跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/08/04 07:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭文福
研究生(外文):Wen-Fu Kuo
論文名稱:應用於超寬頻無線網路之壓控振盪器設計
論文名稱(外文):Voltage Control Oscillator Design For Ultra-Wideband Wireless LAN Application.
指導教授:江衍忠
指導教授(外文):Yen-Chung Chiang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:104
中文關鍵詞:壓控振盪器正交壓控振盪器鎖相迴路
外文關鍵詞:VCOQVCOPLL
相關次數:
  • 被引用被引用:4
  • 點閱點閱:112
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以實現應用於超寬頻無線收發機內之本地振盪信號源產生電路為主;探究相關電路設計上可能遇到的問題,並實際製作出晶片加以驗證。我們使用的是國家實驗研究院晶片系統中心所提供之TSMC 0.18μm 1P6M CMOS 1.8V供應電壓製程;總共製作出兩種不同的壓控振盪器及一個完整的除整數型鎖相迴路。本論文整體將以這三塊電路為主架構,分成三個章節來講述各別之電路原理、模擬結果和最後的晶片量測結果。
第二章的設計採用可切換電感方式,完成涵蓋UWB 1、2、3頻帶的互補式交叉耦合對壓控振盪器。電路概念上是搭配可變電容器並使用開關切換電感以將操作頻率分成兩個頻帶,模擬結果可調頻寬範圍在3GHz到5GHz內,相位雜訊都低於-120dBc/Hz@1MHz。最後實際量測顯示振盪在3.186GHz時有最佳相位雜訊-108dBz/Hz@1MHz。
第三章的設計則為切換電容方式之背閘極正交四相位壓控振器,同樣完成涵蓋在UWB1、2、3頻帶。為了達到高頻寬,將LC共振槽加上兩組切換電容開關,電路特點是有低相位雜訊和低功率消耗。模擬得到可調頻寬範圍在3GHz到5GHz內,其相位雜訊皆低於-120dBc/Hz@1MHz,功率消耗為10.8mW。最後實際量測顯示振盪在4.751GHz時有最佳相位雜訊-105.41dBz/Hz@1MHz。
第四章的雙模式整數型鎖相迴路設計,延用第三章部份所設計的振盪器於鎖相迴路中當作振盪源,應用在802.11a低頻帶5.15GHz到5.35GHz。而鎖定頻率在5.14 GHz到5.72GHz,鎖定時間低於5μs,最佳峰對峰抖動為48.5ps。
This thesis mainly regards the realization of the local oscillation circuitry for the UWB wireless transceiver application. We probed into problems which may be encountered in the relevant circuit design and actually fabricated chips for verification. There are two kinds of different oscillators will be explored and we also finished one complete phase lock loop. All the chips have already been implemented in the TSMC 0.18μm 1P6M CMOS process using 1.8V supply voltage which is provided by National Chip Implementation Center (CIC). According to these three chips, this thesis also divides into three major parts. Each chapter includes principles of circuit design, simulation results and measurement results.
In chapter two, we adopt discrete tuning by using switched inductors in the cross-couple pair VCO, and the tuning frequency range of the finished chip can cover UWB band 1, 2 and 3. The concept of our circuit is to combine the varactors and the switched inductors which result in two frequency bands to enlarge the tuning range of the VCO. Simulation result shows that the tuning range can reach the 2GHz (3GHz to 5GHz) requirement, and the phase noise is lower then -120dBc/Hz at 1MHz frequency offset. The measurement result shows that the best phase noise is about -108 dBc/Hz at 1MHz frequency offset when the oscillating frequency is 3.186 GHz.
In chapter three, we adopt discrete tuning by using switched capacitors in the back-gated QVCO, and the tuning frequency range of the finished chip can also cover UWB band 1, 2 and 3. In order to reach higher tuning range, we just added two sets of switching capacitors in the LC tank. The characteristic of the back-gated QVCO circuit is low phase noise and low power consumption. It is shown from the simulation results that the tuning range is also from 3GHz to 5GHz. The phase noise is lower then -120dBc/Hz at 1MHz frequency offset, and the total power consumption is 10.8mW. The measurement result shows that the best phase noise is about -105.41dBc/Hz at 1MHz offset when the oscillating frequency is 4.751 GHz.
In chapter four, a 802.11a low band dual-modulus phase lock loop is implement by adopting back-gate QVCO which is designed in the previous chapter. The locking frequency of the PLL is around 5.14 GHz to 5.72 GHz. The locking time is lower then 5μs, and the best peak-to-peak jitter can lower than 48.5ps.
第一章 導論1
1.1 研究動機1
1.2 文獻回顧2
1.3 論文架構3
第二章 應用於UWB之切換電感互補式交叉耦合對VCO4
2.1 振盪器基本原理4
2.2 振盪器性能指標5
2.2.1 判斷振盪器效能的參數5
2.2.2 振盪器品質因素定義7
2.3 電感電容振盪器單端能量補償系統分析8
2.4 相位雜訊9
2.4.1 理想振盪器相位雜訊10
2.4.2 線性時變下相位雜訊分析12
2.4.3 相位電壓轉換14
2.5 窄頻電感電容壓控振盪器15
2.5.1 負阻抗17
2.6 迴授形態LC諧振振盪器18
2.6.1 被動阻抗變壓器20
2.7 寬頻電感電容振盪器21
2.8 可變電容與平面型電感之探討24
2.8.1 可變電容24
2.8.2 平面型電感 27
2.9 應用於UWB之切換電感式VCO設計28
2.9.1 電路實現與設計原理28
2.9.3 量測考量33
2.9.4 量測結果與討論34
2.10 本章小結36
第三章 應用於UWB之背閘極正交壓控振盪器研究37
3.1 QVCO簡介37
3.2 正交訊號產生電路39
3.2.1 RC-CR電路39
3.2.2 多相位濾波器(Polyphase filter) 40
3.2.3 Haven 技術41
3.2.4 除二電路42
3.3 四相位正交壓控振盪器(QVCO)42
3.3.1 QVCO正交原理 42
3.3.2 並聯耦合式正交壓控振盪器(parallel QVCO,P-QVCO)43
3.3.3 串聯耦合式正交壓控振盪器(series QVCO,S-QVCO)45
3.3.4 變壓器耦合式QVCO47
3.4 正交訊號量測48
3.5 應用於UWB之背閘極正交壓控振盪器50
3.5.1 電路實現53
3.5.2 模擬結果57
3.5.3 量測結果與討論60
3.6 本章小結64
第四章 802.11a雙模式整數型頻率合成器65
4.1簡介65
4.2 鎖相迴路基本原理66
4.2.1 穩定性分析67
4.2.2 迴路頻寬的設定69
4.2.3 峰對峰抖動(peak-to-peak jitter)70
4.3 鎖相迴路各子電路的功能及原理71
4.4 802.11a雙模式整數型頻率合成器電路說明75
4.4.1 相位檢測器76
4.4.2 電荷泵77
4.4.3 壓控振盪器77
4.4.4 除二電路78
4.4.5 4/5預除器79
4.4.6 可程式除頻器 80
4.4.7 LOGIC電路82
4.5 模擬結果84
4.5.1 相位檢測器模擬84
4.5.2 電荷泵模擬86
4.5.3 壓控振盪器模擬87
4.5.4 第一級除二電路模擬88
4.5.5 4/5預除器模擬89
4.5.6 6bit/7bit可程式除頻器模擬90
4.5.7 LOGIC電路模擬91
4.5.8 利用simulink作整體鎖相迴路系統模擬92
4.5.9 整體鎖相迴路系統模擬93
4.6 量測考量98
4.7 本章小結98
第五章 結論100
5.1 未來展望100
參考資料101
[1]Ian Oppermann, Matti Hämäläinen and Jari Iinatti, UWB Theory and Applications. John Wiley & Sons, Inc. 2004.
[2]S. A. Ghorashi, B. Allen, M. Ghavami and A. H. Aghvami, “An overview of MB-UWB OFDM,” Ultra Wideband Communications Technologies and System Design, pp.107-110, July 2004.
[3]D. M. W. Leenaerts,“Transceiver design for multiband OFDM UWB,” EURASIP Journal on Wireless Communacations and Networking, Article ID 43917, vol. 2006, pp.1-8,Jan 2006.
[4]B. Razavi,T. Aytur,C. Lam,F. R. Yang,K. Y. Li,R. H. Yan,H. C Kang, C. C. Hsu and C. C. Lee, “A UWB CMOS transceiver,” IEEE Journal of Solid-State Circuits, vol.40, no.12, pp.2555-2562, Dec. 2005.
[5]T. H. Lee,The Design of CMOS Radio-Frequency Integrated Circuits, New York Cambridge University Press, 1998.
[6]D. Ham and A. Hajimiri, “Concepts and methods in optimization of integrated LC VCOs,” IEEE Journal of Solid-State Circuits, vol.36, no.6, pp.896-909, June 2001.
[7]D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” Proc. IEEE, vol.54, no.2, pp.329–330, Feb 1966.
[8]B. Razavi, “A study of phase noise in CMOS oscillators,” IEEE Journal of Solid-State Circuits, vol. 31, no.3, pp. 329-330, March 1996.
[9]D. Hauspie,E. C. Park, J. Craninckx,B. Côme “Wideband VCO with simulataneous switching of frequency band,active core and varactor size,” IEEE Journal of Solid-State Circuits, vol.42, no.7, pp.1472-1480, Jul 2007.
[10]B. Razavi, RF Microelectronics, Prentice-Hall, 1998
[11]K.Kurokawa,“Some basic characteristics of broadband negative resistance oscillator circuit,” Bell System Technology Journal, vol.48, pp.1937-1955 , Jul 1969
[12]A. Hajimiri and T. H. Lee, “Design issues in CMOS differential LC oscillator,” IEEE Journal of Solid-State Circuits, vol.34, no.5, pp.717-724, Feb 1999
[13]A. Hajimiri, T. H. Lee, “A general theory of phase noise in electrical oscillator,” IEEE Journal of Solid-State Circuits, vol.33, no, 2, pp.179-194, Feb 1998
[14]F. Herzel, H. Erzgraber, P. Weger, “Integrated CMOS wideband oscillator for RF applications,” IEEE Electronic Letter, vol.37, no.6, pp.330-331, Mar 2001
[15]A. Kral, F. Behbahani, A. A. Abidi, “RF-CMOS oscillators eith switched tuning,” IEEE Custom Integrated Circuit Custom Integrated Circuits Conference, pp.555-558, May 1998
[16]A. M. Niknejad, “Multi-mode and wideband VCO design”, RF-IC2003
[17]Johan van Der Tang, Dieter Kasperkovitz and Arthur van Roermund, High-Frequency Oscillator Design for Integrated Transceivers, Kluwer Academic Publishers, 2003
[18]Nathan Sneed, “A 2-GHz CMOS LC-tuned VCO using switched capacitor to compensate for bondwire inductance variation,” University of Califor- nia Berkely, Dec 2002
[19]S. M. Sunderarajan, “Modeling ,Design and optimization of on-chip inductance and transformers”, Center for Integrated Systems,Stanford University, Jun 1999
[20]F. Behbahani, Y. Kishigami, J. Leete and A. A. Abidi, “CMOS mixers and polyphase filters for large image rejection,” IEEE Journal of Solid-State Circuits, vol.36, no.6, pp.873-887, Jun 2001
[21]K. Stadius, R. Kaunisto, V. Porra, “Monolithic tunable capacitors for RF applications,” IEEE International Symposium on Circuits and Systems, vol.1, pp.488-491, May 2001
[22]A. Rofougaran, J. Real, M. Rofougaran and A. Abidi, “A 900 MHz CMOS LC oscillator with quadrature outputs,” IEEE International Solid-State Circuits Conference, pp.392-393, Feb 1996
[23]M.Tiebout, “Low-power low-phase-noise differentially tuned quadrature VCO design in standard CMOS,” IEEE Journal of Solid-State Circuits, vol.36, no.7, pp.1018-1024, Jul 2001
[24]H. R. Kim, C. Y. Cha, S. M. Oh, M. S. Yang and S. G. Lee, “A very low power quadrature with back-gate coupling,” IEEE Journal of Solid-State Circuits, vol.39, no.6, pp.952-955, Jun 2004
[25]P. Andreani, A. Bonfanti, L. Romano and C. Samori, “Analysis and De- sign of a 1.8-GHz CMOS LC Quadrature VCO,” IEEE Journal of Solid-State Circuits, vol.37, no.12, pp.1737-1747, Dec 2002
[26]A. W. L. Ng and H. C. Luong, “A 1-V 17-GHz 5-mW CMOS quadrature VCO based on transformer coupling,” IEEE Journal of Solid-State Circuits, vol.42, no.9, pp.1933-1941, Sep 2007
[27]A. Rofougaran, G. Chang, J. J. Rael, M. Rofougaran, P. J. Chang, M. Djafari, M. K. Ku, E. W. Roth, A. A. Abidi and H. Samueli, “A single-chip 900-MHz spread spread-spectrum wireless transceiver in 1μm CMOS —Part I:Architecture and transmitter design,” IEEE Journal of Solid-State Circuits, vol.33, no.4, pp.515-534, Apr 1998
[28]B. J. Blalock and P. E. Allen, “A low-voltage,bulk-driven MOSFET current mirror for CMOS technology,” IEEE International Symposium on Circuits and Systems, vol.3, pp.1972-1975, 1995
[29]Y. Zhang, P. Upadhyaya, L. Peng, D. Rector and D. Heo, “Analysis of resonator phase shift for two series LC quadrature VCOs,” Electronics Letters, vol.44, no.1, pp.26-27, Jan 2008
[30]K. Kwok and H. C. Luong, “Ultra-Low-Voltage High-Performance CMOS VCOs using transformer feedback,” IEEE Journal of Solid-State Circuits, vol.40, no.3, pp.652-660, Mar 2005
[31]A. Ravi, K. Soumyanath, R. E. Bishop, B. A. Bloechel and L. R. Carley, “An optimally transformer coupled,5 GHz quadrature VCO in a 0.18 /spl mu/m digital CMOS process,” Dig.Symp.VLSI circuits,” pp.141-144, June 2003
[32]G. Kathiresan and C. Toumazou, “A low voltage bulk driven downcon- vesion mixer core,” IEEE International Symposium on Circuits and Systems, vol.2, pp.598-601, Jul 1999
[33]C. Y. Jeong and C. Yoo, “5 GHz low phase noise CMOS quadrature VCO,” IEEE Mirowave and Wireless Components Letters,” vol.16, no.11, pp.609-611, Nov 2006
[34]P. Andreani, “A 2GHz, 17% tuning range quadrature CMOS VCO with high figure-of merit and 0.6°phase error,” IEEE ESSCIRC Proceedings of the 28th, pp.815-818, Sep 2002
[35]S. H. Lee, Y. H. Chuang, S. L. Jang, M. T. ,Chuang and R. H. Yen, “A quadrature CMOS VCO using transformer coupling and current reused topology,” IEICE transactions on communications, vol. 90, no.2, pp.346- 348 ,Feb 2007
[36]H. Yoshizawa, K. Taniguchi and K. Nakashi, “An implementation technique of dynamic CMOS circuit applicable to asynchronous/synch- ronous logic,” IEEE International Symposium on Circuits and Systems, vol.2, pp.145-148, June 1998
[37]D. J Yang and K. K. O, “A 14-GHz 256/257 dual-modulus prescaler with secondary feedback and its application to monolithic CMOS 10.4-GHz phase-locked loop,” IEEE Transaction on Microwave Theory and Techniques, vol.52, no.2, Feb 2004
[38]M. A. Do, X. P. Yu, J.G. Ma, K.S. Yeo, R. Wu and Q. X. Zhang, “A 2GHz programmable counter with new re-loadable D flip-flop,” IEEE Conference on Electron Devices and Solid-State Circuits, pp.269-272, Dec 2003
[39]IEEE Working Group, “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5Ghz band.,”IEEE Standard 802.11a, 1999.
[40]O. Keese. William, “An analysis and performance evaluation of a passive filter design technique for charge pump PLL’s,” National Semiconductor application note 1001, May 1996
[41]高曜煌”射頻鎖相迴路IC設計,”滄海書局,pp.75,2005年10月。
[42]李孟蓉,建立精準的鎖相迴路行為模型來快速分析製程漂移之影響,中央大學電機工程研究所碩士論文,2007年7月。
[43]L. Sun and T. A. Kwansniewski, “A 1.25GHz 0.35-μm monolithic CMOS PLL based on multiphasering oscillator,” IEEE Journal of Solid-State Circuits, vol.36, no.6, pp.910-916, June 2001
[44]J. Lee, “A 3-to-8GHz fast hopping frequency synthesizer 0.18μm CMOS technology,” IEEE Journal of Solid-State Circuits, vol.36, no.6, pp.910- 916, June 2001
[45]W. Shen, K. Hu, X. Yi, Y. Zhou and Z. Hong, “A 5GHz CMOS monolithic fractional-N frequency synthesizer,” IEEE International Conference on ASIC, vol.2, pp.626-629, Oct 2005
[46]B. Razavi, Design of Analog CMOS Integrated Circuits, McGRAW-HILL, 2000
[47]J.Gibbs and R.Temple, “Frequency domain yield its data to phase locked synthesizer,” Electronics, pp.107-113, April 1978
[48]T. Ishioka, M. Ueno, T. Nakazawa, T. Watanabe, Y. Oida and Y. Tokumaru Toshiba corporation, Semiconductor Division, “An ultra low power 500MHz dual modulus prescale”, IEEE Consumer Electronics, vol.3, pp.568-575, Aug 1985
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊