|
1. Bansal, M., G.D. Gatta, and D. di Bernardo, Inference of gene regulatory networks and compound mode of action from time course gene exxpression profiles. Bioinformatics, 2006. 22(7): p. 815-22. 2. Mendes, P., W. Sha, and K. Ye, Artifical gene networks for objective comparison of analysis algorithms. Bioinformaatics, 2003. 19 Suppl 2: p. ii122-9. 3. Nam, D., S.H. Yoon, and J.F. Kim, Ensemble learning of genetic networks from time-series expression data. Bioinformatics, 2007. 23(23): p. 3225-31. 4. Vohradsky, J., Neural model of the genetic network. J Biol Chem, 2001. 276(39): p. 36168-73. 5. Zou, M. and S.D. Conzen, A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics, 2005. 21(1): p. 71-9. 6. de Jong, H., Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol, 2002. 9(1): p. 67-103. 7. Hopfield, J.J., Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA, 1982. 79(8): p. 2554-8. 8. Bose, N.K. and P. Liang, Neural network fundamentals with graphs, algorithms, and applications. Series In Electrical And Computer Engineering 1996, Hightstown, NJ: Mcgraw-Hill. 9. Vu, T.T. and J. Vohradsky, Nonlinear differential equation model for quantification of transcriptional regulation applied to microarray data of Saccharomyces cerevisiae. Nucleic Acids Res, 2007. 35(1): p. 279-87. 10. Vohradsky, J., Neural network model of gene expression. Faseb J, 2001. 15(3): p. 846-54. 11. Vohradsky, J. and C.J. Thompson, Systems level analysis of protein synthesis patterns associated with bacterial growth and metabolic transitions. Proteomics, 2006. 6(3): p. 785-93. 12. Hornik, K., M. Stinchcombe, and H. White, Multilayer feedforward networks are universal approximators. Neural Networks, 1989. 2(5): p. 359-366. 13. Kohavi, R. and G.H. John, Wrappers for feature subset selection Artificial Intelligence 1997. 97(1-2): p. 273-324.
|