跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.88) 您好!臺灣時間:2024/12/04 15:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳永富
研究生(外文):Yung-Fu Wu
論文名稱:禽鳥類介白素-1β與介白素-8基因序列與重組蛋白結構及功能分析
論文名稱(外文):Analysis of IL-1β- and IL-8-encoding gene sequences and their recombinant protein structure and function of avian species
指導教授:李龍湖
指導教授(外文):Long-Huw Lee
學位類別:博士
校院名稱:國立中興大學
系所名稱:獸醫微生物學研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:108
中文關鍵詞:介白素-1β介白素-8家禽里奧病毒巨噬細胞
外文關鍵詞:IL-1βIL-8avian reovirusmacrophages
相關次數:
  • 被引用被引用:0
  • 點閱點閱:250
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
將雞、鴨、鵝、火雞和鴿子的介白素-1β (interleukin-1β, IL-1β) 轉譯區選殖且加以定序。雞、鴨、鵝和火雞的IL-1β轉譯區皆為804個核苷酸,且皆轉譯出268個胺基酸。鴿子的IL-1β轉譯區為810個核苷酸,轉譯出270個胺基酸。在鴿子的IL-1β轉譯區內可發現兩個單一核苷酸及一個連續四個核苷酸的插入,導致鴿子IL-1β蛋白質多出兩個胺基酸。五種禽源IL-1β轉譯區彼此的基因相同程度及胺基酸的相同程度均在77到99%之間,平均值為89%。在IL-1β基因及胺基酸樹狀圖的分析比較中,雞、鴨、鵝和火雞屬於同一個族群,而鴿子則屬於另一個族群。以五種禽源IL-1β成熟型蛋白免疫小鼠得來的抗血清,皆能與自體及異源IL-1β成熟型蛋白結合。五種禽源IL-1β成熟型蛋白皆能有效地誘發DF-1細胞株產生K60 mRNA。若預先與個別抗血清感作,在高濃度抗體稀釋倍數時,能明顯地被血清阻斷而抑制IL-1β之生物活性。綜合上述結果顯示,此五種禽源之重組IL-1β成熟型蛋白皆具有生物活性,並且在結構及功能上彼此間具有交叉反應。
在家禽里奧病毒複製過程中,使用去蛋白衣、RNA和蛋白質抑制劑,病毒去蛋白衣之中間產物 (infectious subviral particles, ISVP),經binary ethylenimine (BEI) 處理之不活化病毒,及缺少雙股RNA基因體的病毒顆粒 (empty particles),刺激雞巨噬細胞,分析IL-1β mRNA之表現特性。結果顯示,在病毒複製過程中,會誘發雞巨噬細胞分泌IL-1β mRNA,並有兩種不同的表現模式。病毒去蛋白衣時,會誘發IL-1β mRNA快速且短暫的表現,在感染雞巨噬細胞後30分鐘即可發現,並在2小時達到高峰,隨即減弱直到6小時內。而在感染6小時後,病毒RNA合成比蛋白質合成更能誘發IL-1β mRNA,且為穩定而持續地分泌。另外,空的病毒顆粒及其經chymotrypsin處理過的ISVP,比具感染力的病毒顆粒或經BEI處理過的不活化病毒,較無法誘發雞巨噬細胞分泌IL-1β mRNA。綜合上述結果推測,dsRNA或不活化的RNA,在ARV感染雞巨噬細胞時,為誘發IL-1β mRNA中扮演重要的角色。
雞、鴨、鵝、火雞和鴿子的介白素-8 (interleukin-8, IL-8) 已成功地選殖、定序並且分析特性。每一個IL-8的開放讀碼框皆為312個核苷酸,且轉譯出103個胺基酸。基因序列比對分析出彼此間的相同度介於87% 到100%,而胺基酸比對出彼此間的相同度介於84% 到100%。在親源樹狀圖分析中,雞、鴨、鵝和火雞的IL-8開放讀碼框屬於一個族群,而鴿子的IL-8開放讀碼框屬於另一個族群。這些結果從五種禽源重組IL-8蛋白抗血清彼此間的結合試驗,重組IL-8蛋白的趨化活性試驗與抗血清的阻斷活性試驗中,可推測五種禽源重組IL-8蛋白皆具有功能活性,且彼此間在結構及功能上亦有相似之處。
Interleukin (IL)-1β-encoding regions of chicken, duck, goose, turkey, and pigeon were cloned and sequenced. Each IL-1β-encoding region of chicken, duck, goose, and turkey is 804 nucleotides long and encodes IL-1β protein that is 268 amino acids. Pigeon IL-1β-encoding region is 810 nucleotides long and encodes IL-1β protein that is 270 amino acids. Two one-nucleotide and one four-nucleotide insertions of pigeon IL-1β-encoding region sequence were found, resulting in two amino acid insertions in pigeon IL-1β. Pairwise sequence analysis showed that the sequence identities of IL-1β-encoding genes ranged from 77 to 99% which were also found for IL-1β protein sequence identities, with an average level of both sequence identities of 89%. Phylogenetic analysis indicated that IL-1β-encoding regions and the encoded proteins of chicken, duck, goose, and turkey clustered together and evolved into a distinct phylogenetic lineage from that of pigeon which evolved into a second lineage. The results from the binding reaction of antiserum against each recombinant IL-1β (rIL-1β) protein to homologous or heterologous rIL-1β, the enhancement levels of K60 mRNA expression in rIL-1β-treated DF-1 cells, or the reduction levels of K60 mRNA expression in DF-1 cells treated with rIL-1β that was preincubated with homologous or heterologous antiserum showed that all five rIL-1β were functional active and shared significantly structural and functional homology.
Inhibitors of viral disassembly or RNA and protein synthesis, viral disassembly intermediates (infectious subviral particles, ISVP), binary ethylenimine-inactivated virions, and viral particles lacking genomic double-stranded RNA (empty particles) used to assess the expression of interleuin-1β (IL-1β) mRNA in chicken macrophages in response to avian reovirus. The results demonstrated that two distinct expression patterns of chIL-1β mRNA mediated by different steps in viral replication were found. Viral disassembly was required for induction of a rapid, transient expression of chIL-1β mRNA that was rapidly induced at 30 min, with maximal levels reached at 2 h, and fell to a low level within 6 h post-inoculation; while viral RNA synthesis rather than protein translation, which were subsequent to membrane penetration, was required to induce a stable, sustained expression of chIL-1β mRNA that occurred at and after 6 h post-inoculation. In addition, the induction of chIL-1β mRNA expression by the empty particles and ISVP was exceedingly weak, compared to the active double-stranded (ds) RNA+ virions or binary ethylenimine-inactivated virions, suggesting that the presence of dsRNA, even if transcriptionally inactive, may be an important factor in this response.
Interleukin (IL)-8-encoding regions of five avian species were cloned, sequenced and characterized. Each IL-8-encoding region is 312 nucleotides long and encodes IL-8 which is 103 amino acids. Pairwise sequence analysis showed that sequence identities of IL-8-encoding regions ranged from 87% to 100%. The IL-8 protein identities varied from 84% to 100%. Phylogenetic analysis indicated that IL-8-encoding regions and encoded proteins of chicken, duck, goose and turkey clustered together and evolved into a distinct phylogenetic lineage from that of pigeon which evolved into a second lineage. The results from binding reactivities of antiserum against each recombinant IL-8 (rIL-8) protein to homologous or heterologous rIL-8 proteins, chemotactic activities of each rIL-8 protein or reduction levels of the chemotactic activity of rIL-8 protein which was pretreated with homologous or heterlogous antiserum have suggested that all five IL-8 proteins were functionally active, and shared structural and functional identity with each other.
目次
中文摘要 ------------------------------------------------------------------------------- I
英文摘要 ------------------------------------------------------------------------------- III
目 次 ------------------------------------------------------------------------------- V
表 次 ------------------------------------------------------------------------------- X
圖 次 ------------------------------------------------------------------------------- XI
第一章 文獻探討 ----------------------------------------------------------------- 1
第一節 介白素-1的種類與性質 ---------------------------------------------- 1
第二節 IL-1的生物功能活性 -------------------------------------------------- 3
第三節 IL-1的訊息傳遞路徑 -------------------------------------------------- 4
第四節 IL-1接受體 (IL-1 Receptor, IL-1R) --------------------------------- 5
第五節 家禽里奧病毒的歷史與臨床背景 ---------------------------------- 7
5-1 家禽里奧病毒之臨床症狀及病理學變化 ------------------------- 8
5-2 家禽里奧病毒之感染途徑及複製 ---------------------------------- 8
第六節 家禽里奧病毒的一般特性 ------------------------------------------- 8
6-1 病毒結構 ---------------------------------------------------------------- 8
6-2 病毒的物理化學特性 ------------------------------------------------- 9
6-3 病毒的增殖及純化 ---------------------------------------------------- 10
第七節 家禽里奧病毒之基因體 ---------------------------------------------- 11
7-1 病毒基因體 ------------------------------------------------------------- 11
7-2 家禽里奧病毒基因與相對應之蛋白質 ---------------------------- 12
7-2-1 λA蛋白 ------------------------------------------------------------------ 12
7-2-2 λB蛋白 ------------------------------------------------------------------ 12
7-2-3 λC蛋白 ------------------------------------------------------------------ 13
7-2-4 μA蛋白 ------------------------------------------------------------------ 13
7-2-5 μB蛋白 ------------------------------------------------------------------ 13
7-2-6 μNS蛋白 ---------------------------------------------------------------- 14
7-2-7 σA蛋白 ------------------------------------------------------------------ 14
7-2-8 σB蛋白 ------------------------------------------------------------------ 14
7-2-9 σC蛋白 ------------------------------------------------------------------ 14
7-2-10 p10蛋白 ----------------------------------------------------------------- 15
7-2-11 p17蛋白 ----------------------------------------------------------------- 15
7-2-12 σNS蛋白 ---------------------------------------------------------------- 15
第八節 家禽里奧病毒之複製 ------------------------------------------------- 15
第九節 趨化素與介白素-8 ----------------------------------------------------- 16
9-1 趨化素的簡介 ---------------------------------------------------------- 16
9-2 IL-8的發現 ------------------------------------------------------------- 17
9-3 IL-8的分子結構 ------------------------------------------------------- 17
第十節 雞IL-8 -------------------------------------------------------------------- 18
10-1 雞IL-8的發現 ---------------------------------------------------------- 18
10-2 雞IL-8之生物來源及蛋白質合成 ---------------------------------- 19
10-3 雞IL-8在組織分佈情形 ---------------------------------------------- 19
10-4 雞IL-8基因的表現 ---------------------------------------------------- 20
10-5 目前雞IL-8的應用 ---------------------------------------------------- 20
第二章 雞、鴨、鵝、火雞和鴿子五種禽鳥類介白素-1β基因序列與蛋白質結構及功能分析 --------------------------------------------------
22
第一節 序言 ---------------------------------------------------------------------- 22
第二節 材料與方法 ------------------------------------------------------------- 22
2-1 細胞培養 ---------------------------------------------------------------- 22
2-2 萃取細胞之總RNA ---------------------------------------------------- 23
2-3 IL-1β基因選殖 --------------------------------------------------------- 24
2-4 IL-1β基因TOPO TA Cloning ----------------------------------------- 25
2-5 IL-1β基因定序 ---------------------------------------------------------- 25
2-6 定序結果之序列分析 -------------------------------------------- 26
2-7 rIL-1β蛋白之表現與純化 --------------------------------------- 26
2-8 表現蛋白之純化 -------------------------------------------------------- 27
2-9 重組蛋白之電泳分析與確認 ----------------------------------------- 28
2-10 rIL-1β蛋白之抗體製備 ------------------------------------------------ 29
2-11 抗體結合試驗 ----------------------------------------------------------- 29
2-12 rIL-1β活性分析試驗 ------------------------------------------------- 30
第三節 結果 ----------------------------------------------------------------------- 30
3-1 五種禽類IL-1β基因序列之分析比較 ------------------------------ 30
3-2 IL-1β基因讀碼框與蛋白質之比較分析 --------------------------- 31
3-3 五種禽類IL-1β讀碼框基因序列演化樹分析 -------------------- 31
3-4 五種禽類IL-1β重組蛋白質之表現、鑑定與純化 -------------- 32
3-5 小鼠抗重組IL-1β蛋白血清力價測定與其他禽源重組IL-1β蛋白相互結合能力測定 -----------------------------------------------
32
3-6 重組IL-1β蛋白質之生物活性分析 --------------------------------- 33
第四節 討論 ----------------------------------------------------------------------- 43
第三章 IL-1β mRNA於雞源巨噬細胞對家禽里奧病毒反應之表現特性 --------------------------------------------------------------------------
46
第一節 序言 ----------------------------------------------------------------------- 46
第二節 材料與方法 -------------------------------------------------------------- 47
2-1 病毒和細胞的培養 ----------------------------------------------------- 47
2-2 實驗動物 ----------------------------------------------------------------- 48
2-3 病毒純化與ISVP製備 ------------------------------------------------ 48
2-4 病毒不活化 -------------------------------------------------------------- 49
2-5 巨噬細胞的病毒感染 -------------------------------------------------- 49
2-6 總RNA的製備與RT-PCR -------------------------------------------- 49
2-7 病毒定量 ----------------------------------------------------------------- 50
2-8 統計分析 ----------------------------------------------------------------- 50
第三節 結果 ----------------------------------------------------------------------- 51
3-1 家禽里奧病毒顆粒的分析 -------------------------------------------- 51
3-2 里奧病毒去蛋白衣的抑制劑處理巨噬細胞並無法完全阻斷dsRNA+病毒顆粒所誘發的chIL-1β mRNA表現 -----------------
51
3-3 家禽里奧病毒經chymotrypsin消化製備的ISVPs能夠誘發chIL-1β mRNA的表現 ------------------------------------------------
52
3-4 家禽里奧病毒經由兩種不同的模式誘發chIL-1β mRNA的表現 --------------------------------------------------------------------------
52
3-5 Cycloheximide於家禽里奧病毒誘發chIL-1β mRNA表現時的影響 -----------------------------------------------------------------------
54
3-6 缺損基因體dsRNA的里奧病毒顆粒會誘發chIL-1β mRNA快速且短暫而非穩定而持續的表現 -----------------------------------
54
第四節 討論 ----------------------------------------------------------------------- 63
第四章 雞、鴨、鵝、火雞和鴿子五種禽鳥類介白素-8基因序列與蛋白質結構及功能分析 --------------------------------------------------
66
第一節 序言 ----------------------------------------------------------------------- 66
第二節 材料與方法 -------------------------------------------------------------- 67
2-1 實驗動物 ----------------------------------------------------------------- 67
2-2 細胞培養 ----------------------------------------------------------------- 67
2-3 IL-8開放讀碼框基因的選殖與定序 -------------------------------- 67
2-4 樹狀圖分析 -------------------------------------------------------------- 68
2-5 rIL-8蛋白質的製備 ---------------------------------------------------- 68
2-6 抗體製備 ----------------------------------------------------------------- 69
2-7 抗體結合試驗 ----------------------------------------------------------- 69
2-8 趨化反應實驗 ----------------------------------------------------------- 70
2-9 統計分析 ----------------------------------------------------------------- 70
第三節 結果 ----------------------------------------------------------------------- 70
3-1 五種禽源IL-8開放讀碼框的序列分析 ---------------------------- 70
3-2 IL-8開放讀碼框和蛋白質序列比較 -------------------------------- 71
3-3 五種禽源IL-8開放讀碼框的樹狀圖分析 ------------------------- 71
3-4 五種禽源rIL-8 蛋白的表現、鑑定與純化 ----------------------- 71
3-5 抗體的力價測定與和異源蛋白的交叉結合反應 ----------------- 72
3-6 rIL-8蛋白的趨化試驗 ------------------------------------------------- 72
第四節 討論 ----------------------------------------------------------------------- 84
第五節 總結與展望 -------------------------------------------------------------- 87
參考文獻 ------------------------------------------------------------------------------- 90
附 錄 修業期間發表論文 ----------------------------------------------------- 108
Akira, S. and Takeda, K. (2004). Toll-like receptor signalling. Nat Rev Immunol 4, 499-511.
Alexopoulou, L., Holt, A. C., Medzhitov, R. and Flavell, R. A. (2001). Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732-738.
Andrejeva, J., Childs, K. S., Young, D. F. Carlos, T. S., Stock, N., Goodbourn, S. and Randall, R. E. (2004). The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-βpromoter. Proc Natl Acad Sci USA 101, 17264-17269.
Antoni, G., Presentini, R., Perin, F., Tagliabue, A., Ghiara, P., Censini, S., Volpini, G., Villa, L. and Borashi, D. (1986). A short synthetic peptide fragment of human interleukin-1 with immunostimulatory but not inflammatory activity. J Immunol 137, 3201-3204.
Baggiolini, M. (1998). Chemokines and leukocyte traffic. Nature 392, 565-568.
Baggiolini, M., Dewald, B. and Moser, B. (1997). Human chemokines: an update. Annu. Rev. Immunol. 15, 675-705.
Baggiolini, M., Dewald, B. and Moser, B. (1994). Interleukin-8 and related chemotactic cytokines- CXC and CC chemokines. Adv Immunol 55, 97-179.
Baggiolini, M. and Loetscher, P. (2000). Chemokines in inflammation and immunity. Immunol Today 21, 418-420
Bains, B. S., MacKenzie, M. and Spradbrow, P. B. (1974). Reovirus-associated mortality in broiler chickens. Avian Dis 18, 472-476.
Baldwin, E. T., Weber, I. T., St. Charles, R., Xuan, J. C., Appella, E., Yamada, M., Matsushima, K., Edwards, B. F., Clore, G. M. and Gronenborn, A. M. (1991). Crystal structure of interleukin 8: symbiosis of NMR and crystallography. Proc Natl Acad Sci USA 88, 502-506.
Barker, K. A., Hampe, A., Stoeckle, M. Y. and Hanafusa, H. (1993). Transformation associated cytokine 9E3/CEF4 is chemotactic for chicken peripheral blood mononuclear cells. J Virol 67, 3528-3533.
Barker, K. and Hanafusa, H. (1990). Expression of 9E3 mRNA is associated with mitogenicity, phosphorylation, and morphological alteration in chicken embryo fibroblasts. Mol Cell Biol 10, 3813-3817.
Barrett, A. J., Kambhavi, A. A., Brown, M. A., Kirschke, H., Knight, C. G., Tamai, M. and Hanada, K. (1982). L-trans-epoxysuccinyl-leucylamido (4-guanidino) butan (E64) and its analoguls as inhibitors of cysteine proteinases including cathepsin B, H and L. Biochem J 201, 189-198.
Basak, S. and Turner, H. (1992). Infectious entry pathway for canine parvovirus. Virology 186, 368-376.
Beck, G. and Habicht, G. S. (1996). Immunity and the invertebrates. Scientific American 275, 42-46.
Bedard, P. A., Alcorta, D., Simmons, D. L., Luk, K. C. and Erikson, R. L. (1987). Constitutive expression of a gene encoding a polypeptide homologous to biologically active human platelet protein in Rous sarcoma virus-transformed fibroblast. Pro Natl Acad Sci USA 84, 6715-6719.
Benavente, J. and Martínez-Costas, J. (2007). Avian reovirus: structure and biology. Virus Res 123, 105-119.
Benavente, J. and Shatkin, A. J. (1988). Avian reovirus mRNAs are nonfunctional in infected mouse cells: translational basis for virus host-range restriction. Proc Natl Acad Sci 85, 4257-4261.
Bensi, G., Raugei, R., Palla, E., Carinci, V. and Buonamassa, D. T. (1987). Human interleukin-1 beta gene. Gene 52, 95-101.
Bodelon, G., Labrada, L., Martinez-Costas, J. and Benavente, J. (2001). The avian reovirus genome segment S1 is a functionally tricistronic gene that expresses one structural and two nonstructural proteins in infected cells. Virology 290, 181-191.
Bulow, V. V. and Klasen, A. (1983). Effect of avian reovirus on cultured chicken bone-marrow-derived macrophages. Avian Dis 12, 179-198.
Burger, D., Dayer, J. M., Palmer, G. and Gabay, C. (2006). Is IL-1 a good therapeutic target in the treatment of arthritis. Best pract Res Clin Rheumatol 20, 879-896.
Burns, K., Clatworthy, J., Martin, L., Martinon, F., Plumpton, C., Maschera, B., Lewis, A., Ray, K., Tschopp, J. and F. Volpe. (2000). Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor. Nat Cell Biol 2, 346-351.
Burns, K., Martinon, F., Esslinger, C., Pahl, H., Schneider, P., Bodmer, J. L., Marco, F. D., French, L. and Tschopp, J. (1998). MyD88, an adapter protein involved in interleukin-1 signaling. J Biol Chem 273, 12203-12209.
Busfield, S. J., Comrack, C. A., Yu, G., Chickering, T. W., Smutko, J. S., Zhou, H., Leiby, K. R., Holmgren, L. M., Gearing, D. P. and Pan, Y. (2000). Identification and gene organization of three novel members of the IL-1 family on human chromosome 2. Genomics 66, 213-216.
Casadio, R., Frigimelica, E., Bossu, P., Neumann, D., Martin, M. U., Tagliabue, A. and Boraschi, D. (2001). Model of interaction of the IL-1 receptor accessory protein IL-1RAcP with the IL-1beta/IL-1R(I) complex. FEBS Lett 499, 65-68.
Castor, C. W., Miller, J. W. and Walz, D. A. (1983). Structural and biological characteristics of connective tissue activating peptide (CTAP-III), a major human platelet-derived growth factor. Proc Natl Acad Sci USA 80, 765-769.
Cerretti, D. P., Kozloky, C. J., Mosley, B., Nelson, N., Van Ness, K., Greenstreet, T. A., March, E. J., Kronheim, S. R., Druck, T., Cannizzaro, L. A., Huebner, K., and Black, R. A. (1992). Molecular cloning of the interleukin-1β converting enzyme. Science 256, 97-100.
Chiu, C. J. and Lee, L. H. (1997). Cloning and nucleotide sequencing of the S4 genome segment of avian reovirus S1133. Arch Virol 142, 2515-2120.
Clore, G. M., Appella, E., Yamada, M., Matsushima, K. and Gronenborn, A. M. (1990). Three-dimensional structure of interleukin 8 in solution. Biochemistry 29, 1689-1696.
Colotta, F., Re, F., Muzio, M., Bertini, R., Polentarutti, N., Sironi, M., Giri, J. G., Dower, S. K., Sims, J. E. and Mantovani, A. (1993). Interleukin-1 type II receptor: a decoy target for IL-1 that is regulated by IL-4. Science 261, 472-475.
Connolly, J. L. and Dermody, T. S. (2002). Virion disassembly is required for apoptosis induced by reovirus. J Virol 76, 1632-1641.
Cullinan, E. B., Kwee, L., Nunes, P., Shuster, D. J., Ju, G., McIntyre, K. W., Chizzonite, R. A. and Labow, M. A. (1998). IL-1 receptor accessory protein is an essential component of the IL-1 receptor. J Immunol 161:5614-20.
Dermody, T. S., Schiff, L. A., Nibert, M. L., Coombs, K. M. and Fields, B. N. (1991). The S2 gene nucleotide sequences of prototype strains of the three reovirus serotypes: characterization of reovirus core protein sigma 2. J Virol 65, 5721-5731.
Deshmukh, D. R., Dutta, S. K. and Pomeroy, B. S.: Avian reoviruses. V. (1971). Studies of ultrastructural morphology by electron microscopy. Avian Dis 15, 588-595.
Deshmukh, D. R. and Pomeroy, B. S. (1969). Avian reoviruses. Ⅲ Infectivity and egg transmission. Avian Dis 13, 427-439.
Deuel, T. F., Keim, P. S., Farmer, M. and Heinrikson, R. L. (1977). Amino acid Sequence of human platelet factor 4. Proc Natl Acad Sci USA 74, 2256-2258.
Dinarello, C. A. (1984). Interleukin-1 and the pathogenesis of the acute-phase response. N Engl J Med 311, 1413-1418.
Dinarello, C. A. (1989). Interleukin-1 and its biologically related cytokines. Adv Immunol 44, 153-205.
Dinarello, C. A. (1994). The interleukin-1 family: 10 years of discovery. FASEB J 8, 1314-1325.
Dinarello, C. A. (1996). Biologic Basis for Interleukin-l in Disease. Blood 87, 2095-2147.
Dinarello, C. A. (2000). Interleukin-1 Family (IL-1 F1, F2). In The Cytokine Handbook, 4th edn, pp.643-668. Edited by A. W. Thomson and M. T. Lotze. London: Academic Press.
Donell, G., Superti, F., Tinari, A. and Marziano, M. L. (1992). Mechanism of astrovirus entry into Graham 293 cells. J Med Virol 38, 271-277.
Dryden, K. A., Wang, G., Yeager, M., Nibert, M. L., Coombs, K. M., Furlong, D. B., Field, B. N. and Baker, T. S. (1993). Early steps in reovirus infection are associated with dramatic changes in supramolecular structure and protein conformation: analysis of virions and subviral particles by cryoelectron microscopy and image reconstruction. J Cell Biol 122, 1023-1041.
Duncan, R. (1996). The low pH-dependent entry of avian reovirus is accompanied by two specific cleavages of the major outer capsid protein μ2C. Virology 219, 179-189.
Duncan, R. and Sullivan, K. (1998). Characterization of two avian reoviruses that exhibit strain-specific quantitative differences in their syncytium-inducing and pathogenic capabilities. Virology 250, 263-272.
Dunn, E., Sims, J. E., Nicklin, M. J. and O''Neill, L. A. (2001). Annotating genes with potential roles in the immune system: six new members of the IL-1 family. Trends Immunol 22, 533-536.
Dunne, A. and O''Neill, L. A. (2003). The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. Sci STKE 2003, re3.
Dunne, A. and O''Neill, L. (2003). The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. Science''s STKE 171:re3.
Evans, C. H. (1993). Cytokines: molecular keys to homeostasis, development, and pathophysiology. J Cell Biochem 53, 277-279.
Fahey, J. E. and Crawley, J. F. (1954). Studies on chronic respiratory disease of chickens. II. Isolation of a virus. Can J Comp Med 18, 13-21.
Farrar, M. F. and Schreiber, R. D. (1993). The molecular cell biology of interferon-γ and its receptor. Annu Rev Immunol 11, 571-611.
Feugate, J. E., Wong, L., Li, Q. J. and Martins-Green, M. (2002). The CXC chemokine cCAF stimulates precocious deposition of ECM molecules by wound iroblasts,accelerating development of granulation tissue. BMC Cell Biol 3, 13.
Frohman, M. A., Dush, M. K., and Martin, G. R. (1988). Rapid production of full-length cDNA from rare transcripts: Amplicication using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci USA 85, 8998-9002.
Glass, S. E., Naqi, S. A., Hall, C. F. and Kerr, K. M. (1973). Isolation and characterization of a virus associated with arthritis of chickens. Avian Dis 17, 415-424.
Gouvea, V. S. and Schnitzer, T. J. (1982). Polymorphism of the migration of double-stranded RNA genome segments of avian reoviruses. J Virol 43, 465-471.
Grande, A. and Benavente, J. (2000). Optimal conditions for the growth, purification and storage of the avian reovirus S1133. J Virol Methods 85, 43-54.
Greber, U. F., Willets, M., Webster, P. and Helenius, A. (1993). Stepwise dismantling of adenovirus 2 during entry into cells. Cells 75, 477-486.
Hebert, C. A., Vitangcol, R. V. and Baker, J. B. (1991). Scanning mutagenesis of interleukin-8 identifies a cluster of residues required for receptor binding. J Biol Chem 266, 18989-18994.
Heggen, C. L., Qureshi, M. A., Edens, F. W. and Barnes, H. J. (2000). Alternations in macrophage-produced cytokines and nitrite associated with poult enteritis and mortality syndrome. Avian Dis 44, 59-65.
Heggen-Peay, C. L., Chemma, M. A., Ali, R., A., Schat, K. A. and Qurehi, M. A. (2002). Interactions of poult enteritis and mortality syndrome-associated reovirus with various cell types in vitro. Poult Sci 81, 1661-1667.
Henrotin, Y., Deby-Dupont, G. and Reginster, J. Y. (2001). Biochemical mediators of inflammation. Rev Med Liege 56, 433-442.
Hermodson, M., Schmer, G. and Kurachi, K. (1977). Isolation, crystallization, and primary amino acid sequence of human platelet factor 4. J Biol Chem 52, 276-279.
Hong, Y. H., Lillehoj, H. S., Lillehoj, E. P. and Lee, S. H. (2006). Changes in mmune-related gene expression and intestinal lymphocyte subpopulations following Eimeria maxima infections of chickens. Vet Immunol Immunopathol 114, 259-272.
Hou, H. S., Su, Y. P., Shieh, H. K. and Lee, L. H. (2001). Monoclonal antibodies against different eitopes of nonstructural protein σNS of avian reovirus S1133. Virology 282, 161-175.
Huang, A., Scougall, C. A., Lowenthal, J. W., Jibert, A. R. and Kotlarski, I. (2001). Structural and functional homology between duck and chicken interferon-gamma. Dev Com Immunol 25, 55-68.
Hsiao, J., Martínez-Costas, J., Benavente, J. and Vakharia, V. N. (2002). Cloning, expression, and characterization of avian reovirus guanylyltransferase. Virology 296, 288-299.
Introna, M., Breviario, F., d’Aniell, E. M., Golay, J., Dejana, E. and Mantorani, A. (1993). IL-1 inducible genes in human umbilical vein endothelial cells. Eur Heart J 14, 78-81.
Iordanov, M. S., Wong, J., Bell, J. C. and Magun, B. E. (2001). Activation of NF-kappa B by double-stranded RNA (dsRNA) in the absence of protein kinase and RNase L demonstrates the existence of two separate dsRNA-triggered antiviral programs. Mol Cell Biol 21, 61-72.
Jacobs, B. L. and Langland, J. O. (1996). When two strands are better than one: The mediators and modulators of the cellular responses to double-stranded RNA. Virology 219, 339-349.
Janssens, S., Burns, K., Tschopp, J. and Beyaert, R. (2002). Regulation of interleukin-1-β and lipopolysaccharide-induced NF-κB activation by alternative splicing of MyD88. Curr Biol 12, 467-471.
Janssens, S. and Beyaert, R. (2003). Functional diversity and regulation of different interleukin-1 receptor-associated kinase (IRAK) family members. Mol Cell 11, 293-302.
Jarosinski, K. W., Njaa, B. L., O’Connell, P. H. and Schat, K. A. (2005). Pro-inflammatory responses in chicken spleen and brain tissues after infection with very virulent plus Marek’s disease virus. Viral Immunol 18, 148-161.
Johnson, D. C. (1972). Diagnosis, pathology, and etiology of tenosynovitis in broilers and broiler breeders. Avian Dis 16, 1067-1072.
Jones, R. C., Jordan, T. W. and Lioupis, S. (1975). Characteristics of reovirus isolated from ruptured gastrocnemius tendons of chickens. Vet Rec 96, 153-154.
Jones, R. C. and Guneratne, J. R. M. (1984). The pathogenicity of some avian reoviruses with particular reference to tenosynovitis. Avian Pathol 13, 173-189.
Kaiser, P., Hughes, S. and Bumstead, N. (1999). The chicken 9E3/CEF4 CXC chemokine is the avian orthologue of IL-8 and maps to chicken chromosome 4 syntenic with genes flanking the mammalian chemokine cluster. Immunogentics 49, 673-684.
Kaiser, P., Poh, T. Y., Rothwell, L., Avery, S., Balu, S., Pathania, U. S., Hughes, S., Goodchild, M., Morrell, S., Watson, M., Bumstead, N., Kaufman, J. and Young J.R. (2005). A genomic analysis of chicken cytokines and chemokines. J Interferon Cytokine Res 25, 467-484.
Kaiser, P., Sonnemans, D. and Smith, L. E. (1998). Avian interferon-γ gene: sequence analysis suggests probable cross-species reactivity among galliforms. J Interferon Cyt Res 18, 711-719.
Kariko, K., Ni, H., Capodici, J., Lamphier, M. and Weissmem, D. (2004). mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem 279, 12542-12550.
Kawamura, H., Shimizu, F., Maeda, M. and Tsubahara, H. (1965). Avian reovirus: its properties and serological classificaton. Natl Inst Anim Health Q 5, 115-124.
Kelner, G. S., Kennedy, J., Bacon, K. B., Kleyensteuber, S., Largaespada, D. A., Jenkins, N. A., Copeland, N. G., Bazan, J. F., Moore, K. W. and Schall, T. J. (1994). Lymphotactin: a cytokine that represents a new class of chemokine. Science 266, 1395-1399.
Khatri, M., Palmquist, J. M., Cha, R. M. and Sharma J. M. (2005). Infection and activatoin of bursal macrophages by virulent infectious bursal disease virus. Virus Res 113, 44-50.
Khatri, M. and Sharma, J. M. (2006). Infectious bursal disease virus infection induces macrophage activation via p38 MAPK and NF-κB pathways. Virus Res 118, 70-77.
Kim, Y. M., Talanian, R. V., Li, J. and Billiar, T. R. (1998). Nitric oxide prevents IL-1beta and IFN-gamma-inducing factor (IL-18) release from macrophages by inhibiting caspase-1 (IL-1beta-converting enzyme). J Immunol 161, 4122-4128.
Klasing, K. C. and Peng, R. K. (1987). Influence of cell sources, stimulating agents, and incubation conditions on release interleukin-1 from chicken macrophages. Dev Comp Immunol 11, 385-394.
Labrada, L., Bodelon, G., Vinuela, J. and Benavente, J. (2002). Avian reoviruses cause apoptosis in cultured cells: viral uncoating, but not viral gene expression, is required for apoptosis induction. J Virol 76, 7932-7941.
Laemmli, K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.
Lang, D., Knop, J., Wesche, H., Raffetseder, U., Kurrle, R., Boraschi, D. and Martin, M. U. (1998). The type II IL-1 receptor interacts with the IL-1 receptor accessory protein: a novel mechanism of regulation of IL-1 responsiveness. J Immunol 161, 6871-6877.
Larghi, O. P. and Nebel, A. E. (1980). Rabies virus inactivation by binary ethylenimine: New method for inactivated vaccine production. J Clin Microbiol 11, 120-122.
Lau, R. Y., Van Alstyne, D., Berckmans, R. and Graham, A. F. (1975). Synthesis of reovirus-specific polypeptides in cells pretreated with cycloheximide. J Virol 16, 470-478.
Laurent, F., Mancassola, R., Lacroix, S., Menezes, R. and Naciri, M. (2001). Analysis of chicken mucosal immune response to Emeria tenella and Emeria maxima infection by quantitiative reverse transcription-PCR. Infection and Immunity 69, 2527-2534.
Lawson, S., Rothwell, L. and Kaiser, P. (2000). Turkey and chicken interleukin-2 cross-react in vitro proliferation assays despite limited amino acid sequence identity. J Interferon Cyt Res 20, 161-170.
Lawson, S., Rothwell, L., Lambrecht, B., Howes, K., Venugopal, K. & Kaiser, P. (2001). Turkey and chicken interferon-γ , which share high sequence identity, are biologically cross-reactive. Dev Comp Immunol 25, 69-82.
Lee, L. F., Nazerian, K. and Burmester, B. R. (1973). Characterization of avian reovirus 24. Avian Dis 17, 559-567.
Lee, L. H., Ting, L. J., Shien, J. H. and Shieh, H. K. (1994). Single-tube, noninterupted reverse transcription-PCR for detection of infectious bursal disease virus. J Clin Microbiol 32, 1268-1273.
Lee, L. H., Wang, Y. H. and Hsien, J. H. (1992). Serological characterization of avian reoviruses isolated from avian species in Taiwan. J Chin Soc Vet Sci 18, 69-77.
Leonard, E. J. and Yoshimura, T. (1990). Neutrophil attractant/activation protein-1 ( NAP-1 [interleukin-8] ). Am J Respir Cell Mol Biol 2, 479-486.
Li, Q. and Verma, I. M. (2002). NF-kappaB regulation in the immune system. Nat Rev Immunol 2, 725-734.
Liu, H. J., Lee, L. H., Hsu, H. W., Kuo, L. C. and Liao, M. H. (2003). Molecular evolution of avian reovirus: evidence for genetic diversity and reassortment of the S-class genome segments and multiple cocirculating lineages. Virology 314, 336-349.
Luster, A. D. (2002). The role of chemokines in linking innate and adaptive immunity. Curr Opin Immunol 14, 129-35.
Lye, E., Mirtsos, C., Suzuki, N., Suzuki, S. and Yeh, W. C. (2004). The role of interleukin 1 receptor-associated kinase-4 (IRAK-4) kinase activity in IRAK-4-mediated signaling. J Biol Chem 279, 40653-40658.
Mackie, E. J., Halfter, W. and Liverani, D. (1988). Induction of tenascin in healing wounds. J Cell Biol 107, 2757-2767.
Maggi, Jr. L. B., Morgan, J. M., Buller, R. M. L and Corbett, J. A. (2003). ERK activation is required for double-stranded RNA and virus-induced interleukin-1 expression by macrophage. J Biol Chem 278, 16683-16689.
Maliszewski, C. R., Baker, P. E., Schoenborn, M. A., Davis, B. S. and Cosman, D. (1988). Cloning sequence and expression of bovine interleukin1-alpha and interleukin 1-beta complementary DNA. Mol Immunol 25, 429-437.
Mallo, M., Martinez-Costas, J. and Benavente, J. (1991). Avian reovirus S1133 can replicate in mouse L cells: effect of pH and cell attachment status on viral infection. J Virol 65, 5499-5505.
Martinez-Costas, J., Grande, A., Varela, R., Garcia-Martinez, C. and Benavente, J. (1997). Protein architecture of avian reovirus S1133 and identification of the cell attachment protein. J Virol 71, 59-64.
Martinez-Costas, J., Varela, R. and Benavente, J. (1995). Endogenous enzymatic activities of the avian reovirus S1133: identification of the viral capping enzyme. Virology 206, 1017-1026.
Martins-Green, M., Aotaki-Keen, A., Hjelmeland, L. M. and Bissell, M. J. (1992). The 9E3 protein: immunolocalization in vivo and evidence for multiple forms in culture. J Cell Sci 101, 701-707.
Martins-Green, M. and Bissell, M. J. (1990). Localization of 9E3/CEF-4 in avian tissues: expression is absent in Rous sarcoma virus-induced tumors but is stimulated by injury. J Cell Biol 110, 581-595.
Martins-Green, M. and Feugate, J. E. (1998). The 9E3/CEF4 gene product is a chemotactic and angiogenic factor that can initiate the wound-healing cascade in vivo. Cytokine 10, 522-535.
Martins-Green, M. and Hanafusa, H. (1997). The 9E3/CEF4 gene and its product the chicken chemotactic and angiogenic factor (cCAF): potential roles in wound healing and tumor development. Cytokine Growth Factor Rev 8, 221-232.
Martins-Green, M., Stoeckle, M., Hampe, A., Wimberly, S. and Hanafusa, H. (1996). The 9E3/CEF4 cytokine: kinetics of secretion, processing by plasmin, and interaction with extracellular matrix. Cytokine 8, 448-459.
Martins-Green, M., Tilley, C., Schwarz, R., Hatier, C. and Bissell, M. J. (1991). Wound-factor-induced and cell-cycle phase-dependent expression of 9E3/CEF4, the avian GRO gene. Cell Regul 2, 739-752.
Massion, P. P., Hebert, C. A., Leong, S., Chan, B., Inoue, H., Grattan, K., Sheppard, D. and Nadel, J. A. (1995). Staphylococcus aureus stimulates neutrophil recruitment by stimulating interleukin-8 production in dog trachea. Am J Physiol 268, L85-94.
Matsumoto, Y., Mohamed, A., Onodera, T., Kato, H., Ohashi, T., Goitsuka, R., Tsujimoto, H., Hasegawa, A., Furusawa, S. and Yoshihara, K. (1994). Molecular cloning and expression of canine interleukin 8 cDNA. Cytokine 6, 455-461.
Matsushima, K., Morishita, K., Yoshimura, T., Lavu, S., Kobayashi, Y., Lew, W., Appela, E., Hung, H. F., Leonard, E. J. and Oppenheim, J. J. (1988). Molecular cloning of a human monocyte-derived neutrophil chemotactic factor (MDNCF) and the induction of MDNCF mRNA by interleukin 1 and tumor necrosis factor. J Exp Med 167, 1883-1893.
McMahan, C. J., Slack, J. L., Mosley, B., Cosman, D., Lupton, S. D., Brunton, L. L., Grubin, C. E., Wignall, J. M., Jenkins, N. A. and Brannan, C. I. (1991). A novel IL-1 receptor, cloned from B cells by mammalian expression, is expressed in many cell types. EMBO J 10:2821-2832.
Medzhitov, R., Preston-Hurlburt, P., Kopp, E., Stadlen, A., Chen, C., Ghosh, S. and Janeway, Jr. C. A. (1998). MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 2, 253-258.
Menendez, N. A., Calnek, B. W. and Cowen, B. S. (1975). Experimental egg-transmission of avian reovirus. Avian Dis 19, 104-111.
Metcalf, P., Cyrklaff, M. and Adrian, M. (1991). The three-dimensional structure of reovirus obtained by cryo-electron microscopy. EMBO J 10, 3129-3136.
Mileno, M. D., Margolis, N. H., Clark, B. D., Dinarello, C. A., Burke, J. F. and Gelfand, J. A. (1995). Coagulation of whole blood stimulates interleukin-1beta gene expression. J Infect Dis 172, 308-311.
Min, W., Lillehoj, H. S., Burnside, J., Weining, K. C., Staeheli, P. and Zhu, J. J. (2001). Adjuvant effects of IL-1β, IL-2, IL-8, IL-15, IFN-α, TGF-β4 and lymphotactin on DNA vaccination against Emeria acervulina. Vaccine 20, 267-274.Minnerly, J. C., Baganoff, M. P., Deppeler, C. L., Keller, B. T., Rapp, S. R., Widomski, D. L., Fretland, D. J. and Bolanowski, M. A. (1995). Identification and characterization of rhesus macaque interleukin-8. Inflammation 19, 313-331.
Morsey, M. A., Popowych, Y., Kowalski, J., Gerlach, G., Godson, D., Campos, M. and Babiuk, L. A. (1996). Molecular cloning and expression of bovine interleukin-8. Microb Path 20, 203-212.
Mukaida, N. (2000). Interleukin-8: an expanding universe beyond neutrophil chemotaxis and activation. Int J Hematol 72, 391-398.
Muzio, M., Ni, J., Feng, P. and Dixit, V. M. (1997). IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 278:1612-1615.
Ni, Y. and Kemp, M. C. (1995). A comparative study of avian reovirus pathogenicity: virus spread and replication and induction of lesions. Avian Dis 39, 554-566.
Ni, Y., Ramig, R. F. and Kemp, M. C. (1993). Identification of proteins encoded by avian reoviruses and evidence for post-translational modification. Virology 193, 466-469.
Ni, Y. W. and Kemp, M. C. (1990). Selection of genome segments following coinfection of chicken fibroblasts with avian reoviruses. Virology 177, 625-633.
Nibert, M. L., Schiff, L. A. and Fields, B. N. (1990). Reoviruses and their replication. In Fields, B. N., Knipe, O. M. and Howley, P. M. (Eds) Fundamental Virology, 3rd ed. Lippincott-Ravien Publishers, Philadephia, PA. pp 691-730.
Nicholson, D. W. and Thomberry, N. A. (1997). Caspases: killer proteases. Trends Biochem Sci 22, 299-306.
Nick, H., Cursiefen, D. and Becht, H. (1975). Structural and growth characteristics of two avian reoviruses. Arch Virol 48, 261-269.
Nonoyama, M., Millward, S. and Graham, A. F. (1974). Control of transcription of the reovirus genome. Nucleic Acid Res 1, 373-385.
Olson, N. O. and Kerr, K. M. (1966). Some characteristics of an avian arthritis viral agent. Avian Dis 10, 470-476.
Oppenheim, J. J., Zachariae, C. O., Mukaida, N. and Matsushima, K. (1991). Properties of the novel proinflammatory supergene "intercrine" cytokine family. Annu Rev Immunol 9, 617-648.
Page, R. K., Fletcher, Jr. O. J. and Villegas, P. (1982). Infectious tenosynovitis in young turkeys. Avian Dis 26, 924-927.
Panabiers, F., Piechaczyk, M., Rainer, B., Dani, C., Fort, P., Riaad, S., Marty, L, Imbach, J. L., Jeanteur, P. and Blanchard, J. M. (1984). Complete nucleotide sequence of the messenger RNA coding for chicken muscle glyceraldehydes-3-phosphote dehydrogenase. Biochem Biophys Res Commun 118, 767-773.
Parcells, M. S., Lin, S. F., Diengleneicz, R. L., Majerciak, V., Robinson, D. R., Chen, H. C., Wu, Z., Dubyak, V., Brunovski, P., Hunt, H. D., Lee, L. F. and Kung, H-J., (2001). Marek’s disease virus (MDV) encodes an interleukin-8 homolog (vIL-8): characterization of the vIL-8 protein and a vIL-8 deletion mutant MDV. J Virol 75, 5159-5173.
Parker, J. S. L., Broering, T. J., Kim, J., Higgins, D. E. and Nibert, M. L. (2002). Reovirus core protein μ2 determines the filamentous morphology of viral inclusion bodies by interacting with and stabilizing microtubules. J Virol 76, 4483-4496.
Perkins, D. N., Pappin, D. J., Greasy, D. M. and Cottrel, J. S. (1999). Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551-3567.
Qian, Y., Commane, M., Ninomiya-Tsuji, J., Matsumoto, K. and Li, X. (2001). IRAK-mediated translocation of TRAF6 and TAB2 in the interleukin-1-induced activation of NFkappa B. J Biol Chem 276, 41661-41667.
Qin, J., Jiang, Z., Qian, Y., Casanova, J. L. and Li. X. (2004). IRAK4 kinase activity is redundant for interleukin-1 (IL-1) receptor-associated kinase phosphorylation and IL-1 responsiveness. J Biol Chem 279, 26748-26753.
Qureshi, S. A., Joseph, C. K., Rim, M., Maroney, A. and Foster, D. A. (1991). v-Src activates both protein kinase C-dependent and independent signaling pathways in murine fibroblasts. Oncogene 6, 995-999.
Radons, J., Dove, S., Neumann, D., Altmann, R., Botzki, A., Martin, M. U. and Falk, W. (2003). The interleukin 1 (IL-1) receptor accessory protein Toll/IL-1 receptor domain: analysis of putative interaction sites in vitro mutagenesis and molecular modeling. J Biol Chem 278, 49145-49153.
Rankin, J. T. Jr., Eppes, S. B., Antzak, J. B. and Joklik, W. K. (1989). Studies on the mechanism of the antiviral activity of ribavirin against reovirus. Virology 168, 147-158.
Reed, L. J. and Munch, H. (1938). A simple method of estimating fifty percent endpoints. Amer J Hyg 27, 493-497.
Ren, G., Zhang, L., Zhao, X., Xu, G., Zhang, Y., Roberts, A. I., Zhao, R. C. and Shi, Y. (2008). Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2, 141-150.
Robertson, M. D. and Wilcox, G. E. (1986). Avian reovirus. Veterinary Bulletin 56, 155-174.
Rosenberger, J. K. (2003). Reovirus infections. In Diseases of Poultry, 11th edn, pp.283-293. Edited by Y. M. Saif, H. J. Barnes, J. R. Glison, A. M. Fadly, L. R. McDoagald and D. E. Swayne. Iowa: Iowa State University Press.
Sahu, S. P. and Olson, N. O. (1975). Comparison of the characteristics of avian reoviruses isolated from the digestive and respiratory tract, with viruses isolated from the synovia. Am J Vet Res 36, 847-850.
Samudzi, C. T., Burton, L. E. and Rubin, J. R. (1991). Crystal structure of recombinant rabbit interferon-γ at 2.7A resolution. J Biol Chem 266, 21791-21797.
Schall, T. J. and Bacon, K. B. (1994). Chemokines, leukocyte trafficking, and inflammation. Curr Opin Immunol 6, 865-873.
Schnitzer, T. J., Ramos, T. and Gouvea, V. (1982). Avian reovirus polypeptides: Analysis of intracellular virus-specific products, virions, top component, and cores. J Virol 43, 1006-1014.
Schultz, U. and Chisari, F. V. (1999). Recombinant duck IFN-gamma inhibits duck hepatitis B Virus replicating in primary hepatocytes. J Virol 73, 3162-3168.
Schultz, U., Kock, J., Schlicht, H-J. and Staeheli, P. (1995). Recombinant duck interferon: a new reagent for studying the mode of interferon action against hepatitis B virus. Virology 212, 641-649.
Seglen, P. D. (1983). Inhibitors of lysosomal function. Methods Enzymol 96, 737-764.
Sekiguchi, K., Koide, F. and Kawamura, H. (1968). Physico-chemical properties of avian reovirus and its nucleic acid. Arch Gesamte Virusforsch 24, 123-136.
Seow, H. F., Yoshimura, T., Wood, P. R. and Colditz, I. G. (1994). Cloning, sequencing,expression and inflammatory activity in skin of ovine interleukin-8. Immunol Cell Biol 72, 398- 405.
Shao, H. J., Chen, L. and Su, Y. B. (2005). DNA fragment encoding human IL-1beta 163-171 peptide enhances the immune responses elicited in mice by DNA vaccine against foot-and-mouth disease. Vet Res Commun 29, 35-46.
Shapouri, M. R., Arella, M. and Silim, A. (1996). Evidence for the multimeric nature and cell binding ability of avian reovirus sigma 3 protein. J Gen Virol 77, 1203-1210.
Shapouri, M. R., Kane M, Letarte M, Bergeron J, Arella M, Silim A. (1995). Cloning, sequencing and expression of the S1 gene of avian reovirus. J Gen Virol 76, 1515-1520.
Shapouri, M. R., Reddy, S. and Silim, K. A. (1994). Interaction of avian reovirus with chicken lymphoblastoid cell lines. Avian Pathol 23, 287-296.
Shatkin, A. J. (1985). mRNA cap binding proteins: essential factors for initiating translation. Cell 40, 223-224.
Shih WL, Hsu HW, Liao MH, Lee LH, Liu HJ. (2004). Avian reovirus sigmaC protein induces apoptosis in cultured cells. Virology 321, 65-74.
Shmulevitz, M. and Duncan, R. (2000). A new class of fusion-associated small transmembrane (FAST) proteins encoded by the non-enveloped fusogenic reoviruses. EMBO J 19, 902-912.
Shmulevitz, M., Yameen, E., Dawe, S., Shou, J., O’Hava, D., Holmes, I. and Duncan, R. (2002). Sequential partially overlapping gene arrangement in the tricistronic S1 genome segments of avian reovirus and Nelson Bay reovirus: implications for translation initiation. J Virol 76, 609-618.
Sick, C., Schneider, K., Staeheli, P. and Weining, K. C. (2000). Novel chicken CXC and CC chemokines. Cytokine 12, 181-186.
Sijben, J. W., Klasing, K. C., Schrama, J. W., Parmentier, H. K., van der Poel, J. J., Savelkoul, H. F. and Kaiser, P. (2003). Early in vivo cytokine genes expression in chickens after challenge with Salmonella typhimurium lipopolysaccharide and modulation by dietary n-3 polyunsaturated fatty acids. Dev Comp Immunol 27, 611-619.
Sims, J. E., March, C. J., Cosman, D., Widmer, M. B., MacDonald, H. R., McMahan, C. J., Grubin, C. E., Wignall, J. M., Jackson, J. L. and Call, S. M. (1988). cDNA expression cloning of the IL-1 receptor, a member of the immunoglobulin superfamily. Science 241, 585-589.
Sims, J. E., Nicklin, M. J., Bazan, J. F., Barton, J. L., Busfield, S. J., Ford, J. E., Kastelein, R. A., Kumar, S., Lin, H., Mulero, J. J., Pan, J., Pan, Y., Smith, D. E. and Young, P. R. (2001). A new nomenclature for IL-1-family genes. Trends Immunol 22, 536-537.
Smith, R. E., Eweerink, H. J. and Joklik, W. K. (1969). Polypeptide components of virions, top component and cores of reovirus type 3. Virology 39, 791-810.
Spandidos, D. A. and Graham, A. F. (1976). Physical and chemical characterization of an avian reovirus. J Virol 19, 968-976.
Spangler, R., Joseph, C., Qureshi, S. A., Berg, K. L. and Foster, D. A. (1989). Evidence that v-src and v-fps gene products use a protein kinase C-mediated pathway to induce expression of a transformation-related gene. Proc Natl Acad Sci USA 86, 7017-7021.
Stoeckle, M. Y. and Barker, K. A. (1990). Two burgeoning families of platelet factor 4-related proteins: mediators of the inflammatory response. New Biol 2, 313-323.
Su, Y. P., Shien, J. H., Liu, H. J., Yin, H. S. and Lee, L. H. (2007). Avian reovirus core protein muA expressed in Escherichia coli possesses both NTPase and RTPase activities. J Gen Virol 88, 1797-1805.
Su, Y. P., Su, B. S., Shien, J. H., Liu, H. J. and Lee, L. H. (2006). The sequence and phylogenetic analysis of avian reovirus genome segments M1, M2, and M3 encoding the minor core protein μA, the major outer capsid protein μB, and the nonstructural protein μNS. J Virol Methods 133, 146-157.
Subramaniam, S., Stansberg, C. and Cunningham, C. (2004). The interleukin 1 receptor family. Dev Comp Immunol 28, 415-428.
Sugano, S., Stoeckle, M. Y. and Hanafusa, H. (1987). Transformation by Rous sarcoma virus induces a novel gene with homology to a mitogenic platelet protein. Cell 49, 321-328.
Suresh, M., Karaca, K., Foster, D. and Sharma, J. M. (1995). Molecular and functional characterization of turkey interferon. J Virol 69, 8159-8163.
Tabeta, K., Georgel, P., Janssen, E., Du, X., Hoebe, K., Crozat, K, Mudd, S., Shamel, L., Sovath, S., Goode, J., Alexopoulou, L., Flavell, R. A. and Beutler, B. (2004). Toll-like receptor 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. (2004). Proc Natl Acad Sci USA 101, 3516-3521.
Taylor, D. L., Olson, N. O. and Burrell, R. G. (1966). Adaptation of an avian arthritis viral agent to tissue culture. Avian Dis 10, 462-470.
Tirunagaru, V. G., Sofer, L., Cui, J. and Burnside, J. (2000). An expressed sequence tag database of T-cell-enriched activated chicken splenocytes: sequence analysis of 5251 clones. Genomics 66, 144-151.
Tourís-Otero F, Cortez-San Martín, M., Martínez-Costas J. and Benavente, J. (2004 a). Avian reovirus morphogenesis occurs within viral factories and begins with the selective recruitment of σNS and λA to μNS inclusions. J Mol Biol 341, 361-374.
Touris-Otero, F., Martinez-Costas, J., Vakharia, V. N. and Benavente, J. (2004 b). Avian reovirus nonstructural protein μNS forms viroplasm-like inclusions and recruits protein σNS to these structures. Virology 319, 94-106.
Vaingankar, S. M. and Martins-Green, M. (1998). Thrombin activation of the 9E3/CEF4 chemokine involves tyrosine kinases including c-src and the epidermal growth factor receptor. J Biol Chem 273, 5226-5234.
Van der Heide, L. (1977). Viral arthritis/tenosynovitis: a revies. Avain Pathology 6, 271-284.
Van der Heide, L. and Kalbac, M. (1975). Infectious tenosynovitis (viral arthritis): characterization of a Connecticut viral isolant as a reovirus and evidence of viral egg transmission by reovirus-infected broiler breeders. Avian Dis 19, 683-688.
Van der Heide, L., Lutticken, D. and Horzinek, M. (1981). Isolation of avian reovirus as a possible etiologic agent of osteoporosis ("brittle bone disease"; "femoral head necrosis") in broiler chickens. Avian Dis 25, 847-856.
Varela, R. and Benavente, J. (1994). Protein coding assignment of avian reovirus strain S1133. J Virol 68, 6775-6777.
Walker, E. R., Friedman, M. H. and Olson, N. O. (1972). Electron microscopic study of an avian reovirus that causes arthritis. J Ultrastruct Res 41, 67-79.
Watanabe, Y., Kudo, H. and Graham, A. F. (1967). Selective inhibition of reovirus ribonucleic acid synthesis by cycloheximide. J. Virol 1, 36-44.
Weining, K. C., Sick, C., Kaspers, B. and Staeheli, P. (1998). A chicken homolog of mammalian interleuin-1β: cDNA cloning and purification of active recombinant protein. Eur J Biochem 258, 994-1000.
Wesche, H., Henzel, W. J., Shillinglaw, W., Li, S. and Cao, Z. (1997). MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7, 837-847.
Wickramasinghe, R., Meanger, J., Enriquez, C. E. and Wilcox, G. E. (1993). Avian reovirus proteins associated with neutralization of virus infectivity. Virology 194, 688-696.
Wilcox, G. E., Robertson, M. D. and Lines, A. D. (1985). Adaption and characteristics of replication of a strain of avian reovirus in vero cells. Avian Pathol 14, 321-328.
Withanage, G. S., Kaiser, P., Wigley, P., Powers, C., Mastroeni, P., Brooks, H., Barrow, P., Smith, A., Maskell, D. and McConnell, I. (2004). Rapid expression of chemokines and proinflammatory cytokines in newly hatched chickens infected with Salmonella enterica serovar typhimurium. Infect Immun 72, 2152-2159.
Wu, Y. F., Liu, H. J., Chiou, S. H. and Lee, L. H. (2007). Sequence and phylogenetic analysis of interleukin (IL)-1β-encoding genes of five avian species and structural and functional homology among these IL-1βproteins. Vet Immunol Immunopath 116, 37-46.
Yin, H. S. and Lee, L. H. (1998). Development and characterization of a nucleic acid probe for avian reoviruses. Avian Pathol 27, 423-426.
Yin, H. S., Shieh, H. K. and Lee, L. H. (1997). Characterization of the double-stranded RNA genome segment S3 of avian reovirus. J Virol Methods 67, 93-101.
Yin, H. S., Shien, J. H. and Lee, L. H. (2000). Synthesis in Escherichia coli of avian reovirus core protein varsigmaA and its dsRNA-binding activity. Virology 266, 33-41.
Yoneyman, M., Kikuchi, M., Natsukawa, T., Shinobu, N. Imaizumi, T., Mijagishi, M., Taira, K., Akira, S. and Fujita, T. (2004). The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5, 730-737.
Yoshimura, T. and Johnson, D. G. (1993). cDNA cloning and expression of guinea pig neutrophil attractant protein-1 (NAP-1). NAP-1 is highly conserved in guinea pig. J Immunol 151, 6225-6236.
Yoshimura, T. and Yuhki, N. (1991). Neutrophil attractant/activation protein-1 and monocyte chemoattractant protein-1 in rabbit. cDNA cloning and their expression in spleen cells. J Immunol 146, 3483-3488.
Zou, J., Cunningham, C. and Secombes, C. J. (1999). The rainbow trout Oncorhynchus mykiss interleukin-1β gene has a different organization to mammals and undergoes incompletes splicing. Eur J Biochem 259, 901-908.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top