跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/02 01:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳郁淳
研究生(外文):Yu-Chun Chen
論文名稱:鉻與乳鐵蛋白對C57BL/6JNarl小鼠醣類及脂質代謝之影響
論文名稱(外文):Effects of chromium and lactoferrin on carbohydrate and lipid metabolism in C57BL/6JNarl mice
指導教授:毛嘉洪
指導教授(外文):Chia-hung Mao
學位類別:碩士
校院名稱:國立中興大學
系所名稱:獸醫學系暨研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:55
中文關鍵詞:乳鐵蛋白
外文關鍵詞:ChromiumLactoferrin
相關次數:
  • 被引用被引用:1
  • 點閱點閱:397
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究指出微量元素鉻可促進醣類及脂質代謝並增加胰島素敏感性,然而少數文獻指出單獨使用乳鐵蛋白即有相似之功效。本研究利用雄性C57BL/6JNarl (B6) 小鼠來探討鉻元素 (Cr)、乳鐵蛋白 (Lf) 以及兩者合併使用對B6小鼠能量代謝之影響。分別給予B6小鼠四種不同脂質及鉻含量之飼料,發現給予高鉻飲食使血糖值降低並改善其葡萄糖耐受性。將高脂飲食之B6小鼠分為4組,分別為給予Cr、Lf、Cr Lf合併給予以及控制組 (CTRL),餵飼四週後發現合併給予Cr Lf使體重增加量以及肝臟重量明顯減少,但單獨給予Cr或Lf則無法減少體重之增加,由糞便以及尿液中的Cr含量推測,合併給予Cr Lf的組別對Cr之吸收率較單獨給予Cr或Lf的組別高。因此推論,合併使用Cr Lf 可增加Cr的吸收率,並藉由促進脂肪的代謝,減少脂肪組織堆積,導致體重的增加量減少。
Previous studies showed that chromium can improve carbohydrate and lipid metabolism, and also increase insulin sensitivity. Recently, a study indicated that a similar result was found when supplemented with lactoferrin alone. In this study, male C57BL/6JNarl (B6) mice were used to reexamine the effects of chromium (Cr), lactoferrin (Lf) and the combination of Cr and Lf on energy metabolism. B6 mice were fed with four different diets containing different levels of fat and Cr. Mice fed with high Cr diets showed lower levels of fasting blood glucose concentrations and improvement in glucose tolerance test. In the second experiment, supplementation with Cr, Lf, or both were tested in high fat fed mice. After a four weeks supplement, mice with Cr Lf showed lower liver weight and lower body weight gain compared with Cr or Lf alone. A trend of higher Cr content was also found in Cr Lf group. We speculate that using Cr and Lf together can increase the absorption of Cr which promotes lipid metabolism and reduces fat accumulation that leads to less body weight gain.
中文摘要 .................................................i
英文摘要 ................................................ii
目次....................................................iii
表次 .....................................................v
圖次 ...................................................vii
第一章、緒言..............................................1
第二章、文獻探討..........................................3
 第一節、肥胖............................................3
 第二節、肥胖與疾病......................................3
 第三節、微量元素鉻......................................5
 第四節、乳鐵蛋白鉻......................................7
 第五節、乳鐵蛋白........................................7
 第六節、動物模式........................................9
第三章、材料與方法.......................................11
 第一節、實驗動物.......................................11
 第二節、葡萄糖代謝能力評估.............................13
 第三節、試驗分組及流程.................................13
 第四節、鉻元素分析.....................................14
 第五節、統計分析.......................................17
第四章、結果.............................................18
 第一節、高脂飲食對代謝之影響...........................18
  ㄧ、高脂飲食誘導C57BL/6JNarl小鼠肥胖及脂肪組織堆積...18
  二、高脂飲食增加C57BL/6JNarl小鼠血液中膽固醇 (cholesterol, CHOL) 及三酸甘油脂 (triglyceride, TG) 之濃度........23
  三、高脂飲食使C57BL/6JNarl小鼠之禁食血糖值有增加的趨勢,而食用高鉻含量之飼糧使血糖值明顯減少.................25
  四、高脂飲食降低C57BL/6JNarl小鼠對葡萄糖之耐受性,而食用高鉻含量飼糧可改善葡萄糖耐受性.........................27
  五、C57BL/6JNarl小鼠糞便、尿液及組織中鉻元素之分布.......................................................30
 第二節、鉻與乳鐵蛋白對代謝之影響.......................32
  一、併用乳鐵蛋白及鉻 (CrLF) 減少C57BL/6JNarl小鼠體重之增加量及肝臟重量,並使脂肪組織有減少之趨勢...............32
  二、乳鐵蛋白 (Lf) 對C57BL/6JNarl小鼠之膽固醇 (cholesterol, CHOL) 濃度無明顯影響,但使三酸甘油脂 (triglyceride, TG) 顯著增加..............................37
  三、鉻與乳鐵蛋白對C57BL/6JNarl小鼠之禁食血糖值無明顯影響.......................................................39
  四、給予含鉻元素較高之飼糧改善C57BL/6JNarl小鼠對葡萄糖之耐受性.................................................41
  五、C57BL/6JNarl小鼠糞便、尿液及組織中鉻元素之分布...44
第五章、討論.............................................47
參考文獻.................................................50
附錄.....................................................57
Journal Articles:

1.Abu-Abid S, Szold A, Klausner J. Obesity and cancer. J Med. 33: 73-86, 2002.
2.Anderson RA. Chromium, glucose intolerance and diabetes. J Am Coll Nutr. 17: 548-55, 1998.
3.Anderson RA. Chromium in the prevention and control of diabetes. Diabetes Metab. 26: 22-7, 2000.
4.Anderson RA. Chromium metabolism and its role in disease processes in man. Clin Physiol Biochem. 4: 31-41, 1986.
5.Andersson MA, Petersson Grawé KV, Karlsson OM, Abramsson-Zetterberg LA, Hellman BE. Evaluation of the potential genotoxicity of chromium picolinate in mammalian cells in vivo and in vitro. Food Chem Toxicol. 45: 1097-106, 2007.
6.Anderson RA. Effects of chromium on body composition and weight loss. Nutr Rev. 56: 266-70, 1998.
7.Arnold RR, Cole MF, McGhee JR. A bactericidal effect for human lactoferrin. Science. 197: 263-5, 1977.
8.Austin H, Austin JM Jr, Partridge EE, Hatch KD, Shingleton HM. Endometrial cancer, obesity, and body fat distribution. Cancer Res. 51: 568-72, 1991.
9.Bagchi D, Stohs SJ, Downs BW, Bagchi M, Preuss HG. Cytotoxicity and oxidative mechanisms of different forms of chromium. Toxicology. 180: 5-22, 2002.
10.Brautigan DL, Kruszewski A, Wang H. Chromium and vanadate combination increases insulin-induced glucose uptake by 3T3-L1 adipocytes. Biochem Biophys Res Commun. 347: 769-73, 2006.
11.Calle EE, Thun MJ. Obesity and cancer. Oncogene. 23: 6365-78, 2004.
12.Cefalu WT, Hu FB. Role of chromium in human health and in diabetes. Diabetes Care. 27: 2741-51, 2004.
13.Chen WY, Chen CJ, Liu CH, Mao FC. Chromium supplementation enhances insulin signaling in skeletal muscle of obese KK/HlJ diabetic mice. Diabetes Obes Metab. (accepted), 2008.
14.Chen WY, Mao FC. Animal models focus on obese related chronic diseases: A chromium lactoferrin example. AAACU. 15-21, 2006.
15.Chen WY, Mao FC. Chromium-containing milk powder alleviates metabolic risk factors in obese diabetic mice. Diabetes Vasc Dis Res 4: S155, 2007.
16.Clodfelder BJ, Emamaullee J, Hepburn DD, Chakov NE, Nettles HS, Vincent JB. The trail of chromium(III) in vivo from the blood to the urine: the roles of transferrin and chromodulin. J Biol Inorg Chem. 6: 608-17, 2001.
17.Clodfelder BJ, Upchurch RG, Vincent JB. A comparison of the insulin-sensitive transport of chromium in healthy and model diabetic rats. J Inorg Biochem. 98: 522-33, 2004.
18.Collins S, Martin TL, Surwit RS, Robidoux J. Genetic vulnerability to diet-induced obesity in the C57BL/6J mouse: physiological and molecular characteristics. Physiol Behav. 81: 243-8, 2004.
19.Davies S, McLaren Howard J, Hunnisett A, Howard M. Age-related decreases in chromium levels in 51,665 hair, sweat, and serum samples from 40,872 patients--implications for the prevention of cardiovascular disease and type II diabetes mellitus. Metabolism. 46: 469-73, 1997.
20.Davis CM, Sumrall KH, Vincent JB. A biologically active form of chromium may activate a membrane phosphotyrosine phosphatase (PTP). Biochemistry. 35: 12963-9, 1996.
21.Davis CM, Vincent JB. Chromium in carbohydrate and lipid metabolism. J Biol Inorg Chem. 2: 675-9, 1997.
22.Fernández-Real JM, López-Bermejo A, Ricart W. Cross-talk between iron metabolism and diabetes. Diabetes. 51: 2348-54, 2002.
23.Freeman HC, Hugill A, Dear NT, Ashcroft FM, Cox RD. Deletion of nicotinamide nucleotide transhydrogenase: a new quantitive trait locus accounting for glucose intolerance in C57BL/6J mice. Diabetes. 55: 2153-6, 2006.
24.Freeman H, Shimomura K, Cox RD, Ashcroft FM. Nicotinamide nucleotide transhydrogenase: a link between insulin secretion, glucose metabolism and oxidative stress. Biochem Soc Trans. 34: 806-10, 2006.
25.Guerrero-Romero F, Rodríguez-Morán M. Complementary therapies for diabetes: the case for chromium, magnesium, and antioxidants. Arch Med Res. 36: 250-7, 2005.
26.Hunter GR, Kekes-Szabo T, Snyder SW, Nicholson C, Nyikos I, Berland L. Fat distribution, physical activity, and cardiovascular risk factors. Med Sci Sports Exerc. 29: 362-9, 1997.
27.Jain SK, Patel P, Rogier K, Jain SK. Trivalent chromium inhibits protein glycosylation and lipid peroxidation in high glucose-treated erythrocytes. Antioxid Redox Signal. 8: 238-41, 2006.
28.Karbowska J, Kochan Z. Role of adiponectin in the regulation of carbohydrate and lipid metabolism. J Physiol Pharmacol. 57 Suppl 6: 103-13, 2006.
29.Kasuga M. Insulin resistance and pancreatic beta cell failure. J Clin Invest 116: 1756-60, 2006.
30.Katz SA. The analytical biochemistry of chromium. Environ Health Perspect. 92: 13-6, 1991.
31.Kim JK, Gimeno RE, Higashimori T, Kim HJ, Choi H, Punreddy S, Mozell RL, Tan G, Stricker-Krongrad A, Hirsch DJ, Fillmore JJ, Liu ZX, Dong J, Cline G, Stahl A, Lodish HF, Shulman GI. Inactivation of fatty acid transport protein 1 prevents fat-induced insulin resistance in skeletal muscle. J Clin Invest. 113: 756-63, 2004.
32.Kleefstra N, Houweling ST, Jansman FG, Groenier KH, Gans RO, Meyboom-de Jong B, Bakker SJ, Bilo HJ. Chromium treatment has no effect in patients with poorly controlled, insulin-treated type 2 diabetes in an obese Western population: a randomized, double-blind, placebo-controlled trial. Diabetes Care. 29: 521-5, 2006.
33.Kopelman PG. Obesity as a medical problem. Nature 404: 635-43, 2000.
34.Kortt M, Baldry J. The association between musculoskeletal disorders and obesity. Aust Health Rev. 25: 207-14, 2002.
35.Lamson DS, Plaza SM. The safety and efficacy of high-dose chromium. Altern Med Rev. 7: 218-35, 2002.
36.Lin S, Thomas TC, Storlien LH, Huang XF. Development of high fat diet-induced obesity and leptin resistance in C57Bl/6J mice. Int J Obes Relat Metab Disord. 24: 639-46, 2000.
37.Lukaski HC. Chromium as a supplement. Annu Rev Nutr. 19: 279-302, 1999.
38.Machnicki M, Zimecki M, Zagulski T. Lactoferrin regulates the release of tumour necrosis factor alpha and interleukin 6 in vivo. Int J Exp Pathol. 74: 433-9, 1993.
39.Martin J, Wang ZQ, Zhang XH, Wachtel D, Volaufova J, Matthews DE, Cefalu WT. Chromium picolinate supplementation attenuates body weight gain and increases insulin sensitivity in subjects with type 2 diabetes. Diabetes Care. 29: 1826-32, 2006.
40.Martin WR, Fuller RE. Suspected chromium picolinate-induced rhabdomyolysis. Pharmacotherapy. 18: 860-2, 1998.
41.Mertz W. Chromium in human nutrition: a review. J Nutr. 123: 626-33, 1993.
42.Naot D, Grey A, Reid IR, Cornish J. Lactoferrin--a novel bone growth factor. Clin Med Res. 3: 93-101, 2005.
43.Na YJ, Han SB, Kang JS, Yoon YD, Park SK, Kim HM, Yang KH, Joe CO. Lactoferrin works as a new LPS-binding protein in inflammatory activation of macrophages. Int Immunopharmacol. 4: 1187-99. 2004.
44.Pei D, Hsieh CH, Hung YJ, Li JC, Lee CH, Kuo SW. The influence of chromium chloride-containing milk to glycemic control of patients with type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled trial. Metabolism 55: 923-7, 2006.
45.Rogan MP, Geraghty P, Greene CM, O''Neill SJ, Taggart CC, McElvaney NG. Antimicrobial proteins and polypeptides in pulmonary innate defence. Respir Res. 7: 29, 2006.
46.Roussel AM, Andriollo-Sanchez M, Ferry M, Bryden NA, Anderson RA. Food chromium content, dietary chromium intake and related biological variables in French free-living elderly. Br J Nutr. 98: 326-31, 2007.
47.Sahin K, Onderci M, Tuzcu M, Ustundag B, Cikim G, Ozercan IH, Sriramoju V, Juturu V, Komorowski JR. Effect of chromium on carbohydrate and lipid metabolism in a rat model of type 2 diabetes mellitus: the fat-fed, streptozotocin-treated rat. Metabolism. 56: 1233-40, 2007.
48.Schwarz K, Mertz W. A glucose tolerance factor and its differentiation from factor 3. Arch Biochem Biophys. 72: 515-8, 1957.
49.Schwarz K, Mertz W. Chromium (III) and the glucose tolerance factor. Arch Biochem Biophys. 85: 292-5, 1959.
50.Sreekanth R, Pattabhi V, Rajan SS. Molecular basis of chromium insulin interactions. Biochem Biophys Res Commun. 369: 725-9, 2008.
51.Striffler JS, Law JS, Polansky MM, Bhathena SJ, Anderson RA. Chromium improves insulin response to glucose in rats. Metabolism. 44: 1314-20, 1995.
52.Surwit RS, Kuhn CM, Cochrane C, McCubbin JA, Feinglos MN. Diet-induced type II diabetes in C57BL/6J mice. Diabetes. 37: 1163-7, 1988.
53.van der Strate BW, Beljaars L, Molema G, Harmsen MC, Meijer DK. Antiviral activities of lactoferrin. Antiviral Res. 52: 225-39, 2001.
54.Vincent JB. Recent advances in the nutritional biochemistry of trivalent chromium. Proc Nutr Soc. 63: 41-7, 2004.
55.Vincent JB. The biochemistry of chromium. J Nutr. 130: 715-8, 2000.
56.Wang H, Kruszewski A, Brautigan DL. Cellular chromium enhances activation of insulin receptor kinase. Biochemistry. 44: 8167-75, 2005.
57.Wearing SC, Hennig EM, Byrne NM, Steele JR, Hills AP. Musculoskeletal disorders associated with obesity: a biomechanical perspective. Obes Rev. 7: 239-50, 2006.
58.West DB, Boozer CN, Moody DL, Atkinson RL. Dietary obesity in nine inbred mouse strains. Am J Physiol. 262: R1025-32, 1992.
59.WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 363: 157-63, 2004.
60.Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27: 1047-53, 2004.
61.Woo MN, Bok SH, Lee MK, Kim HJ, Jeon SM, Do GM, Shin AK, Ha TY, Choi MS. Anti-obesity and hypolipidemic effects of a proprietary herb and fiber combination (S&S PWH) in rats fed high-fat diets. J Med Food. 11: 169-78, 2008.
62.Yang X, Li SY, Dong F, Ren J, Sreejayan N. Insulin-sensitizing and cholesterol-lowering effects of chromium (D-Phenylalanine)3. J Inorg Biochem. 100: 1187-93, 2006.
63.Zagulski T, Jarzabek Z, Zagulska A, Jaszczak M, Kochanowska IE, Zimecki M. Lactoferrin stimulates killing and clearance of bacteria but does not prevent mortality of diabetic mice. Arch Immunol Ther Exp (Warsz). 49:431-8, 2001.

Electronic Resources:

1.World Health Organization (WHO). Obesity and overweight. 2006. Available at: www.who.int/mediacentre/factsheets/fs311/en/index.html. Accessed 16 July 2008.

United States Patent:

1.Engelmayer J, Varadhachary A. Lactoferrin in the treatment of diabetes mellitus. U.S. Pat. No. 7262279, 2007.
2.Mao CH, Chiang LHC. Trivalent chromium complex compound and milk product containing the same. U.S. Pat. No. 6379693, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top