郭自晏。豬瘟病毒E2醣蛋白之選殖表現及其單株抗體之製備。碩士論文。中興大學。獸醫病理學研究所。台中。台灣。2003。陳筱青。豬瘟病毒對單核球衍生之巨噬細胞的表現型及功能影響。碩士論文。中興大學。獸醫病理學研究所。台中。台灣。2003。Andrew ME, Morrissy CJ, Lenghaus C, Oke PG, Sproat KW, Hodgson AL, Johnson MA, Coupar BE. Protection of pigs against classical swine fever with DNA-delivered gp55. Vaccine. 18(18):1932-8. 2000.
Baigent SJ, Goodbourn S, McCauley JW. Differential activation of interferon regulatory factors-3 and -7 by non-cytopathogenic and cytopathogenic bovine viral diarrhoea virus. Vet Immunol Immunopathol. 100(3-4):135-44. 2004.
Baigent SJ, Zhang G, Fray MD, Flick-Smith H, Goodbourn S, McCauley JW. Inhibition of beta interferon transcription by noncytopathogenic bovine viral diarrhea virus is through an interferon regulatory factor 3-dependent mechanism. J Virol. 76(18):8979-88. 2002.
Bauhofer O, Summerfield A, Sakoda Y, Tratschin JD, Hofmann MA, Ruggli N. Classical swine fever virus Npro interacts with interferon regulatory factor 3 and induces its proteasomal degradation. J Virol. 81(7):3087-96. 2007.
Bauhofer O, Summerfield A, McCullough KC, Ruggli N. Role of double-stranded RNA and Npro of classical swine fever virus in the activation of monocyte-derived dendritic cells Virology. 343(1):93-105. 2005.
Bouma A, De Smit AJ, De Jong MC, De Kluijver EP, Moormann RJ. Determination of the onset of the herd-immunity induced by the E2 sub-unit vaccine against classical swine fever virus. Vaccine. 18(14):1374-81. 2000.
Brown EA, Zhang H, Ping LH, Lemon SM. Secondary structure of the 5'' nontranslated regions of hepatitis C virus and pestivirus genomic RNAs. Nucleic Acids Res. 20(19):5041-5. 1992.
Carrasco CP, Rigden RC, Vincent IE, Balmelli C, Ceppi M, Bauhofer O, Tâche V, Hjertner B, McNeilly F, van Gennip HG, McCullough KC, Summerfield A. Interaction of classical swine fever virus with dendritic cells. J Gen Virol. 85(6):1633-41. 2004.
Carrasco L, Ruiz-Villamor E, Gómez-Villamandos JC, Bautista MJ, Nuñez A, Quezada M, Sierra MA. Atypical Cilia in the Bronchiolar Epithelium of Pigs Experimentally Infected with Hog Cholera Virus J Comp Pathol. 124(1):29-35. 2001.
Campos E, Revilla C, Chamorro S, Alvarez B, Ezquerra A, Domínguez J, Alonso F. In vitro effect of classical swine fever virus on a porcine aortic endothelial cell line. Vet Res. 35(6):625-33. 2004.
Carrasco L, Ruiz-Villamor E, Gómez-Villamandos JC, Bautista MJ, Nuñez A, Quezada M, Sierra MA. Atypical cilia in the bronchiolar epithelium of pigs experimentally infected with hog cholera virus. J Comp Pathol. 124(1):29-35. 2001.
Ceppi M, de Bruin MG, Seuberlich T, Balmelli C, Pascolo S, Ruggli N, Wienhold D, Tratschin JD, McCullough KC, Summerfield A. Identification of classical swine fever virus protein E2 as a target for cytotoxic T cells by using mRNA-transfected antigen-presenting cells. J Gen Virol. 86:2525-34. 2005.
Chen L, Xia YH, Pan ZS, Zhang CY. Expression and functional characterization of classical swine fever virus E(rns) protein. Protein Expr Purif. 55: 379-387. 2007.
Choi C, Chae C. Localization of classical swine fever virus from chronically infected pigs by in situ hybridization and immunohistochemistry. Vet Pathol. 40(1):107-13. 2003.
Clavijo A, Lin M, Riva J, Mallory M, Lin F, Zhou EM. Development of a competitive ELISA using a truncated E2 recombinant protein as antigen for detection of antibodies to classical swine fever virus. Res Vet Sci. 70(1):1-7. 2001.
Collett MS, Anderson DK, Retzel E. Comparisons of the pestivirus bovine viral diarrhoea virus with members of the flaviviridae. J Gen Virol. 69 (10):2637-43. 1988.
Deng MC, Huang CC, Huang TS, Chang CY, Lin YJ, Chien MS, Jong MH. Phylogenetic analysis of classical swine fever virus isolated from Taiwan. Vet Microbiol. 106(3-4):187-93. 2005.
de Schweinitz, EA, Dorset M, A form of hog cholera not caused by the hog-cholera bacillus. US Bureau of Animal Industry. Circular No. 41.1903.
Dong XN, Chen YH. Candidate peptide-vaccines induced immunity against CSFV and identified sequential neutralizing determinants in antigenic domain A of glycoprotein E2. Vaccine. 24(11):1906-13. 2006a.
Dong XN, Qi Y, Ying J, Chen X, Chen YH. Candidate peptide-vaccine induced potent protection against CSFV and identified a principal sequential neutralizing determinant on E2. Vaccine. 24(4):426-34. 2006b.
Dong XN, Wei K, Liu ZQ, Chen YH. Candidate peptide vaccine induced protection against classical swine fever virus. Vaccine. 21(3-4):167-73. 2002.
Dortmans JC, Loeffen WL, Weerdmeester K, van der Poel WH, de Bruin MG. Efficacy of intradermally administrated E2 subunit vaccines in reducing horizontal transmission of classical swine fever virus. Vaccine. 26(9):1235-42. 2008.
Dunne HW. and LemanIn AD. Diseases of Swine, 4th ed. Iowa State Univ Press.1975.
Elbers K, Tautz N, Becher P, Stoll D, Rümenapf T, Thiel HJ. Processing in the pestivirus E2-NS2 region: identification of proteins p7 and E2p7. J Virol. 70(6):4131-5. 1996.
Francki R. I. B, Faquet C. H, Knudson D. L. and Brown F. Fifth report of the international committee on taxonomy of viruses. Archives of Virology. 2: 223-233. 1991.
Ganges L, Núñez JI, Sobrino F, Borrego B, Fernández-Borges N, Frías-Lepoureau MT, Rodríguez F. Recent advances in the development of recombinant vaccines against classical swine fever virus: Cellular responses also play a role in protection. Vet J. 2007.
Gil LH, Ansari IH, Vassilev V, Liang D, Lai VC, Zhong W, Hong Z, Dubovi EJ, Donis RO. The amino-terminal domain of bovine viral diarrhea virus Npro protein is necessary for alpha/beta interferon antagonism. J Virol. 80(2):900-11. 2006.
Gómez-Villamandos JC, García de Leániz I, Núñez A, Salguero FJ, Ruiz-Villamor E, Romero-Trevejo JL, Sánchez-Cordón PJ. Neuropathologic study of experimental classical swine fever. Vet Pathol. 43(4):530-40. 2006.
Greiser-Wilke I, Zimmermann B, Fritzemeier J, Floegel G, Moennig V. Structure and presentation of a World Wide Web database of CSF virus isolates held at the EU reference laboratory. Vet Microbiol. 13;73(2-3):131-6. 2000.
Hahn J, Park SH, Song JY, An SH, Ahn BY. Construction of recombinant swinepox viruses and expression of the classical swine fever virus E2 protein. J Virol Methods. 93(1-2):49-56. 2001.
Hammond JM, Jansen ES, Morrissy CJ, Hodgson AL, Johnson MA. Protection of pigs against ''in contact'' challenge with classical swine fever following oral or subcutaneous vaccination with a recombinant porcine adenovirus. Virus Res. 97(2):151-7. 2003.
Hanson R. P. Origin of hog cholera. J. Am. Vet. Med. Assoc. 131: 211–218. 1957.
Harlow E and Lane D. Monoclonal antibodies. In Antibodies A Laboratory Manual. 1st ed. Cold Spring Harbor Laboratory Printed. USA. pp. 139-244. 1988.
Hervé R. M, Torsten S, Oliver B, Lea C. B, Jon-Duri T, Martin A. H and Nicolas R. Nonstructural proteins NS2-3 and NS4A of classical swine fever virus: essential features for infectious particle formation. Virology. 365: 376-389. 2007.
Hilton L, Moganeradj K, Zhang G, Chen YH, Randall RE, McCauley JW, Goodbourn S. The NPro product of bovine viral diarrhea virus inhibits DNA binding by interferon regulatory factor 3 and targets it for proteasomal degradation. J Virol. 80(23):11723-32. 2006.
Hulst MM, Panoto FE, van Gennip HG, Moormann RJ. Passage of classical swine fever virus in cultured swine kidney cells selects virus variants that bind to heparan sulfate due to a single amino acid change in envelope protein Erns. Journal of Virology, 74(20): 9553-9561. 2000.
Hulst MM, Panoto FE, Hoekman A, van Gennip HG, Moormann RJ. Inactivation of the RNase activity of glycoprotein E(rns) of classical swine fever virus results in a cytopathogenic virus. J Virol. 72(1):151-7. 1998.
Isken O, Grassmann CW, Yu H, Behrens SE. Complex signals in the genomic 3'' nontranslated region of bovine viral diarrhea virus coordinate translation and replication of the viral RNA. RNA. 10(10):1637-52. 2004.
Kaden V, Lange E, Steyer H, Lange B, Klopfleisch R, Teifke JP, Bruer W. Classical swine fever virus strain "C" protects the offspring by oral immunisation of pregnant sows. Vet Microbiol. 2008.
Koenig P, Hoffmann B, Depner KR, Reimann I, Teifke JP, Beer M. Detection of classical swine fever vaccine virus in blood and tissue samples of pigs vaccinated either with a conventional C-strain vaccine or a modified live marker vaccine. Vet Microbiol. 120(3-4):343-51. 2007.
Klinkenberg D, Moormann RJ, de Smit AJ, Bouma A, de Jong MC. Influence of maternal antibodies on efficacy of a subunit vaccine: transmission of classical swine fever virus between pigs vaccinated at 2 weeks of age. Vaccine. 20(23-24):3005-13. 2002.
Kümmerer BM, Tautz N, Becher P, Thiel H, Meyers G. The genetic basis for cytopathogenicity of pestiviruses. Vet Microbiol. 77(1-2):117-28. 2000.
Kwang J, Littledike ET, Donis RO, Dubovi EJ. Recombinant polypeptide from the gp48 region of the bovine viral diarrhea virus (BVDV) detects serum antibodies in vaccinated and infected cattle. Vet Microbiol. 32(3-4):281-92. 1992.
La Rocca SA, Herbert RJ, Crooke H, Drew TW, Wileman TE, Powell PP. Loss of interferon regulatory factor 3 in cells infected with classical swine fever virus involves the N-terminal protease, Npro. J Virol. 79(11):7239-47. 2005.
Lai VC, Zhong W, Skelton A, Ingravallo P, Vassilev V, Donis RO, Hong Z, Lau JY. Generation and characterization of a hepatitis C virus NS3 protease-dependent bovine viral diarrhea virus. J Virol. 74(14):6339-47. 2000.
Li N, Qiu HJ, Zhao JJ, Li Y, Wang MJ, Lu BW, Han CG, Hou Q, Wang ZH, Gao H, Peng WP, Li GX, Zhu QH, Tong GZ.A Semliki Forest virus replicon vectored DNA vaccine expressing the E2 glycoprotein of classical swine fever virus protects pigs from lethal challenge. Vaccine. 25: 2907-2912. 2007.
Lipowski A, Drexler C, Pejsak Z. Safety and efficacy of a classical swine fever subunit vaccine in pregnant sows and their offspring. Vet Microbiol. 77(1-2):99-108. 2000.
Lin YJ, Chien MS, Deng MC, Huang CC. Complete sequence of a subgroup 3.4 strain of classical swine fever virus from Taiwan. Virus Genes. 35(3):737-44. 2007.
Lin M, Lin F, Mallory M, Clavijo A. Deletions of structural glycoprotein E2 of classical swine fever virus strain alfort/187 resolve a linear epitope of monoclonal antibody WH303 and the minimal N-terminal domain essential for binding immunoglobulin G antibodies of a pig hyperimmune serum. J Virol. 74(24):11619-25. 2000.
Liu S, Tu C, Wang C, Yu X, Wu J, Guo S, Shao M, Gong Q, Zhu Q, Kong X. The protective immune response induced by B cell epitope of classical swine fever virus glycoprotein E2. J Virol Methods. 134: 125-129. 2006.
Liu S, Yu X, Wang C, Wu J, Kong X, Tu C. Quadruple antigenic epitope peptide producing immune protection against classical swine fever virus. Vaccine. 24: 7175-7180. 2006.
Liu JJ, Wong ML and Chang TJ. The recombinant nucleocapsid protein of classical swine fever virus can act as a transcriptional regulator. Virol Res. 53: 75-80. 1998.
Loan RW, Gustafson DP. Persistent infections of subculturable swine buffy coat cells. Am J Vet Res. 25: 1120-1123. 1964.
Mayr A, Bachmann PA, Sheffy BE, Siegl G.. Morphological characteristics of siwne fever virus. Vet Rec. 82: 745-746. 1968.
Meyers G, Thiel HJ, Rümenapf T. Classical swine fever virus: recovery of infectious viruses from cDNA constructs and generation of recombinant cytopathogenic defective interfering particles. J Virol. 70(3):1588-95. 1996.
Meyers G, Thiel HJ. Molecular characterization of pestiviruses. Adv Virus Res. 47:53-118. 1996.
Moennig V. Pestiviruses: a review. Vet. Microbiol. 23: 35–54. 1990.
Moormann RJ, Bouma A, Kramps JA, Terpstra C, De Smit HJ. Development of a classical swine fever subunit marker vaccine and companion diagnostic test. Vet Microbiol. 13;73(2-3):209-19. 2000.
Moormann RJ, Warmerdam PA, van der Meer B, Schaaper WM, Wensvoort G, Hulst MM. Molecular cloning and nucleotide sequence of hog cholera virus strain Brescia and mapping of the genomic region encoding envelope protein E1. Virology. 177(1):184-98. 1990.
Moser C, Stettler P, Tratschin JD, Hofmann MA. Cytopathogenic and noncytopathogenic RNA replicons of classical swine fever virus. J Virol. 73(9):7787-94. 1999.
Moulin HR, Seuberlich T, Bauhofer O, Bennett LC, Tratschin JD, Hofmann MA, Ruggli N. Nonstructural proteins NS2-3 and NS4A of classical swine fever virus: essential features for infectious particle formation. Virology. 365(2):376-89. 2007
Muylaert I R, Galler R, and Rice C M. Genetic analysis of the yellow fever virus NS1 protein: identification of a temperature-sensitive mutation which blocks RNA accumulation. J Virol. 71(1): 291–298. 1997.
Pande A, Carr BV, Wong SY, Dalton K, Jones IM, McCauley JW, Charleston B. The glycosylation pattern of baculovirus expressed envelope protein E2 affects its ability to prevent infection with bovine viral diarrhoea virus. Virus Res. 114: 54-62. 2005.
Paton DJ, Greiser-Wilke I. Classical swine fever- an update. RVS. 75: 169-178. 2003.
Paton DJ, Lowings JP, Barrett AD. Epitope mapping of the gp53 envelope protein of bovine viral diarrhea virus. Virology. 190(2):763-72. 1992.
Piccininni S, Varaklioti A, Nardelli M, Dave B, Raney KD, McCarthy JE. Modulation of the hepatitis C virus RNA-dependent RNA polymerase activity by the non-structural (NS) 3 helicase and the NS4B membrane protein. J Biol Chem. 277(47):45670-9. 2002.
Rau H, Revets H, Balmelli C, McCullough KC, Summerfield A. Immunological properties of recombinant classical swine fever virus NS3 protein in vitro and in vivo. Vet Res. 37(1):155-68. 2006.
Ribbens S, Dewulf J, Koenen F, Maes D, de Kruif A. Evidence of indirect transmission of classical swine fever virus through contacts with people. Vet Rec. 160(20):687-90. 2007.
Risatti GR, Holinka LG, Fernandez Sainz I, Carrillo C, Kutish GF, Lu Z, Zhu J, Rock DL, Borca MV. Mutations in the carboxyl terminal region of E2 glycoprotein of classical swine fever virus are responsible for viral attenuation in swine. Virology. 364(2):371-82. 2007.
Risatti GR, Holinka LG, Fernandez Sainz I, Carrillo C, Lu Z, Borca MV. N-linked glycosylation status of classical swine fever virus Strain Brescia E2 glycoprotein influences virulence in swine. J Virol. 81(2): 924-933. 2007.
Risatti GR, Holinka LG, Lu Z, Kutish GF, Tulman ER, French RA, Sur JH, Rock DL, Borca MV. Mutation of E1 glycoprotein of classical swine fever virus affects viral virulence in swine. Virology. 343(1):116-27. 2005.
Risatti GR, Borca MV, Kutish GF, Lu Z, Holinka LG, French RA, Tulman ER, Rock DL. The E2 glycoprotein of classical swine fever virus is a virulence determinant in swine. J Virol. 79(6):3787-96. 2005.
Risatti GR, Holinka LG, Carrillo C, Kutish GF, Lu Z, Tulman ER, Sainz IF, Borca MV. Identification of a novel virulence determinant within the E2 structural glycoprotein of classical swine fever virus. Virology. 355: 94-101. 2006.
Rümenapf T, Meyers G, Stark R, Thiel HJ. Hog cholera virus--characterization of specific antiserum and identification of cDNA clones. Virology. 171(1):18-27. 1989.
Ruggli N, Tratschin JD, Schweizer M, McCullough KC, Hofmann MA, Summerfield A. Classical swine fever virus interferes with cellular antiviral defense: evidence for a novel function of N(pro). J Virol. 77(13):7645-54. 2003.
Rümenapf T, Stark R, Meyers G, Thiel HJ. Structural proteins of hog cholera virus expressed by vaccinia virus: further characterization and induction of protective immunity. J Virol. 65(2):589-97. 1991
Sánchez O, Barrera M, Rodríguez MP, Frías MT, Figueroa NE, Naranjo P, Montesino R, Farnos O, Castell S, Venereo A, Ganges L, Borroto C, Toledo JR. Classical swine fever virus E2 glycoprotein antigen produced in adenovirally transduced PK-15 cells confers complete protection in pigs upon viral challenge. Vaccine. 26(7):988-97. 2008.
Sainz IF, Holinka LG, Lu Z, Risatti GR, Borca MV. Removal of a N-linked glycosylation site of classical swine fever virus strain Brescia Erns glycoprotein affects virulence in swine. Virology. 370(1):122-9. 2008.
Sánchez-Cordón PJ, Núñez A, Salguero FJ, Pedrera M, Fernández de Marco M, Gómez-Villamandos JC. Lymphocyte apoptosis and thrombocytopenia in spleen during classical swine fever: role of macrophages and cytokines. Vet Pathol. 42: 477-488. 2005.
Sánchez-Cordón PJ, Romanini S, Salguero FJ, Ruiz-Villamor E, Carrasco L, Gómez-Villamandos JC. A histopathologic, immunohistochemical, and ultrastructural study of the intestine in pigs inoculated with classical swine fever virus. Vet Pathol. 40(3):254-62. 2003.
Sato M, Mikami O, Kobayashi M, Nakajima Y. Apoptosis in the lymphatic organs of piglets inoculated with classical swine fever virus. Vet Microbiol. 75(1):1-9. 2000.
Schneider R, Unger G, Stark R, Schneider-Scherzer E, and Thiel HJ. Identification of a structural glycoprotein of an RNA virus as a ribonuclease. Science. 5125, 1169-1171. 1993.
Sheng C, Xiao M, Geng X, Liu J, Wang Y, Gu F. Characterization of interaction of classical swine fever virus NS3 helicase with 3'' untranslated region. Virus Res. 129(1):43-53. 2007
Shirako Y, Strauss JH. Regulation of Sindbis virus RNA replication: uncleaved P123 and nsP4 function in minus-strand RNA synthesis, whereas cleaved products from P123 are required for efficient plus-strand RNA synthesis. J Virol. 68(3):1874-85. 1994.
Straw BE, Zimmerman JJ, D’ Allaire S and Taylor DJ. Disease of swine. 9th ed. Blackwell Publish, 2006.
Summerfield A, Knötig SM, McCullough KC. Lymphocyte apoptosis during classical swine fever: implication of activation-induced cell death. J Virol. 72(3):1853-61. 1998.
Susa M, König M, Saalmüller A, Reddehase MJ, Thiel HJ. Pathogenesis of classical swine fever: B-lymphocyte deficiency caused by hog cholera virus. J Virol. 66(2):1171-5. 1992.
Thiel H J, Stark R, Weiland E, Rümenapf T, and Meyers G. Hog cholera virus: molecular composition of virions from a pestivirus. J Virol. 65(9): 4705–4712. 1991.
van Gennip HG, van Rijn PA, Widjojoatmodjo MN, de Smit AJ, Moormann RJ. Chimeric classical swine fever viruses containing envelope protein Erns or E2 of bovine viral diarrhoea virus protect pigs against challenge with CSFV and induce a distinguishable antibody response. Vaccine. 19(4-5):447-59. 2000.
van Rijn PA, Bossers A, Wensvoort G, Moormann RJ. Classical swine fever virus (CSFV) envelope glycoprotein E2 containing one structural antigenic unit protects pigs from lethal CSFV challenge. J Gen Virol. 77( 11):2737-45. 1996.
van Rijn PA, van Gennip HG, de Meijer EJ, Moormann RJ. Epitope mapping of envelope glycoprotein E1 of hog cholera virus strain Brescia. J Gen Virol. 74 (10):2053-60. 1993.
van Rijn PA. A common neutralizing epitope on envelope glycoprotein E2 of different pestiviruses: implications for improvement of vaccines and diagnostics for classical swine fever (CSF)? Vet Microbiol. 25(1-2):150-6. 2007.
van Rijn PA, van Gennip HG, Moormann RJ. An experimental marker vaccine and accompanying serological diagnostic test both based on envelope glycoprotein E2 of classical swine fever virus (CSFV). Vaccine. 5:17(5):433-40. 1999.
van Oers MM, Thomas AA, Moormann RJ, Vlak JM. Secretory pathway limits the enhanced expression of classical swine fever virus E2 glycoprotein in insect cells. J Biotechnol. 86(1):31-8. 2001
Voigt H, Wienhold D, Marquardt C, Muschko K, Pfaff E, Buettner M. Immunity against NS3 protein of classical swine fever virus does not protect against lethal challenge infection. Viral Immunol. 20(3):487-94. 2007.
Wang Y, Wang Q, Lu X, Zhang C, Fan X, Pan Z, Xu L, Wen G, Ning Y, Tang F, Xia Y. 12-nt insertion in 3'' untranslated region leads to attenuation of classic swine fever virus and protects host against lethal challenge. Virology. 2008.
Wang Z, Nie Y, Wang P, Ding M, Deng H. Characterization of classical swine fever virus entry by using pseudotyped viruses: E1 and E2 are sufficient to mediate viral entry. Virology. 330(1):332-41. 2004.
Weiland F, Weiland E, Unger G, Saalmüller A, Thiel HJ. Localization of pestiviral envelope proteins E(rns) and E2 at the cell surface and on isolated particles. J Gen Virol. 80: 1157-65. 1999.
Weiland E, Stark R, Haas B, Rümenapf T, Meyers G, Thiel HJ. Pestivirus glycoprotein which induces neutralizing antibodies forms part of a disulfide-linked heterodimer. J Virol. 64(8):3563-9. 1990.
Wensvoort G, Boonstra J, Bodzinga BG. Immunoaffinity purification and characterization of the envelope protein E1 of hog cholera virus. J Gen Virol. 71 (3):531-40. 1990.
Wen G, Chen C, Luo X, Wang Y, Zhang C, Pan Z. Identification and characterization of the NTPase activity of classical swine fever virus (CSFV) nonstructural protein 3 (NS3) expressed in bacteria. Arch Virol. 152(8):1565-73. 2007.
Wensvoort G, Terpstra C, de Kluijver EP, Kragten C, Warnaar JC. Antigenic differentiation of pestivirus strains with monoclonal antibodies against hog cholera virus. Vet Microbiol. 21(1):9-20. 1989.
Wensvoort G, Bloemraad M, Terpstra C. An enzyme immunoassay employing monoclonal antibodies and detecting specifically antibodies to classical swine fever virus. Vet Microbiol. 17(2):129-40. 1988.
Westaway EG, Mackenzie JM, Kenney MT, Jones MK, Khromykh AA. Ultrastructure of Kunjin virus-infected cells: colocalization of NS1 and NS3 with double-stranded RNA, and of NS2B with NS3, in virus-induced membrane structures. J Virol. 71(9):6650-61. 1997.
Wilchek M, Oka T, Topper YJ. Structure of a soluble super-active insulin is revealed by the nature of the complex between cyanogen-bromide-activated sepharose and amines. Proc Natl Acad Sci U S A. 72(3):1055-8. 1975.
Wienhold D, Armengol E, Marquardt A, Marquardt C, Voigt H, Büttner M, Saalmüller A, Pfaff E. Immunomodulatory effect of plasmids co-expressing cytokines in classical swine fever virus subunit gp55/E2-DNA vaccination. Vet Res. 36(4):571-87. 2005.
Xiao M, Bai Y, Xu H, Geng X, Chen J, Wang Y, Chen J, Li B. Effect of NS3 and NS5B proteins on classical swine fever virus internal ribosome entry site-mediated translation and its host cellular translation. J Gen Virol. 89(4):994-9. 2008.
Xiao M, Gao J, Wang W, Wang Y, Chen J, Chen J, Li B. Specific interaction between the classical swine fever virus NS5B protein and the viral genome. Eur J Biochem. 271(19):3888-96. 2004.
Yu M, Wang LF, Shiell BJ, Morrissy CJ, Westbury HA. Fine mapping of a C-terminal linear epitope highly conserved among the major envelope glycoprotein E2 (gp51 to gp54) of different pestiviruses. Virology. 222(1):289-92. 1996.
Yu X, Tu C, Li H, Hu R, Chen C, Li Z, Zhang M, Yin Z. DNA-mediated protection against classical swine fever virus. Vaccine. 8;19(11-12):1520-5. 2001.
Zaffuto KM, Piccone ME, Burrage TG, Balinsky CA, Risatti GR, Borca MV, Holinka LG, Rock DL, Afonso CL. Classical swine fever virus inhibits nitric oxide production in infected macrophages. J Gen Virol. 88: 3007-3012. 2007.