跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/07 20:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林汶琪
研究生(外文):Wen-Chi Lin
論文名稱:多變量t分佈的平均數與尺度共變異結構對於長期資料之貝氏聯合建模方法
論文名稱(外文):Bayesian joint modeling of the mean and scale covariancestructures for longitudinal data using the multivariate tdistribution
指導教授:林宗儀林宗儀引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:應用數學系所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:36
中文關鍵詞:資料擴增偏離訊息準則遺失訊息最大概似估計量貝氏預測離群值
外文關鍵詞:Data augmentationDeviance information criterionMissing informationMaximum likelihood estimationBayesian predictorsOutliers
相關次數:
  • 被引用被引用:0
  • 點閱點閱:142
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文架構在聯合的平均向量與尺度共變異矩陣的多變量t迴歸模
型下, 提出一個完全的貝氏方法來分析不完整的長期資料。為了計算上的便利和簡化理論推導,我們介紹兩個二元的輔助矩陣來指示應變數中觀察到與遺失的成分。為了計算參數的驗後分配, 我們使用馬可夫鏈蒙地卡羅方法發展一個有效率的資料擴增演算法。此外, 我們也考慮遺失反應變數的貝氏預測推論。最後, 這些透過一個長期睡眠剝奪的研究的真實例子來闡述所提出的方法。
In this thesis, we provide a fully Bayesian approach to multivariate t regression models with its mean vector and scale covariance matrix modeled jointly for analyzing incomplete longitudinal data. To facilitate the computation and simplify theoretic derivations, we introduce two binary auxiliary matrices for indexing the observed and missing components of the dependent variables. A computationally
flexible Markov chain Monte Carlo (MCMC) algorithm utilizing the data augmentation (DA) technique is implemented for computing the entire posterior distributions
of parameters. Bayesian predictive inferences for the unobserved responses are also investigated. The proposed methodologies are illustrated through a real example from a sleep dose-response study.
Contents
1. Introduction 1
2. Model with missing information 5
3. An efficient ECME procedure for ML estimation 7
4. Bayesian methodology 11
4.1. Prior settings, full conditionals and the DA algorithm . . . . . . . . . 11
4.2. Convergence assessment using multiple chains . . . . . . . . . . . . . 15
4.3. Bayesian model comparison: Deviance Information Criterion . . . . . 15
5. A numerical illustration 17
6. Concluding remarks 27
Appendix 28
Appendix A: Proof of Proposition 1. . . . . . . . . . . . . . . . . . . . . . 28
Appendix B: Proof of the Eq. (3.4) . . . . . . . . . . . . . . . . . . . . . . 30
Appendix C: Proof of Proposition 2. . . . . . . . . . . . . . . . . . . . . . 31
References 32
References
Anderson, T.W. (2003). An Introduction to Multivariate Statistical Analysis. third
ed. John Wiley & Sons.
Azzalini, A. and Capitanio, A. (2003). Distributions generated by perturbation of
symmetry with emphasis on a multivariate skew t-distribution. Journal of the
Royal Statistical Society, Series B 65, 367-389.
Bates, D.M. (2007). lme4 R package. http://cran.r-project.org.
Belenky, G., Wesensten, N.J., Thorne, D.R., Thomas, M.L., Sing, H.C., Redmond,
D.P., Russo, M.B. and Balkin, T.J. (2003). Patterns of performance degrada-
tion and restoration during sleep restriction and subsequent recovery: A sleep
dose-response study. Journal of Sleep Research 12, 1-12.
Balkin, T.J., Thorne, D., Sing, H., Thomas, M., Redmond, D., Wesensten, N.,
Russo, M., Williams, J., Hall, S. and Belenky, G. (2000). E®ects of sleep
schedules on commercial motor vehicle driver performance. Report MC-00-
133, National Technical Information Service, U.S. Department of Transporta-
tion, Spring‾eld, VA.
Balkin, T.J., Bliese, P.D., Belenky, G., Sing, H., Thorne, D.R., Thomas, M., Red-
mond, D.P., Russo, M. and Wesensten, N.J. (2004). Comparative utility of
instruments for monitoring sleepiness-related performance decrements in the
operational environment. Journal of Sleep Research 13, 219-227.
Brooks, S.P. and Gelman, A. (1998). General methods for monitoring convergence
of iterative simulations. Journal of Computational and Graphical Statistics 7,
434-455.
Cepeda, E.C. and Gamerman, D. (2004). Bayesian modeling of joint regressions
for the mean and covariance matrix. Biometrical Journal 46, 430-440.
Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977). Maximum likelihood from
incomplete data via the EM algorithm (with discussion). Journal of the Royal
Statistical Society, Series B 39, 1-38.
Dinges, D. F. and Powell, J. W. (1985). Microcomputer analyses of performance
on a portable, simple, visual RT task during sustained operations. Behavior
Research Methods, Instruments, & Computers 17, 652-655.
Gelfand, A.E. and Smith, A.F.M. (1990). Sampling based approaches to calculate
marginal densities. Journal of the American Statistical Association 85, 398-
409.
Gelfand, A.E., Smith, A.F.M. and Lee, T.M. (1992). Bayesian analysis of con-
strained parameter and truncated data problems using Gibbs sampling. Jour-
nal of the American Statistical Association 85, 523-532.
Gelman, A., Robert, G. and Gilks, W. (1996). E±cient Metropolis jumping rules.
In Bayesian Statistics 5 (Edited by J. M. Bernardo, J. O. Berger, A. P. Dawid
and A. F. M. Smith). Oxford University Press, New York.
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov Chains and
their applications. Biometrika 57, 97-109.
Jennrich, R.I. and Sampson, P.F. (1976). Newton-Raphson and related algorithms
for maximum likelihood variance component estimation. Technometrics 18,
11-17.
Keramidas, E.M. and Lee, J.C. (1990). Forecasting technological substitution with
concurrent short time series. Journal of the American Statistical Association
85, 625-632.
Kotz, S. and Nadarajah, S. (2004). Multivariate t Distributions and Their Appli-
cations. third ed. Cambridge University Press, New York.
Lange, K.L., Little, R.J.A. and Taylor, J.M.G. (1989). Robust statistical modeling
using the t distribution. Journal of the American Statistical Association 84,
881-896.
Lange, K. (1995). A gradient algorithm locally equivalent to the EM algorithm.
Journal of the Royal Statistical Society, Series B 57, 425-437.
Laird, N.M. and Ware, J.H. (1982). Random e®ects models for longitudinal data.
Biometrics 38, 963-974.
Laird, N.M. (1988). Missing data in longitudinal studies. Statistics in Medicine 7,
305-315.
Lee, J.C. (1988). Prediction and estimation of growth curve with special covariance
structures. Journal of the American Statistical Association 83, 432-440.
Lin, T.I., Lee, J.C. and Ho, H.J. (2006). On fast supervised learning for normal
mixture models with missing information. Pattern Recognition 39, 1177-1187.
Lin, T.I. and Lee, J.C. (2007). Bayesian analysis of hierarchical linear mixed
modeling using the multivariate t distribution. Journal of Statistical Planning
and Inference 137, 484-495.
Liski, E.P. and Nummi, T. (1996). Prediction in repeated-measures models with
engineering applications. Technometrics 38, 25-36.
Little, R.J.A. and Rubin, D.B. (2002). Statistical Analysis with Missing Data.
second ed. Wiley, New York.
Liu, C. and Rubin, D.B. (1994). The ECME algorithm: A simple extension of EM
and ECM with faster monotone convergence. Biometrika 81, 633-648.
Liu, C. and Rubin, D.B. (1995). ML estimation of the t distribution using EM and
its extensions, ECM and ECME. Statistica Sinica 5, 19-39.
Liu, C.H. and Rubin, D.B. (1998). Ellipsoidally symmetric extensions of the general
location model for mixed categorical and continuous data. Biometrika 85, 673-
688.
Meng, X.L. and Rubin, D.B. (1993). Maximum likelihood estimation via the ECM
algorithm: A general framework. Biometrika 80, 267-278.
Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E.
(1953). Equation of state calculation by fast computing machines. Journal of
Chemical Physics 21, 1087-1092.
Pan, J. and Mackenzie, G. (2003). On modeling mean-covariance structures in
longitudinal studies. Biometrika 90, 239-244.
Pinheiro, J.C., Liu, C.H. and Wu, Y.N. (2001). E±cient algorithms for robust
estimation in linear mixed-e®ects models using the multivariate t distribution.
Journal of Computational and Graphical Statistics 10, 249-276.
Pourahmadi, M. (1999). Joint mean-covariance models with applications to longi-
tudinal data: Unconstrained parameterisation. Biometrika 86, 677-690.
Pourahmadi, M. (2000). Maximum likelihood estimation of generalised linear mod-
els for multivariate normal covariance matrix. Biometrika 87, 425-435.
Rao, C.R. (1987). Prediction of future observations in growth curve models. Sta-
tistical Science 2, 434-471.
Rubin, D.B. (1976). Inference and missing data. Biometrika 63, 581-592.
Schluchter, M. D. (1988). Analysis of incomplete multivariate data using linear
models with structured covariance matrices. Statistics in Medicine 7, 317-
324.
Spiegelhalter, D.J., Best N.G., Carlin, B.P. and Linde, A.V.D. (2002). Bayesian
measures of model complexity and ‾t. Journal of the Royal Statistical Society,
Series B 64, 583-639.
Tanner, M.A. and Wong, W.H. (1987). The calculation of posterior distributions
by data augmentation (with discussion). Journal of the American Statistical
Association 82, 528-550.
Tierney, L. (1994). Markov chains for exploring posterior distributions. Annals
Statistics 22, 1701-1728.
Wake‾eld, J.C., Smith, A.F.M., Racine-Pooh, A. and Gelfand, A.E. (1994). Bayesian
analysis of linear and non-linear model by using Gibbs sampler. Applied Sta-
tistics 43, 201-221.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top