - - - - - - - - - - - 18
3.2.2 相位雜訊分析 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 20
3.3 正交相位壓控振盪器 - - - - - - - - - - - - - - - - - - - - - - - - - - - 23
3.3.1 正交相位之產生原理 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 23
3.3.2 正交相位壓控振盪器的種類 - - - - - - - - - - - - - - - - - - - - - - - - 27
3.3.3 相位誤差的驗證 - - - - - - - - - - - - - - - - - - - - - - - - - 28
3.4 變壓器回授之可變電感應用於正交相位振盪器 - - - - - - - - - - - - - 31
3.4.1 原理分析 - - - - - - - - - - - - - - - - - - - - - - - - - - - - 32
3.5 晶片量測 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 34
3.6 結論 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 40

第四章 變壓器回授之可變電感電路應用於低雜訊放大器

4.1 低雜訊放大器 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 41
4.1.1 CMOS雜訊模型 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 41
4.1.2 共軛匹配雜訊指數之最佳化 - - - - - - - - - - - - - - - - - - - - - - 42
4.1.3 固定功率消耗之雜訊指數最佳化 - - - - - - - - - - - - - - - - - - - - 45
4.1.4 共雜極電晶體對整體雜訊指數的影響 - - - - - - - - - - - - - - - - - 50
4.2 變壓器回授之可變電感電路的構想與應用 - - - - - - - - - - - - - - - - 51
4.3 變壓器回授之可變電感電路應用於低雜訊放大器 - - - - - - - - - - - 54
4.3.1 原理說明 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 55
4.3.2 量測與結論 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 57

第五章 頻率合成器

5.1 簡介 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 62
5.1.1 規格說明 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 62
5.2 電路架構與說明 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 63
5.2.1 相位頻率偵測器 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 63
5.2.2 充電泵 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 64
5.2.3 Pulse-swallow counter原理簡介 - - - - - - - - - - - - - - - - - - - 65
5.2.4 迴路濾波器 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 68
5.3 電路模擬與量測考量 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 70
5.4 結論 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 73

第六章 結論

6.1 結論與未來展望 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 74

參考書目

參考文獻 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 75
[1] B. Razavi, RF Microelectronics, Prentice Hall, 1998.
[2] Y. Tsividis, Operation and Modeling of the MOS Transistor, 2nd ed., Boston: McGraw-Hill, 1999.
[3] K. L. Fong, R. G. Meyer, “Monolithic RF active mixer design,” IEEE Transactions on Circuits and Systems-II Analog and Digital Signal Processing, vol. 46, no. 3, March 1999.
[4] A. Zolfaghari, B. Razavi, “A low-power 2.4-GHz transmitter/receiver CMOS IC,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 176-183, Feb. 2003.
[5] C. Patrick and S. S. Wong, “On-Chip Spiral Inductors with Patterned Ground Shields for Si-Based RF IC’s,” IEEE Journal of Solid-State Circuits, vol. 33, pp. 743-752, MAY 1998.
[6] Y.-T. Chang, “A GFSK Modulator by Using a Fractional-N Frequency Synthesizer”, M. S. thesis, National Taiwan University, 2003.
[7] D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” in Proc. IEEE, vol. 54, pp. 329-330, Feb. 1966.
[8] J.J. Rael, A.A. Abidi, “Physical Processes of Phase Noise in Differential LC Oscillators,” IEEE Custom Integrated Circuits Conference, 2000.
[9] T. H. Lee, A. Hajimiri, “Oscillator Phase Noise: A Tutorial,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 326-336, March 2000.
[10] B.-Y. Sze and C.-L. Ho, VIA Technologies, Inc., Taipei, Taiwan, “A Low Phase Noise Quadrature LC VCO in CMOS Technology”, IEEE Radio Frequency Integrated Circuits Symposium, 2005.
[11] E. Hegazi, H. Sjoland, A.A. Abidi, “A Filtering Technique to Lower LC Oscillator Phase Noise,” IEEE Journal of Solid-State Circuits, vol. 36, pp. 1921-1930, Dec. 2001.
[12] B. Razavi, “Design of integrated circuits for optical communications,” McGraw-Hill, 2003.
[13] A.Rofougaran, J.Rael, M. Rofougaran, and A. Abidi, “A 900 MHz CMOS LC-oscillator with quadrature outputs,” in Int. Solid-State Circuit (ISSCC) Dig. Tech. Papers, pp. 392-393, Feb. 1996.
[14] Hye-Ryoung Kim, Choong-Yul Cha, Seung-Min Oh, Moon-Su Yang, Sang-Gug Lee, “A very low-power quadrature VCO with back-gate coupling,” IEEE Journal of Solid-State Circuits, vol. 39, pp. 952-955, June 2004.
[15] Jong-Phil Hong, Seok-Ju Yun, Nam-Jin Oh, Sang-Gug Lee, “A 2.2-mW Backgate Coupled LC Quadrature VCO with Current Reused Structure,” IEEE Microwave wireless components letters, pp. 298-300, April 2007.
[16] K. Kwok and H. C. Luong, “Ultra-Low-Voltage High-Performance CMOS VCOs Using Transformer Feedback,” IEEE Journal of Solid-State Circuits, Vol. 40, pp. 652-660, March 2005.
[17] Jri Lee, “A 3-to-8-GHz Fast Hopping Frequency Synthesizer in 0.18-μm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 41, pp. 566-573, March 2006.
[18] A. Ravi, K. Soumyanath, R. E. Bishop, B. A. Bloechel, and L. R. Carley, “An optimally transformer coupled, 5GHz quadrature VCO in a 0.18-μm digital CMOS process,” in Symp. VLSI Circuits Dig. Tech. Papers, pp. 141–144, Jun. 2003.
[19] Ching-Yuan Yang, Meng-Ting Tsai, “A Voltage-Controlled Varactorless LC-Tank Oscillator With a Transformer-Feedback Technique,” Microwave and Optical Technology Letters, vol.49, no.11, pp. 2808-2810, November 2007.
[20] A. Ravi, K. Soumyanath, L. R. Carley, R. Bishop, “An integrated 10/5GHz injection-locked quadrature LC VCO in a 0.18um digital CMOS process,” in Proc. European Solid-State Circuits Conf. (ESSCIRC), pp. 543-546, 2002.
[21] W. D. Cock and M. Steyaert, “A CMOS 10GHz voltage controlled LC-oscillator with integrated high-Q inductor,” in Proc. European Solid-State Circuits Conf. (ESSCIRC), pp. 498-501, 2001.
[22] N.-J. Oh and S.-G. Lee, “11-GHz CMOS differential VCO with back-gate transformer feedback,” IEEE Microwave Wireless Compon. Letters, vol. 15, no. 11, pp. 733-735, Nov. 2005.
[23] D. Baek, T. Song, E. Yoon, and S. Hong, “8-GHz CMOS quadrature VCO using transformer-based LC tank,” IEEE Microwave Wireless Compon. Letters, vol. 13, no. 10, pp. 446-448, Oct. 2003.
[24] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge University Press, 1998.
[25] D. K. Shaeffer and T. H. Lee, “A 1.5-V 1.5-GHz CMOS low noise amplifier,” IEEE Journal of Solid-State Circuits, vol. 32, pp. 745-759, May 1997.
[26] T. H. Lee, “The design of narrowband CMOS low-noise amplifier,” Stanford University Center for Integrated Systems Stanford, California, USA.
[27] G.. Gonzalez, Microwave Transistor Amplifiers Analysis and Design, Prentice-Hall, 1997.
[28] H. Samavati, H. R. Rategh, T. H. Lee, “A 5-GHz CMOS wireless LAN receiver front end,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 765-772, May 2000.
[29] T. Yeung, “Analysis and Design of On-chip Spiral Inductors and Transformers for Silicon RF Integrated Circuits,” M. S. thesis, HKUST, 1998.
[30] P. Andreani, “A 1.8-GHz Monolithic CMOS VCO Tuned by an Inductive Varactor,” IEEE International Symposium on Circuits and Systems, Vol. 4, pp. 714 -717, May 2001.
[31] R. –C. Liu, K. –L. Deng, and H. Wang, “A 0.6-22 GHz broadband CMOS distrubuted amplifier,” in Proc. IEEE Radio Frequency Integrated Circuits Symp., pp. 103-106, Jun. 2003.
[32] C. –W. Kim et al., “An ultra-wideband CMOS low noise amplifier for 3-5 GHz UWB system,” IEEE Journal of Solid-State Circuits, vol. 40, pp. 544-547, Feb. 2005.
[33] A. Ismail and A. Abidi,“A 3–10-GHz Low-Noise Amplifier with wideband LC-Ladder matching network”, IEEE Journal of Solid-State Circuits , vol. 39, pp. 2269-2277, Dec. 2004.
[34] A. Bevilacqua and A. M. Niknejad, “An ultrawideband CMOS low-noise amplifier for 3.1-10.6GHz wireless receivers,” IEEE Journal of Solid-State Circuits, vol. 39, pp. 2259-2268, Dec.2004.
[35] El-Gharniti, O.; Kerherve, E.; Begueret, J.-B.; Belot, D.“3~5-GHz SiGe UWB LNA Using On-Chip Transformer for Broadband Matching,” Solid-State Circuits Conference, pp. 255-258, Sept. 2006.
[36] T. Song, S. Ko, D.-H. Cho, H. -S. Oh, C. Chung, and E. Yoon, “A 5 GHz transformer-coupled CMOS VCO using bias-level shifting technique,”in Proc. IEEE Radio Frequency Integrated Circuits Symp., pp. 127-130, Jun. 2004.
[37] M. Soyuer and R. G. Meyer, “Frequency limitations of a conventional phase-frequency detector,” IEEE Journal of Solid-State Circuits Vol. 25, No.8, pp. 1019-1022, Aug. 1990.
[38] H. O. Johansson, “A simple precharged CMOS phase frequency detector,” IEEE Journal of Solid-State Circuits, Vol. 33, pp. 295-299, Feb. 1998.
[39] M. Mansuri, D. Liu and C. K. Ken Yang, “Fast frequency acquisition phase-frequency detectors for GSamples/s phase-locked loops,” IEEE Journal of Solid-State Circuits, Vol. 37, pp. 1331-1334, Oct. 2002.
[40] S. O. Jeon, T. S. Cheung and W. Y. Choi, “Phase/frequency detectors for high-speed PLL applications,” Electronic Letters, Vol. 34, pp. 2120-2121, Oct. 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊