跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/10 03:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蓋維揚
研究生(外文):Wei-Yang Ge
論文名稱:比較兩種會產生偵測錯誤之系統效應
論文名稱(外文):Comparing the  availability  between two systems with fault detection delay
指導教授:王國雄王國雄引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:應用數學系所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:28
中文關鍵詞:效益度偵測延遲遞迴方法輔助變數
外文關鍵詞:Availabilitydetection delayrecursive methodsupplementary variable
相關次數:
  • 被引用被引用:0
  • 點閱點閱:117
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
此論文研究分析兩種具有偵測延遲的系統,而每台機器故障時間和修復時間分別服從指數分配和一般分配,偵測延遲的時間服從指數分配。利用遞迴方法與輔助變數技巧,針對兩種不同的系統,推導出穩態模式下的效益性( ),對於每個系統,我們分別導出三種不同的修理時間分配(如:指數分配,k-stage Erlang分配,deterministic分配),最後,我們用電腦軟體來比較不同修理分配下的效益,並比較其效益之大小。
   We study two availability models with fault detection delay. The time-to-failure and time-to-repair of the active units are assumed to be exponentially and generally distributed, respectively. The detection delay are assumed to be exponentially distributed. We present a recursive method, using the supplementary variable technique and treating the supplementary variable as the remaining repair time, to develop the steady-state availability, (or ), for two availability models. For each availability model, the explicit expressions for the for three various repair time distributions, such as exponential, k-stage Erlang, and deterministic are provided. Finally, the computer software is utilized to calculate the availability of two models. Comparisons are performed for three different repair time distributions.
Contents1. Introduction ………………………………………………………1  1.1 Literature Review ……………………………………………1  1.2 The Scope of the Study………………………………………22. Problem Statement…………………………………………………4  2.1 Notation and Probabilities…………………………………43. Availability Analysis of Two Models…………………………6  3.1 Availability Model 1…………………………………………6    3.1.1 Special cases ……………………………………………9  3.2 Availability Model 2 ………………………………………11    3.2.1 Special cases……………………………………………154. Comparison of Two Availability Models ……………………17  4.1 Comparison of the downtime between two models………17  4.2 Comparison of the improved downtime rate for two      models …………………………………………………………245. Conclusions and Future Research ……………………………26  5.1 Conclusions……………………………………………………26  5.2 Future Research………………………………………………26Reference………………………………………………………………27
[1] T.F. Arnold, The concept of coverage and its effect on the reliability model of a repairable system. IEEE Trans. Comput. C-22 (1973) 251-254.[2] D.R. Cox, The analysis of non-Markovian stochastic processes by the inclusion of supplementary variables, Proc. Cambridge Philos. Soc. 51 (1955) 433-441.[3] J.B. Dugan, K.S. Trivedi, Coverage modeling for dependability analysis of fault-tolerant systems. IEEE Trans. Comput. 38 (1989) 775-787.[4] U.C. Gupta, T.S.S.S. Rao, A recursive method compute the steady state probabilities of the machine interference model: (M/G/1)/K, Comput. Oper. Res. 21 (1994) 597–605.[5] U.C. Gupta, T.S.S.S. Rao, On the M/G/1 machine interference model with spares, Eur. J. Oper. Res. 89 (1996) 164–171.[6] P. Hokstad, A supplementary variable technique applied to the M/G/1 queue, Scand. J. Statist. 2 (1975) 95–98.[7] L. Takacs, Delay distributions for one line with Poisson input, general holding times and various orders of service, Bell Syst. Tech. J. 42 (1963) 487–504.[8] K.S. Trivedi, Probability and Statistics with Reliability, Queueing and Computer Science Applications. 2nd Edition. John Wiley & Sons, New York, 2002. [9] K.-H. Wang, L.-W. Chiu, Cost benefit analysis of availability systems with warm standby units and imperfect coverage. Appl. Math. Comput. 172 (2006) 1239-1256.[10] K.-H. Wang, W.L. Pearn, Cost benefit analysis of series systems with warm standby components. Math. Meth. Oper. Res. 58 (2003) 247-258.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊