|
References Anderson, T.W. (2003). An Introduction to Multivariate Statistical Analysis. third ed. John Wiley & Sons. Azzalini, A. and Capitanio, A. (2003). Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution. Journal of the Royal Statistical Society, Series B 65, 367-389. Bates, D.M. (2007). lme4 R package. http://cran.r-project.org. Belenky, G., Wesensten, N.J., Thorne, D.R., Thomas, M.L., Sing, H.C., Redmond, D.P., Russo, M.B. and Balkin, T.J. (2003). Patterns of performance degrada- tion and restoration during sleep restriction and subsequent recovery: A sleep dose-response study. Journal of Sleep Research 12, 1-12. Balkin, T.J., Thorne, D., Sing, H., Thomas, M., Redmond, D., Wesensten, N., Russo, M., Williams, J., Hall, S. and Belenky, G. (2000). E®ects of sleep schedules on commercial motor vehicle driver performance. Report MC-00- 133, National Technical Information Service, U.S. Department of Transporta- tion, Spring‾eld, VA. Balkin, T.J., Bliese, P.D., Belenky, G., Sing, H., Thorne, D.R., Thomas, M., Red- mond, D.P., Russo, M. and Wesensten, N.J. (2004). Comparative utility of instruments for monitoring sleepiness-related performance decrements in the operational environment. Journal of Sleep Research 13, 219-227. Brooks, S.P. and Gelman, A. (1998). General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics 7, 434-455. Cepeda, E.C. and Gamerman, D. (2004). Bayesian modeling of joint regressions for the mean and covariance matrix. Biometrical Journal 46, 430-440. Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society, Series B 39, 1-38. Dinges, D. F. and Powell, J. W. (1985). Microcomputer analyses of performance on a portable, simple, visual RT task during sustained operations. Behavior Research Methods, Instruments, & Computers 17, 652-655. Gelfand, A.E. and Smith, A.F.M. (1990). Sampling based approaches to calculate marginal densities. Journal of the American Statistical Association 85, 398- 409. Gelfand, A.E., Smith, A.F.M. and Lee, T.M. (1992). Bayesian analysis of con- strained parameter and truncated data problems using Gibbs sampling. Jour- nal of the American Statistical Association 85, 523-532. Gelman, A., Robert, G. and Gilks, W. (1996). E±cient Metropolis jumping rules. In Bayesian Statistics 5 (Edited by J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith). Oxford University Press, New York. Hastings, W. K. (1970). Monte Carlo sampling methods using Markov Chains and their applications. Biometrika 57, 97-109. Jennrich, R.I. and Sampson, P.F. (1976). Newton-Raphson and related algorithms for maximum likelihood variance component estimation. Technometrics 18, 11-17. Keramidas, E.M. and Lee, J.C. (1990). Forecasting technological substitution with concurrent short time series. Journal of the American Statistical Association 85, 625-632. Kotz, S. and Nadarajah, S. (2004). Multivariate t Distributions and Their Appli- cations. third ed. Cambridge University Press, New York. Lange, K.L., Little, R.J.A. and Taylor, J.M.G. (1989). Robust statistical modeling using the t distribution. Journal of the American Statistical Association 84, 881-896. Lange, K. (1995). A gradient algorithm locally equivalent to the EM algorithm. Journal of the Royal Statistical Society, Series B 57, 425-437. Laird, N.M. and Ware, J.H. (1982). Random e®ects models for longitudinal data. Biometrics 38, 963-974. Laird, N.M. (1988). Missing data in longitudinal studies. Statistics in Medicine 7, 305-315. Lee, J.C. (1988). Prediction and estimation of growth curve with special covariance structures. Journal of the American Statistical Association 83, 432-440. Lin, T.I., Lee, J.C. and Ho, H.J. (2006). On fast supervised learning for normal mixture models with missing information. Pattern Recognition 39, 1177-1187. Lin, T.I. and Lee, J.C. (2007). Bayesian analysis of hierarchical linear mixed modeling using the multivariate t distribution. Journal of Statistical Planning and Inference 137, 484-495. Liski, E.P. and Nummi, T. (1996). Prediction in repeated-measures models with engineering applications. Technometrics 38, 25-36. Little, R.J.A. and Rubin, D.B. (2002). Statistical Analysis with Missing Data. second ed. Wiley, New York. Liu, C. and Rubin, D.B. (1994). The ECME algorithm: A simple extension of EM and ECM with faster monotone convergence. Biometrika 81, 633-648. Liu, C. and Rubin, D.B. (1995). ML estimation of the t distribution using EM and its extensions, ECM and ECME. Statistica Sinica 5, 19-39. Liu, C.H. and Rubin, D.B. (1998). Ellipsoidally symmetric extensions of the general location model for mixed categorical and continuous data. Biometrika 85, 673- 688. Meng, X.L. and Rubin, D.B. (1993). Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika 80, 267-278. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E. (1953). Equation of state calculation by fast computing machines. Journal of Chemical Physics 21, 1087-1092. Pan, J. and Mackenzie, G. (2003). On modeling mean-covariance structures in longitudinal studies. Biometrika 90, 239-244. Pinheiro, J.C., Liu, C.H. and Wu, Y.N. (2001). E±cient algorithms for robust estimation in linear mixed-e®ects models using the multivariate t distribution. Journal of Computational and Graphical Statistics 10, 249-276. Pourahmadi, M. (1999). Joint mean-covariance models with applications to longi- tudinal data: Unconstrained parameterisation. Biometrika 86, 677-690. Pourahmadi, M. (2000). Maximum likelihood estimation of generalised linear mod- els for multivariate normal covariance matrix. Biometrika 87, 425-435. Rao, C.R. (1987). Prediction of future observations in growth curve models. Sta- tistical Science 2, 434-471. Rubin, D.B. (1976). Inference and missing data. Biometrika 63, 581-592. Schluchter, M. D. (1988). Analysis of incomplete multivariate data using linear models with structured covariance matrices. Statistics in Medicine 7, 317- 324. Spiegelhalter, D.J., Best N.G., Carlin, B.P. and Linde, A.V.D. (2002). Bayesian measures of model complexity and ‾t. Journal of the Royal Statistical Society, Series B 64, 583-639. Tanner, M.A. and Wong, W.H. (1987). The calculation of posterior distributions by data augmentation (with discussion). Journal of the American Statistical Association 82, 528-550. Tierney, L. (1994). Markov chains for exploring posterior distributions. Annals Statistics 22, 1701-1728. Wake‾eld, J.C., Smith, A.F.M., Racine-Pooh, A. and Gelfand, A.E. (1994). Bayesian analysis of linear and non-linear model by using Gibbs sampler. Applied Sta- tistics 43, 201-221.
|