跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/12 09:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊美芳
研究生(外文):Mei-Fan Yang
論文名稱:在小型基因調控網路使用時間序列基因表現資料辨識目標基因調控子:數學模型和電腦模擬
論文名稱(外文):The identification of regulators of a target gene in small scale genetic regulatory network using time series gene expression data:Mathematical modeling and computer simultaneous
指導教授:陳齊康陳齊康引用關係
指導教授(外文):Chi-Kan Chen
學位類別:碩士
校院名稱:國立中興大學
系所名稱:應用數學系所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:26
中文關鍵詞:基因調控網路同時回歸類神經網路目標基因調控子時間序列基因表現資料
外文關鍵詞:genetic regulatory networksimultaneous recurrent neural networktarget gene regulatortime series gene expression data
相關次數:
  • 被引用被引用:0
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
基因表現將DNA序列中的資訊轉換成RNA或蛋白質。在細胞中基因經由其表現的產物交互作用形成了基因調控網路(GRN)。我們提出一個具有一隱藏層之同時回歸類神經網路(SRNN)模型類似於基因調控網路原理。經由使用時間序列基因表現資料,我們提出模型且以模型選擇演算法去推論目標基因的調控基因。為了比較,我們也以線性和Hopfield神經網路模型為基礎預測目標基因的調控子。為能客觀地評估調控子辨識程序,時間序列基因表現資料將由已知調控性質的人造基因調控網路和動力特性所生成。
Gene expression translates information encoded in DNA sequences to produce RNA or proteins. Genes in a living cell interacting with each other through expression products gives rise to the genetic regulatory network (GRN). We present a one hidden layer simultaneous recurrent neural network (SRNN) model formally resembling the principals of GRN. Using time series gene expression data, we apply the model and model selection algorithms to infer regulators of target genes. To make comparisons, we also predict regulators of target genes based on linear and Hopfield neural network models. To objectively evaluate the regulator identification procedure, the time series gene expression data are generated by an independent artificial GRN with well-defined regulatory and kinetic properties.
1. Introduction ………………………………………………………1
2. Method ………………………………………………………………3
2.1. Background …………………………………………3
2.2. SRNN model of GRN …………………………………3
2.3. The regulators of a target gene ………………4
2.4. Selection algorithms………………………………5
3. Results ………………………………………………………………8
4. Discussion …………………………………………………………11
Reference ………………………………………………………………20
Appendix ………………………………………………………………22
1. Bansal, M., G.D. Gatta, and D. di Bernardo, Inference of gene regulatory networks and compound mode of action from time course gene exxpression profiles. Bioinformatics, 2006. 22(7): p. 815-22.
2. Mendes, P., W. Sha, and K. Ye, Artifical gene networks for objective comparison of analysis algorithms. Bioinformaatics, 2003. 19 Suppl 2: p. ii122-9.
3. Nam, D., S.H. Yoon, and J.F. Kim, Ensemble learning of genetic networks from time-series expression data. Bioinformatics, 2007. 23(23): p. 3225-31.
4. Vohradsky, J., Neural model of the genetic network. J Biol Chem, 2001. 276(39): p. 36168-73.
5. Zou, M. and S.D. Conzen, A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics, 2005. 21(1): p. 71-9.
6. de Jong, H., Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol, 2002. 9(1): p. 67-103.
7. Hopfield, J.J., Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA, 1982. 79(8): p. 2554-8.
8. Bose, N.K. and P. Liang, Neural network fundamentals with graphs, algorithms, and applications. Series In Electrical And Computer Engineering 1996, Hightstown, NJ: Mcgraw-Hill.
9. Vu, T.T. and J. Vohradsky, Nonlinear differential equation model for quantification of transcriptional regulation applied to microarray data of Saccharomyces cerevisiae. Nucleic Acids Res, 2007. 35(1): p. 279-87.
10. Vohradsky, J., Neural network model of gene expression. Faseb J, 2001. 15(3): p. 846-54.
11. Vohradsky, J. and C.J. Thompson, Systems level analysis of protein synthesis patterns associated with bacterial growth and metabolic transitions. Proteomics, 2006. 6(3): p. 785-93.
12. Hornik, K., M. Stinchcombe, and H. White, Multilayer feedforward networks are universal approximators. Neural Networks, 1989. 2(5): p. 359-366.
13. Kohavi, R. and G.H. John, Wrappers for feature subset selection Artificial Intelligence 1997. 97(1-2): p. 273-324.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top