跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/03 23:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪奇正
研究生(外文):Chi-Jang Hung
論文名稱:以高效能液相層析結合電化學偵測區分鴕鳥肉與常見肉品之研究
論文名稱(外文):Differentiation of ostrich meats from common meat species by liquid chromatography with electrochemical detection
指導教授:周濟眾
指導教授(外文):Chi-Chung Chou
學位類別:碩士
校院名稱:國立中興大學
系所名稱:獸醫學系暨研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:96
中文關鍵詞:鴕鳥肉肉品種別區別液相層析電化學
外文關鍵詞:Ostrich meatmeat speciesHPLCelectrochemical
相關次數:
  • 被引用被引用:0
  • 點閱點閱:277
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
肉品種別鑑定在公共衛生以及消費者權益上,具有相當重要的角色,不僅有利於政府對肉品衛生安全的管理,也保障了消費者的需求。因此,一個可適用於快速常規檢驗且可信之分析方法用於檢驗肉類食品之來源是必須的。鴕鳥肉由於具有高蛋白、高鐵、高鋅以及低膽固醇、低熱量、低脂肪的三高三低特性,成為符合健康飲食觀念的理想肉類。不肖商人常藉機以其他較便宜品種之肉類取代或參雜於鴕鳥肉中以降低成本、提高利潤。本論文之目標為利用高效能液相層析搭配電化學偵測系統將鴕鳥肉與雞肉、牛肉以及豬肉進行區別。結果顯示利用簡單的前處理步驟萃取肉汁後,便可於9分鐘內將四種肉成功區分,其中鴕鳥肉與雞肉具有牛肉及豬肉所缺乏之特異性波峰。此外,本方法並可以以極佳之敏感度及特異性區別不同口感及價位之鴕鳥肉等級。在室溫下存放之肉品,其主要波峰面積下降速率為在冷藏時之3倍。100 ℃隔水加熱5分鐘後所得之層析圖譜與加熱前僅有波峰面積上之差異,而無數量之改變,顯示本方法在肉品分級及熟肉樣品應用上之潛力。以酸性溶液、蛋白質沉澱溶液以及消化酵素等做樣品之前處理,可破壞、消化分析物,達到選擇性樣品純化之目的,可提供主要波峰性質探討之進一步資訊。未來,再進一步利用質譜儀鑑定層析圖譜中主要波峰之結構以及利用不同的樣品前處理方式,純化出具種別特異性之波峰,確認可區分肉品種別之標記之成分。
Identification of the origin of meat species is relevant to consumers for several reasons, either economical or religious. Thus, reliable and sensitive analytical tools are required for routine detection and identification of food from animal origin. Ostrich meat presents characteristic nutritional properties such as high protein content, rich in iron, zinc, and low in calorie, fat and cholesterol. The high unit-price and insufficient supply has made ostrich meat a target for adulteration and replacement by other cheap meat species. The purpose of the study was to validate high performance liquid chromatography method with electrochemical detection (HPLC-EC) for ostrich meat differentiation. 5 gram of meat mixed with 5 ml of 40 mM phosphate buffer, pH7.8, were homogenized for 1 min, and filtered before HPLC-EC analysis using copper nanoparticle plated electrodes. Ostrich meat could be differentiated from chicken, pork, and beef in 9 minutes by 4 major chromatographic peaks. An avian-specific peak at 3.5 minutes was identified for differentiation from mammal species. Storage of meat at various temperature and time could change the chromatographic pattern with the main peak reduction 3 times faster in room temperature (25 ℃) than in the refrigerator (4 ℃). Different parts of ostrich meat showed distinct peak ratio that are characteristic for different meat grades. Acid and enzyme hydrolysis could uncover species-specific peaks and characteristic chromatographic pattern to facilitate the power of species differentiation. In conclusion, this HPLC-EC method appeared to be simple and suitable for rapid differentiation of ostrich meat from other three meats. The possibility of producing species-specific peaks by different chemical treatments warrant further study.
中文摘要 …………………………………………………………………I
英文摘要…………………………………………………………………II
目次 ……………………………………………………………………III
表次………………………………………………………………………VI
圖次 ……………………………………………………………………VII
第一章、前言……………………………………………………… 1
第二章、文獻探討………………………………………………… 4
第一節、鴕鳥肉的物理性質………………………………… 4
第二節、鴕鳥肉的營養價值………………………………… 6
第三節、肉品種別鑑定之重要性…………………………… 9
一、公共衛生…………………………………………… 9
二、消費者需求及權益………………………………… 9
第四節、肉品種別鑑定之方法介紹………………………… 10
一、分子生物學法……………………………………… 10
二、酵素免疫法………………………………………… 14
三、色層分析法………………………………………… 16
四、感官圖譜分析法…………………………………… 22
第五節、電化學搭配高效能液相層析(HPLC-EC)之原理及應 用24
一、電化學簡介………………………………………… 24
二、固定電壓技術……………………………………… 25
(一) 循環伏安法……………………………… 25
(二) 安培法 ………………………………… 27
(三) 流動注入分析法 ………………………… 28
三、固定電流技術……………………………………… 30
四、偵測胺基酸類之工作電極選擇…………………… 30
第三章、材料與方法……………………………………………… 33
第一節、實驗材……………………………………………… 33
一、肉類樣品來源……………………………………… 33
二、實驗儀器與樣品…………………………………… 33
(一)高效能液相層析系統………………………… 32
(二) 流動式注入分析系統 …………………… 34
(三) 電化學分析儀 …………………………… 34
(四) 其他儀器 ………………………………… 35
(五) 實驗藥品 ………………………………… 36
第二節、實驗目的及方法…………………………………… 37
一、以奈米銅網版印刷電極配合HPLC-EC偵測肉品之標準方法37
(一) 肉類樣品之前處理………………………… 37
(二) 移動相之製備……………………………… 37
(三) HPLC-EC分析之基本條件 ………………… 38
二、肌肉部位對層析圖譜之影響……………………… 38
三、室溫及冷藏對層析圖譜之影響…………………… 38
四、加熱對層析圖譜之影響…………………………… 39
五、不同前處理方式對層析圖譜之影響……………… 39
(一) 鹽酸(Hydrochloric acid, HCl)處理 39
(二) 三氯醋酸(Trichloroacetic acid, TCA)處理 40
(三) 木瓜酵素(Papain)處理 ……………… 40
(四) 胃蛋白酶(Pepsin)處理 ……………… 40
六、統計分析…………………………………………… 41

第四章、實驗結果 …………………………………………………42
第一節、以奈米銅網版印刷電極配合HPLC-EC偵測肉品之標準方法…42
第二節、肌肉部位對層析圖譜之影響 ………………………45
第三節、室溫及冷藏對層析圖譜之影響 ………………… 50
一、室溫25 ℃下存放72小時 ………………………… 50
二、4 ℃冷藏存放9天………………………………… 53
三、室溫及冷藏對於層析圖譜波峰面積變化之比較… 56
第四節、加熱對層析圖譜之影響…………………………… 59
第五節、不同前處理方式對層析圖譜之影響……………… 60
一、鹽酸(Hydrochloric acid, HCl)處理………… 60
二、三氯醋酸(Trichloroacetic acid, TCA)處理 61
三、木瓜酵素(Papain)處理………………………… 62
四、胃蛋白酶(Pepsin)處理………………………… 63
第五章、討論……………………………………………………… 64
第一節、以奈米銅網版印刷電極配合HPLC-EC偵測肉品之標準方法…64
第二節、層析圖譜中波峰成分之推測……………………… 66
第三節、肌肉部位對層析圖譜之影響……………………… 71
第四節、肉品降解對於層析圖譜之影響…………………… 73
第五節、不同處理方式對於層析圖譜之影響……………… 76
第六節、未來發展與展望…………………………………… 80
一、特異性波峰之成分結構鑑定……………………… 80
二、感官圖譜於氣相層析之應用……………………… 80
三、化學RFLP之假說…………………………………… 81
第六章、附錄……………………………………………………… 82
第七章、參考文獻………………………………………………… 89
林格吟。中興大學化學系碩士學位論文”奈米銅網版印刷電極結合高效能液相層析法偵測胺基酸之研究”,2004。
吳松雄。鴕鳥肉的物理性質。中國畜牧雜誌 03: 73-76,2002。
吳松雄。鴕鳥的營養價值。中國畜牧雜誌 02: 73-76,2002。
胡啟章。電化學原理與方法。五南出版社,台北,台灣,2007。
徐意嵐。中興大學化學系碩士學位論文”滾筒電鍍鎳電極結合高效能液相層析法之分析應用”,2007。
陳佩祥,黃乃芸,李聯榮,盧偉強,郭旭英。國產鴕鳥肉購買指南,台灣區人工飼養鴕鳥協會,臺北,台灣,4,6,17,2004。
陳明造。肉品加工理論與應用。藝軒圖書出版社,台北,台灣,1983。
楊懿如、林曜松、劉怡里。應用粒線體DNA鑑定台灣產鹿科動物肉類製品之種類。 特有生物研究 3:25-35,2001。
Aliani M, Farmer LJ. Precursors of chicken flavor. II. Identification of key flavor precursors using sensory methods. J Agric Food Chem 53:6455-6462, 2005.
Ansfield M, Reaney SD, Jackman R. Production of a sensitive immunoassay for detection of ruminant and porcine proteins, heated to >130 ℃ at 2.7 bar, in compound animal feedstuffs. Food & Agricultural Immunology 12:273-284, 2000.
Aristoy MC, Toldra F. Deproteinizaion techniques for HPLC amino acid analysis in fresh pork muscle and dryed-cured ham. J Agric Food Chem 39:1792-1795, 1991.
Asensio L, Gonzalez I, Garca T, Martin R. Determination of food authenticity by enzyme-linked immunosorbent assay (ELISA). Food Control 19:1-8, 2008.
Asensio L, Gonzalez I, Rodriguez MA, Mayoral B, Lopez-Calleja I, Hernandez PE, Garcia T, Martin R. Identification of grouper (Epinephelus guaza), wreck fish (Polyprion americanus), and Nile perch (Lates niloticus) fillets by polyclonal antibody-based enzyme-linked immunosorbent assay. J Agric Food Chem 51:1169-1172, 2003.
Ashoor SH, Monte WC, Stiles PG. Liquid chromatographic identification of meats. J Assoc Off Anal Chem 71:397-403, 1988.
Baur C, Teifelgreding J, Liebhardt E. Identification of Heat Processed Meat by DNA Analysis. Arch Lebensmit-telhyg 38:172-174, 1987.
Baxter JH. Amino acids. In: Nollet LML, ed. Handbook of food analysis, Marcel Dekker, New York, 197-228, 1996.
Berger RG, Mageau RP, Schwab B, Johnston RW. Detection of poultry and pork in cooked and canned meat foods by enzyme-linked immunosorbent assays. JAOAC 71:406-409, 1988.
Blanchard J. Evaluation of the relative efficacy of various techniques for deproteinizing plasma samples prior to high-performance liquid chromatographic analysis. J Chromatogr Biomed Appl 226:455-460,1981.
Bond JM, Marchello MJ, Slanger WD. Physical, chemical, and shelf-life characteristics of low-fat ground beef patties formulated with waxy hull-less barley. Jouranl of muscle foods 12:53-69, 2001.
Bosque PJ, Ryou C, Telling G, Peretz D, Legname G, DeArmond SJ, Prusiner SB. Prions in skeletal muscle. Proc Natl Acad Sci 99:3812-3817, 2002.
Bosque PJ. Bovine spongiform encephalopathy, chronic wasting disease, scrapie, and the threat to humans from prion disease epizootics. Curr Neurol Neurosci Rep 2:488-495, 2002.
Bottero MT, Dalmasso IA, Nucera D, Turi RM, Rosati S, Squdrone S, Goria M, Civera T. Development of a PCR assay for the detection of animal tissue in ruminant feeds. J Food Prot 66:2307-2312, 2003.
Boyer-Berri C, Greaser ML. Effect of postmortem storage on the Z-line region of titin in bovine muscle. J Anim Sci 76:1034-1044, 1998.
Brewer MS, Harbers CAZ. Effect of packaging on color and physical characteristics of ground pork in long term frozen storage. J Food Sci 56:363-366, 1991.
Brunton NP, Cronin DA, Monahan FJ. Volatile components associated with freshly cooked and oxidized off-flavours in turkey breast meat. Flavour Fragr J 17:327-334, 2002.
Buntjer JA, Lamine A, Haagsma N, Lenstra JA. Species Identification by Oligonucleotide Hybridisation: The Influence of Processing on Meat Products. J Food Sci 79:53-57, 1999.
Buntjer JB, Lenstra JA, Haagsma N. Rapid Species Identification by Using Satellite DNA Probes. Z Lebensm Unters Forsch 201:577-582, 1995.
Calvo JH, Rodellar C, Zaragoza P, Osta R. Beef- and bovine-derived material identification in processed and unprocessed food and feed by PCR amplification. J Agric Food Chem 50:5262-5264, 2002.
Carnegie PR, Ilic MZ, Etheridge MO, Suart S. Use of histidine dipeptides and myoglobin to monitor adulteration of cooked beef with meat from other species. Aust Vet J 62:272-276, 1985.
Casella IG, Gatta M, Cataldi TR. Amperometric determination of underivatized amino acids at a nickel-modified gold electrode by anion-exchange chromatography. J Chromatogr A 878:57-67, 2000.
Cespedes A, Garcia T, Carrera E, Gonzalez I, Fernandez A, Asensio L. Indirect ELISA for the identification of sole (Solea solea), European plaice (Pleuronectes platessa), flounder (Platichthys flesus), and Greenland halibut (Reinhardtius hippoglossoides). J Food Prot 62:1178-1182, 1999.
Chen FC, Hsieh YH. Monoclonal antibodies against troponin I for the detection of rendered muscle tissues in animal feedstuffs. Meat Sci 62:405-412, 2002.
Chikuni K, Ozutsumi K, Koishikawa T, Kato S. Species Identifcation of Cooked Meats by DNA Hybridization Assay. Meat Sci. 27:119-128, 1990.
Chou CC, Lin SP, Lee KM, Hsu TC, Vickroy TW, Zen JM. Fast differentiation of meats from fifteen animal species by liquid chromatography with electrochemical detection using copper nanoparticle plated electrodes. J Chromatogr B Analyt Technol Biomed Life Sci 846:230-239, 2007.
Chow HM, Kuo CC. Comparison of nutrition contents among ostrich meat, chicken, beef and pork. Taiwan sugar 49:19-25, 2002.
Chow S, Inogue S. Intra- and Interspecific Restriction Fragment Length Polymorphism in Mitochondrial Genes of Thunnus Tuna Species. Bull Nat Inst Far Seas Fish 30:207-224, 1993.
Cota-Rivas M, Vallejo-Cordoba B. Capillary electrophoresis for meat species differentiation. J Capillary Electrophor 4:195-9, 1997.
Cutufelli ME, Mageau RP, Schwab B, Johnston RW. Development of a multispecies identification field test by modified agar-gel immunodiffusion. J AOAC Int 76:1022-1026, 1993.
Dunnett M, Harris RC. High-performance liquid chromatographic determination of imidazole dipeptides, histidine, 1-methylhistidine and 3-methylhistidine in equine and camel muscle and individual muscle fibers. J Chromatogr B Biomed Sci Appl 688:47-55, 1997.
Ebbehoj KF, Thomsen PD. Species Differentiation of Heated Meat Products by DNA Hybridization. Meat Sci 30:221-234, 1990.
Ebbehoj KF, Thomsen PD. Differentiation of Closely Related Species by DNA Hybridisation. Meat Sci 30:359-366, 1991.
Fajardo V, Gonzalez I, Lopez-Calleja I, Martin I, Hernandez PE, Garcia T, Martin R. PCR-RFLP authentication of meat from red deer (Cervus elaphus), fallow deer (Dama dama), roe deer (Capreolus capreolus), cattle (Bos taurus), sheep (Ovis aries), and goat (Capra hircus). J Agric Food Chem 54:1144-1150, 2006.
Fernandez A, Garcia T, Asensio L, Rodriguez MA, Gonzalez I, Lobo E. Identification of the clam species Ruditapes decussatus (grooved carpet shell), Venerupis romboides (yellow carpet shell) and Venerupis pullastra (pullet carpet shell) by ELISA. Food and Agricultural Immunology 14:65-71, 2002.
Frezza D, Favaro M, Vaccari G, von-Holst C, Giambra V, Anklam E, Bove D, Battaglia PA, Agrimi U, Brambilla G, Ajmone-Marsan P, Tartaglia M. A competitive polymerase chain reaction-based approach for the identification and semiquantification of mitochondrial DNA in differently heat-treated bovine meat and bone meal. J Food Prot 66:103-109, 2003.
Gallardo JM, Sotelo CG, Pineiro C, Perez-Martin RI. Use of capillary zone electrophoresis for fish species identification. Differentiation of flatfish species. J Agric Food Chem 43:1238-1244, 1995.
Gehrke CW, Wall LL, Absheer JS, Kaiser FE, Zumwalt RW. Sample preparation for chromatography of amino acids: acid hydrolysis of protein. JAOAC 68:811-821, 1985.
Goldsby RA, Kindt TJ, Osborne BA, Kuby J.. Enzymelinked immunosorbent assay. Immunology. W.H. Freeman, & Compan, New York, 148-150, 2003.
Harlow E, Lane D. Using antibodies. A laboratory manual, Cold Spring Harbor Laboratory Press, New York, 1999.
Harris SD, Morris CA, Jackson TC, May SG, Lucia LM, Hale DS, Miller RK, Keeton JT, Savell JW, Acuff GR. Ostrich meat industry development final report to: American Ostrich Association., Texas A&M University System, 348 Kelberg Center, College Station, Texas, 77843-2471, 1993.
Hart RJ, White JA. HPLC analysis of amino acids. In: Nollet LML, ed. HPLC analysis of foods, Marcel Dekker, New York, 75-115, 1992.
Hey J, Posch A, Cohen A, Liu N, Harbers A. Fractionation of complex protein mixtures by liquid-phase isoelectric focusing. Methods Mol Biol 424:225-239, 2008.
Hsieh YH, Sheu SC, Birdgman RC. Development of a monoclonal antibody specific to cooked mammalian meats. J Food Pro 61:476-481, 1998.
Hsu CT, Lyuu HJ, Conte ED, Yang TH, Zen JM. Profiling clinically important metabolites in human urine by an electrochemical system containing disposable electrodes. Sensors and Actuators, B: Chemical B113:22-28, 2006.
Huang T, Marshall MR, Kao K, Otwell WE, Wei C. Development of monoclonal antibodies for red snapper (Lutjanus campechanus) identification using enzyme-linked immunosorbent assay. Agric Food Chem 43:2301-2307, 1995.
Huff-Lonergan E, Parrish FC, Robson RM. Effect of post mortem aging time, animal age, and sex on degradation of titin and nebulin in bovine longissimus muscle. J Anim Sci 73:1064-1073, 1995.
Hunt DJ, Parkes HC, Lumley ID. Identification of the Species of Origin of Raw and Cooked Meat Products Using Oligonucleotide Probes. Food Chem 60:437-442, 1997.
Hunt MC, Kropf DH, Morgan JB. Color measurement of meat and meat products. Proceedings, 46th Reciprocal Meat Conference, AMSA, Chicago, IL, 1993.
Hurley IP, Coleman RC, Ireland HE, Williams JHH. Measurement of bovine IgG by indirect competitive ELISA as a means of detecting milk adulteration. J Dairy Sci 87:215-221, 2004.
Hurley IP, Coleman RC, Ireland HE, Williams JHH. Use of sandwich IgG ELISA for the detection and quantification of adulteration of milk and soft cheese. Inter Dairy J 16:805-812, 2006.
Hwang DF, Jen HC, Hsieh YW, Shiau CY. Applying DNA techniques to the identification of the species of dressed toasted eel products. J Argic Food Chem 52: 5972-5977, 2004.
Jeffrey TK. In: Nollet LML, ed. Food analysis in HPLC 2nd edition, Marcel Dekker, New York, 55-97, 2000.
Jezek J, Suhaj M. Application of capillary isotachophoresis for fruit juice authentication. J Chromatogr A 916:185-189, 2001.
Joseph W. Analytical electrochemistry, 2nd edition, Wiley-VCH, 28 ,1948.
Karlberg B, Gil EP. Flow injection analysis-a practical guide. Elsevier Science, New York, U.S.A. 9-10, 1989.
Kim SH, Huang TS, Seymour TA, Wei CI, Kempf SC, Bridgman CR. Development of immunoassay for detection of meat and bone meal in animal feed. J Food Pro 68:1860-1865, 2005
Krcmar P, Rencova E. Identification of species-specific DNA in feedstuffs. J Agric Food Chem 51:7655-7658, 2003.
Lametsch R, Roepstoref P, Bendixen E. Identification of protein degradation during post-mortem storage of pig meat. J Agric Food Chem 50:5508-5512, 2002.
Leitner A, Castro-Rubio F, Marina ML, Lindner W. Identification of Marker Proteins for the Adulteration of Meat Products with Soybean Proteins by Multidimensional Liquid Chromatography-Tandem Mass Spectrometry. J Proteome Res 5:2424-2430, 2006.
Liu G, Lin YY, Wu H, Lin Y. Voltammetric detection of Cr(VI) with disposable screen-printed electrode modified with gold nanoparticles. Environ Sci Technol 41:8129-8134, 2007.
Lockley AK, Bardsley RG. DNA-based methods for food authentication. Trends Food Sci Technol 11:67-77, 2000.
Lopez-Andreo M, Lugo L, Garrido-Pertierra A, Prieto MI, Puyet A. Identification and quantitation of species in complex DNA mixtures by real-time polymerse chain reaction. Analyt Biochem 339:73-82, 2004.
Lopez-Calleja IM, Gonzalez I, Fajardo V, Hernaindez PE, Garcia T, Martin R. Application of an indirect ELISA and a PCR technique for detection of cow’s milk in sheep’s and goat’s milk cheeses. Inter Dairy J 17:87-93, 2006.
Mala BR, Aparna MT, Mohini SG, Vasanti VD. Molecular and biotechnological aspects of microbial proteases. Microbiology and molecular biology reviews, 62:597-635, 1998.
Maltin C, Balcerzak D, Tiley R, delday M. Determinants of meat quality:tenderness. Proc Nutr Soc 62:337-47, 2003.
Martin R, Azcona JI, Casas C, Hernaindez PE, Sanz B. Sandwich ELISA for detection of porcine meat in raw beef using antisera to muscle soluble proteins. J Food Pro 51:790-794, 1988.
Meyer R, Hofelein C, Luthy J, Candrian U. Polymerase chain reaction-restriction fragment length polymorphism analysis: a simple method for species identification in food. J AOAC Internat 78:1542-1551, 1995.
Mottram DS. Flavour formation in meat and meat products: a review. Food Chem 62:415-424, 1998.
Myers MJ, Yancy HF, Farrell DE. Characterization of a polymerase chain reaction-based approach for the simultaneous detection of multiple animal-derived materials in animal feed. J Food Prot 66:1085-1089, 2003.
Neue UD. HPLC columns, Wiley-VCH, New York, 130-139, 1997.
Otrenba MM, Dikeman ME, Boyle EAE. Refrigerated shelf life of vacuum-packaged, previously frozen ostrich meat. Meat Sci 52:279-283, 1999.
Prusiner SB. Molecular biology and pathogenesis of prion diseases. Trends Biochem Sci 21:482-487, 1996.
Rao VK, Sharma MK, Goel AK, Singh L, Sekhar K. Amperometric immunosensor for the detection of Vibrio cholerae O1 using disposable screen-printed electrodes. Anal Sci 22:1207-1211, 2006.
Rencova E, Svoboda I, Necidova I. Identification by ELISA of poultry, horse, kangaroo, and rat muscle specific proteins in heat processed products. Vet Med 45:353-356, 2000.
Rodbotten M, Kubberod E, Lea P, Ueland O. A sensory map of the meat universe. Sensory profile of meat from 15 species. Meat Sci 68:137-144, 2004.
Rodriguez MA, Garcia T, Gonzalez I, Asensio L, Hernandez PE, Martin R. PCR identification of beef, sheep, goat, and pork in raw and heat-treated meat mixtures. J Food Prot 67:172-177, 2004.
Ronald LS, Patterson JJ, Sheila JJ. Review of current techniques for the verification of the species origin of meat. Analyst 115:501-506, 1990.
Sales J, Hayes JP. Proximate, amino acid and mineral composition of ostrich meat. Food chem 56:167-170, 1996.
Sales J, Marais D, Kruger M. Fat content, caloric value, cholesterol content, and fatty acid composition of raw and cooked ostrich meat. J Food Comp Anal 9:85-89, 1996.
Sandusky CL, Heath JL. Sensory and instrument-measured ground chicken meat color. Poultry Sci 77:481-486, 1997.
Sanjuan A, Comesana AS. Molecular identification of nine flatfish species by polymerase chain reaction-restriction fragment length polymorphism analysis of a segment of the cytochrome b region. J Food Prot 65:1016-1023, 2002.
Sante-Lhoutellier V, Astruc T, Marinova P, Greve E, Gatellier P. Effect of meat cooking on physicochemical state and in vitro digestibility of myofibrillar proteins. J Argic Food Chem 56:1488-1494, 2008.
Sato K, Jin JY, Takeuchi T, Miwa T, Takekoshi Y, Kanno S, Kawase S. Indirect amperometric detection of underivatized amino acids in microcolumn liquid chromatography with carbon film based ring-disk electrodes. Analyst 125:1041-1043, 2000.
Schechler I, Berger A. On the size of the active site in proteases I papain. Biochem Biophys Res Commun 27:157-162,1967.
Schonherr J. Analysis of products of animal origin in feeds by determination of carinosine and related dipeptides by high-performance liquid chromatography. J Agric Food Chem 50:1945-1950, 2002.
Scott RB, George LL. High-performance capillary electrophoresis of meat, dairy, and cereal proteins. Elecrophor 22:4207-4215, 2001.
Simó C, Elvira C, González N. San Román J, Barbas C, Cifuentes A. Capillary electrophoresis-mass spectrometry of basic proteins using a new physically adsorbed polymer coating. Some applications in food analysis. Electrophoresis 25:2056-2064, 2004.
Stewart KK, Beecher GR, Hare PE. Rapid analysis of discrete samples: The use of nonsegmented, continuous flow. Anal Biochem 70:167-173,1976.
Sun YL, Lin CS. Establishment and application of a fluorescent polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method for identifying porcine, caprine, and bovine meats. J Agric Food Chem 51: 1771-1776, 2003.
Tan FJ, Morgan MT, Ludas LI, Forrest JC, Gerrard DE. Assessment of fresh pork color with color machine vision. J Anim Sci 78:3078-3085, 2000.
Taylor RG, Geesink GH, Thompson VF, Koohmaraie M, Goll DE. Is Z-disk degradation responsible for postmortem tenderization? J Anim Sci 73:1351-1367, 1995.
Taylor WJ, Jones JL. An immunoassay for verifying the identity of canned sardines. Food and Agricultural Immunology 4:169-175, 1992.
Tzouros NE, Arvanitoyannis IS. Agricultural produces: Synopsis of employed quality control methods for the authentication of foods and application of chemometrics for the classification of foods according to their variety or geographical origin. Food Sci & Nutri 41:287-319, 2001.
Vallejo-Cordoba BV, Cota-Rivas M. Meat species identification by linear discriminant analysis of capillary electrophoresis protein profiles. J Capillary Electrophor 5:171-175, 1998.
Wang HC, Lee SH, Chang TJ, Wong ML. Examination of meat components in commercial dog and cat feed by using polymerase chain reaction-restriction fragment length polymorphisms(PCR-RFLPs) technique. J Vet Med Sci 66:855-859, 2004.
Wintero AK, Thomsen PD, Davis W. A Comparison of DNA- Hybridization, Immunodiffusion, Countercurrent Immunoelectrophoresis and Isoelectric Focusing for Detecting the Admixture of Pork to Beef. Meat Sci 27:75-85, 1990.
Zellner BA, Dugo P, Dugo G, Mondello L. Gas chromatography-olfactometry in food flavour analysis. J Chromatogr A 1186:123-143, 2008.
Zen JM, Hsu CT, Kumar AS, Lyuu HJ, Lin KY. Amino acid analysis using disposable copper nanoparticle plated electrodes. Analyst 129:841-845, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top