跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 05:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝獲光
研究生(外文):Huo-Kuang Hsieh
論文名稱:以realtimePCR檢測弱毒豬瘟病毒感染後組織分佈
論文名稱(外文):Virus Distribution and Loading in Pigs Experimentally Infected with a Low Virulent Classical Swine Fever Virus Using Real Time PCR Assay
指導教授:李維誠李維誠引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:獸醫病理生物學研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:74
中文關鍵詞:弱毒株豬瘟病毒回毒組織分佈
外文關鍵詞:low virulent CSFVre-virulenceviral distribution and loading
相關次數:
  • 被引用被引用:2
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
豬瘟 (Classical swine fever, CSF)為高傳染性之豬隻疾病,在豬隻可引起急性、亞急性至慢性感染,且造成豬場的重大經濟損失。慢性豬瘟感染通常缺乏特異性之症狀,常無法藉由臨床症狀以及組織病變來診斷,因此常被忽略而持續存在於汙染牧場中。本實驗針對2006年由一豬瘟污染場分離之弱毒株豬瘟病毒RL06-2進行SPF豬隻攻毒試驗,評估此弱毒病毒株經活體內繼代是否有回毒之情形,並以real time PCR以及免疫組織化學染色分析病毒感染後組織分布情形。本實驗豬隻選用SPF豬9頭,分為G0、G1、G2三組,每組各3頭豬。G0組豬隻以RL06-2病毒(未回毒)攻毒,G1組豬隻以RL06-2病毒回毒一次之組織乳劑攻毒,G2組豬隻則以G1組豬隻脫纖毒血(回毒兩次)攻毒。結果G0組豬隻有一頭(7號豬)呈現典型急性豬瘟感染及病變致死,致死率33.33% (1/3),其餘兩頭呈暫時性發燒經過,內臟亦無出血病灶。而G1及G2組豬隻均呈急性豬瘟致死,致死率100%。以real time PCR檢測結果則是在G1、G2組豬隻各臟器幾乎都可測得高量之豬瘟病毒,G0組豬隻則僅有2~5個臟器可測得豬瘟病毒。免疫組織化學染色結果,在G1、G2組以及G0組7號豬各臟器幾乎都可測得豬瘟病毒E2蛋白,但G0組8號及9號豬在全身臟器皆無法偵測到豬瘟病毒E2蛋白。經活體回毒後之豬瘟病毒與RL06-2病毒株比較,在E2僅有一核苷酸發生改變,胺基酸序列並無變化,因此病毒763位置之胺基酸序列變異點可能不是與病毒毒力相關之胺基酸。綜合以上結果,此弱毒豬瘟病毒在感染沒有抗體保護的豬隻可導致病毒毒力之快速回復,若豬瘟免疫不當或失效,有助於牧場內潛在豬瘟病毒毒力之回復,造成疫情嚴重之發生。
Classical swine fever (CSF) is a highly contagious disease in swine. CSF virus (CSFV) can cause acute, subacute and chronic infections, and result in serious economic losses. Due to absence of pathognomonic lesions and co-infection with other pathogens, diagnosis of chronic CSF based on clinical signs and pathological lesions become very difficult. Therefore, occurrence of chronic CSFV is often ignored and makes the virus persist in pig farms. The purpose of this study was to evaluate viral distribution and loading in SPF pigs experimentally infected with a low virulent CSFV RL06-2, which isolated from a farm with chronic CSF in 2006, by using real time PCR and immunohistochemistry. The possibility of re-virulence of the virus after passaged in vivo was also evaluated. Nine SPF pigs were divided into three groups (G0, G1 and G2), 3 pigs per group. Pigs of G0 were inoculated with CSFV RL06-2 isolate; pigs of G1 were inoculated with tissue homogenate from RL06-2 challenged pig and pigs of G2 were inoculated with defibrinous blood of G1 experimental pigs. One pig of group G0 (pig No.7) died of acute CSF and other two pigs showed only intermittent fever and no hemorrhagic lesion in most of the internal organs. The fatality of group G0 was 33.33% (1/3). All pigs of group G1 and G2 died of acute CSF and the fatality of was 100% (3/3). There were high virus loading or CSFV viral E2 protein in most organs of pigs in G1 and G2 and one pig (no.7) in G0 detected by real time PCR assay and IHC, respectively. In contrast, there were only 2 ~ 5 organs positive for CSFV in pigs of G0. There was only one nucleotide mutation and no mutation in amino acid sequences in the E2 sequences of the parent CSFV RL06-2 isolate after two passaged in vivo. Thus, the mutation at position 763 of CSFV E2 amino acid sequence, which has been suspected in previous research, might not be associated with the virulence of CSFV. Conclusively, the low virulent CSFV RL06-2 can recover its virulence back after passages in susceptible pigs without antibody protection. Therefore, it is possible that the endemic CSFV may become virulent leading acute CSF, if the CSFV vaccination is incomplete or failure.
中文摘要--------------------------------------------------------------------------------i
英文摘要--------------------------------------------------------------------------------ii
目錄--------------------------------------------------------------------------------iv
圖表目次--------------------------------------------------------------------------------vi
第一章 前言-----------------------------------------------------------------------1
第二章 文獻探討-----------------------------------------------------------------3
一、豬瘟--------------------------------------------------------------------------3
二、豬瘟病毒基因與蛋白-----------------------------------------------------3
三、致病機轉--------------------------------------------------------------------5
四、豬瘟臨床與病理變化------------------------------------------------------6
五、豬瘟病毒感染後的組織分佈--------------------------------------------9
六、豬瘟病毒之毒力評估-----------------------------------------------------11
七、即時聚合酵素連鎖反應(Real time PCR)及在豬瘟診斷上之應用 13
八、豬瘟監控與預防-----------------------------------------------------------16
第三章 弱毒豬瘟病毒感染後組織分佈以及病毒回毒能力評估-----------19
一、實驗目的與實驗設計-----------------------------------------------------19
二、材料與方法-----------------------------------------------------------------20
2-1 病毒與乳劑-----------------------------------------------------------20
2-2 豬腎臟細胞株(PK-15)----------------------------------------------20
2-3 周邊血液單核細胞--------------------------------------------------20
2-4豬瘟抗體ELISA檢測-----------------------------------------------21
2-5 實驗動物--------------------------------------------------------------21
2-6 病理學檢查-----------------------------------------------------------22
2-7 細胞內豬瘟病毒抗原檢偵測--------------------------------------22
2-8 豬瘟病毒免疫組織化學染色--------------------------------------23
2-9 豬瘟反轉錄聚合酵素連鎖反應(RT-PCR)-----------------------24
2-10 豬瘟即時聚合酵素連鎖反應(Real time PCR)-----------------26
2-11 豬瘟病毒力價測定-------------------------------------------------27
2-12 豬瘟病毒之E2序列分析-----------------------------------------28
2-13 豬瘟病毒之毒力評估----------------------------------------------28
三、結果--------------------------------------------------------------------------30
3-1 臨床症狀評估--------------------------------------------------------30
3-2 病理學檢查與病理病變評估--------------------------------------31
3-3 豬瘟病毒抗體及抗原檢測-----------------------------------------32
3-4 豬瘟即時聚合酵素連鎖反應--------------------------------------32
3-5 豬瘟病毒免疫組織化學染色--------------------------------------33
3-6 豬瘟病毒之E2序列分析-------------------------------------------34
四、討論--------------------------------------------------------------------------------54
參考文獻--------------------------------------------------------------------------------64
蔡佳錚。豬瘟持續污染場豬瘟病毒基因序列與毒力之變異性。碩士論文。國立中興大學獸醫病理學研究所。台中市。中華民國。2007。
黃億銘。利用流體細胞儀及Time-resolved fluorometer建立非放射性細胞毒殺作用分析法及豬瘟病毒感染與毒殺細胞交互關係之討論。碩士論文。國立中興大學獸醫病理學研究所。台中市。中華民國。1999。
Bauhofer O, Summerfield A, Sakoda Y, Tratschin JD, Hofmann MA, Ruggli N. Classical swine fever virus Npro interacts with interferon regulatory factor 3 and induces its proteasomal degradation. J Virol. 81: 3087-3096, 2007.
Bengtsson M, Karlsson HJ, Westman G, and Kubista M. A new minor groove binding asymmetric cyanine reporter dye for real-time PCR. Nucleic Acids Res. 31: e45, 2003.
Bruschke CJ, Hulst MM, Moormann RJ, van Rijn PA, and van Oirschot JT. Glycoprotein Erns of pestiviruses induces apoptosis in lymphocytes of several species. J Virol. 71 : 6692-6696, 1997.
Cho HS, Park SJ, and Park NY. Development of a reverse-transcription polymerase chain reaction assay with fluorogenic probes to discriminate Korean wild-type and vaccine isolates of Classical swine fever virus. Can J Vet Res. 70: 226-229, 2006.
Choi C, and Chae C. Localization of classical swine fever virus from chronically infected pigs by in situ hybridization and immunohistochemistry. Vet Pathol. 40: 107-113, 2003.
de las Mulas JM, Ruiz-Villamor E, Donoso S, Quezada M, Lecocq C, and Sierra MA. Immunohistochemical detection of hog cholera viral glycoprotein 55 in paraffin-embedded tissues. J Vet Diagn Invest. 9 : 10-16, 1997.
Deng MC, Huang CC, Huang TS, Chang CY, Lin YJ, Chien MS, and Jong MH. Phylogenetic analysis of classical swine fever virus isolated from Taiwan. Vet Microbiol. 106: 187-193, 2005.
Deng MY, Wang H, Ward GB, Beckham TR, and McKenna TS. Comparison of six RNA extraction methods for the detection of classical swine fever virus by real-time and conventional reverse transcription-PCR. J Vet Diagn Invest. 17: 574-578, 2005.
Depner K, Bunzenthal C, Heun-Münch B, Strebelow G, Hoffmann B, and Beer M. Diagnostic evaluation of a real-time RT-PCR assay for routine diagnosis of classical swine fever in wild boar. J Vet Med B Infect Dis Vet Public Health. 53: 317-320, 2006.
Depner K, Hoffmann B, and Beer M. Evaluation of real-time RT-PCR assay for the routine intra vitam diagnosis of classical swine fever. Vet Microbiol. 121: 338-343, 2007.
Depner KR, Lange E, Pontrakulpipat S, and Fichtner D. Does porcine reproductive and respiratory syndrome virus potentiate classical swine fever virus infection in weaner pigs? J Vet Med B. 46 : 485-491, 1999.
Dewulf J, Laevens H, Koenen F, Mintiens K, and De Kruif A. An experimental infection with classical swine fever virus in pregnant sows: transmission of the virus, course of the disease, antibody response and effect on gestation. J Vet Med B Infect Dis Vet Public Health. 48: 583-591, 2001.
Edwards S. Survival and inactivation of classical swine fever virus. Vet. Microbiol. 73: 175-181, 2000.
Floegel G, Wehrend A, Depner KR, Fritzemeier J, Waberski D, and Moennig V. Detection of classical swine fever virus in semen of infected boars. Vet Microbiol. 77: 109-116, 2000.
Floegel-Niesmann G, Bunzenthal C, Fischer S, and Moennig V. Virulence of recent and former classical swine fever virus isolates evaluated by their clinical and pathological signs. J Vet Med B Infect Dis Vet Public Health. 50: 214-220, 2003.
Gómez-Villamandos JC, García de Leániz I, Núñez A, Salguero FJ, Ruiz-Villamor E, Romero-Trevejo JL, and Sánchez-Cordón PJ. Neuropathologic study of experimental classical swine fever. Vet Pathol. 43 : 530-540, 2006.
Gómez-Villamandos JC, Ruiz-Villamor E, Salguero FJ, Bautista MJ, Carrasco L, Sánchez C, Quezada M, and Sierra MA. Immunohistochemical and
ultrastructural evidence of hog cholera virus infection of megakaryocytes in bone marrow and spleen. J Comp Pathol. 119 : 111-119, 1998. 82: 179-84, 1995.
Gómez-Villamandos JC, Salguero FJ, Ruiz-Villamor E, Sánchez-Cordón PJ, Bautista MJ, and Sierra MA. Classical Swine Fever: pathology of bone marrow. Vet Pathol. 40 : 157-163, 2003.
Gruber A, Depner KR and Liess B. Experimental infection of weaner pigs with a field isolate of hog cholera / classical swine fever virus derived from a recent outbreak in Lower Saxony. II. Pathological findings. Wien Tierarztl Monatsschr. 82 : 179–184, 1995.
Handel K, Kehler H, Hills K, and Pasick J. Comparison of reverse transcriptase-polymerase chain reaction, virus isolation, and immunoperoxidase assays for detecting pigs infected with low, moderate, and high virulent strains of classical swine fever virus. J Vet Diagn Invest. 16 : 132-138, 2004.
Higuchi R, Dollinger G, Walsh PS, and Griffith R. Simultaneous amplification and detection of specific DNA sequences. Biotechnology. 10 : 413-417, 1992.
Hilton L, Moganeradj K, Zhang G, Chen YH, Randall RE, McCauley JW, Goodbourn S. The NPro product of bovine viral diarrhea virus inhibits DNA binding by interferon regulatory factor 3 and targets it for proteasomal degradation. J Virol. 80: 11723-11732, 2006.
Hoffmann B, Beer M, Schelp C, Schirrmeier H, and Depner K. Validation of a real-time RT-PCR assay for sensitive and specific detection of classical swine fever. J Virol Methods. 130 : 36-44, 2005.
Horscroft N, Bellows D, Ansari I, Lai VC, Dempsey S, Liang D, Donis R, Zhong W, Hong Z. Establishment of a subgenomic replicon for bovine viral diarrhea virus in Huh-7 cells and modulation of interferon-regulated factor 3-mediated antiviral response. J Virol. 79: 2788-2796, 2005.
Hulst MM, Westra DF, Wensvoort G, and Moormann RJ. Glycoprotein E1 of hog cholera virus expressed in insect cells protects swine from hog cholera. J Virol. 67 : 5435-5442, 1993.
Knoetig SM, Summerfield A, Spagnuolo-Weaver M, McCullough KC. Immunopathogenesis of classical swine fever: role of monocytic cells. Immunology. 97: 359-366, 1999.
Koenig P, Hoffmann B, Depner KR, Reimann I, Teifke JP, and Beer M. Detection of classical swine fever vaccine virus in blood and tissue samples of pigs vaccinated either with a conventional C-strain vaccine or a modified live marker vaccine. Vet Microbiol. 120 : 343-351, 2007.
Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonák J, Lind K, Sindelka R, Sjöback R, Sjögreen B, Strömbom L, Ståhlberg A, and Zoric N. The real-time polymerase chain reaction. Mol Aspects Med. 27 : 95-125, 2006.
Kubista M, Ståhlberg A, and Bar T. Light-up probe based real-time Q-PCR. In: Raghavachari R, Tan W. (Eds.), Genomics and Proteomics Technologies, Proceedings of SPIE, 4264, pp. 53-58, 2001.
La Rocca SA, Herbert RJ, Crooke H, Drew TW, Wileman TE, Powell PP. Loss of interferon regulatory factor 3 in cells infected with classical swine fever virus involves the N-terminal protease, Npro. J Virol. 79: 7239-7247, 2005.
Lazar C, Zitzmann N, Dwek RA, Branza-Nichita N. The pestivirus E(rns) glycoprotein interacts with E2 in both infected cells and mature virions. Virology. 314: 696-705, 2003.
Le Potier MF, Mespléde A, and Vannier P. In: Disease of swine 9th ed. Classical swine Fever and other pestiviruses. Blackwell publishing. UK. Pp 309-322, 2006.
Lindenbach BD, and Rice CM. Genetic interaction of flavivirus nonstructural protein NS1 and NS4A as a determinant of replication function. J Virol. 73 : 4611-4621, 1999.
Lin M, Lin F, Mallory M, and Clavijo A. Deletions of structural glycoprotein E2 of classical swine fever virus strain alfort/187 resolve a linear epitope of monoclonal antibody WH303 and the minimal N-terminal domain essential for
binding immunoglobulin G antibodies of a pig hyperimmune serum. J Virol. 74 : 11619-11625, 2000.
Lin TC, Lee CT. An overall report on the development of a highly safe and potent lapinized hog cholera virus strain for hog cholera control in Taiwan. NSC. Special publish 5 : 1-44, 1981.
Lowings P, Ibata G, Needham J, and Paton D. Classical swine fever virus diversity and evolution. J Gen Virol. 77 : 1311-1321, 1996.
Markowska-Daniel I, Pejsak Z, Winnicka A, and Collins RA. Phenotypic analysis of peripheral leukocytes in piglets infected with classical swine fever virus. Res Vet Sci. 67 : 53-57, 1999.
Mayer D, Hofmann MA, and Tratschin JD. Attenuation of classical swine fever virus by deletion of the viral Npro gene. Vaccine. 22 : 317-328, 2004.
Meyer C, Von Freyburg M, Elbers K, and Meyers G. Recovery of virulent and RNase-negative attenuated type 2 bovine viral diarrhea viruses from infectious cDNA clones. J Virol. 76 : 8494-8503, 2002.
Meyers G, Saalmüller A, and Büttner M. Mutations abrogating the RNase activity in glycoprotein Erns of the pestivirus classical swine fever virus lead to virus attenuation. J Virol. 73 : 10224-10235, 1999.
Mittelholzer C, Moser C, Tratschin JD, and Hofmann, MA. Generation of cytopathogenic subgenomic RNA of classical swine fever virus in persistently infected porcine cell lines. Virus Research. 51: 125–137, 1997.
Mittelholzer C, Moser C, Tratschin JD, and Hofmann MA. Analysis of classical swine fever virus replication kinetics allows differentiation of highly virulent from avirulent strains. Vet Microbiol. 74 : 293-308, 2000.
Moennig V, Floegel-Niesmann G, and Greiser-Wilke I. Clinical signs and epidemiology of classical swine fever: a review of new knowledge. The Veterinary Journal 165 : 11-20, 2003.
Moennig V. Introduction to classical swine fever: virus, disease and control policy. Vet Microbiol. 73 : 93-102, 2000.
Narita M, Kawashima K, Kimura K, Mikami O, Shibahara T, Yamada S, and Sakoda Y. Comparative immunohistopathology in pigs infected with highly virulent or less virulent strains of hog cholera virus. Vet Pathol. 37 : 402-408, 2000.
Narita M, Kimura K, Tanimura N, and Ozaki H. Immunohistochemical detection of hog cholera virus antigen in paraffin wax-embedded tissues from naturally infected pigs. J Comp Pathol. 121 : 283-286, 1999.
Ophuis RJ, Morrissy CJ, and Boyle DB. Detection and quantitative pathogenesis study of classical swine fever virus using a real time RT-PCR assay. J Virol Methods. 131: 78-85, 2006.
Pan CH, Jong MH, Huang TS, Liu HF, Lin SY, and Lai SS. Phylogenetic analysis of classical swine fever virus in Taiwan. Arch Virol. 150 : 1101-1119, 2005.
Paton DJ, and Greiser-Wilke I. Classical swine fever--an update. Res Vet Sci. 75: 169-178, 2003.
Pauly T, König M, Thiel HJ, and Saalmüller A. Infection with classical swine fever virus: effects on phenotype and immune responsiveness of porcine T lymphocytes. J Gen Virol. 79 : 31-40, 1998.
Ribbens S, Dewulf J, Koenen F, Laevens H, Mintiens K, and de Kruif A. An experimental infection (II) to investigate the importance of indirect classical swine fever virus transmission by excretions and secretions of infected weaner pigs. J Vet Med B Infect Dis Vet Public Health. 51 : 438-442, 2004.
Risatti G, Holinka L, Lu Z, Kutish G, Callahan JD, Nelson WM, Brea Tió E, and Borca MV. Diagnostic evaluation of a real-time reverse transcriptase PCR assay for detection of classical swine fever virus. J Clin Microbiol. 43 : 468-471, 2005.
Risatti GR, Borca MV, Kutish GF, Lu Z, Holinka LG, French RA, Tulman ER, and Rock DL. The E2 glycoprotein of classical swine fever virus is a virulence determinant in swine. J Virol. 79 : 3787-3796, 2005.
Risatti GR, Callahan JD, Nelson WM, and Borca MV. Rapid detection of classical swine fever virus by a portable real-time reverse transcriptase PCR assay. J Clin Microbiol. 41 : 500-505, 2003.
Ruggli N, Bird BH, Liu L, Bauhofer O, Tratschin JD, Hofmann MA. Npro of classical s wine fever virus is an antagonist of double-stranded RNA-mediated apoptosis and IFN-alpha/beta induction. Virology. 340: 265-276, 2005.
Ruggli N, Tratschin JD, Schweizer M, McCullough KC, Hofmann MA, and Summerfield A. Classical swine fever virus interferes with cellular antiviral defense: evidence for a novel function of N(pro). J Virol. 77 : 7645-7654, 2003.
Rutledge RG, and Côté C. Mathematics of quantitative kinetic PCR and the application of standard curves. Nucleic Acids Res. 31 : e93, 2003.
Sánchez-Cordón PJ, Núñez A, Salguero FJ, Pedrera M, Fernández de Marco M, and Gómez-Villamandos JC. Lymphocyte apoptosis and thrombocytopenia in spleen during classical swine fever: role of macrophages and cytokines. Vet Pathol. 42: 477-488, 2005.
Sánchez-Cordón PJ, Romanini S, Salguero FJ, Ruiz-Villamor E, Carrasco L, and Gómez-Villamandos JC. A histopathologic, immunohistochemical, and ultrastructural study of the intestine in pigs inoculated with classical swine fever virus. Vet Pathol. 40 : 254-262, 2003.
Sandvik T, Drew T, and Paton D. CSF virus in East Anglia: where from? Vet Rec. Aug 147 : 251, 2000.
Sato M, Mikami O, Kobayashi M, and Nakajima Y. Apoptosis in the lymphatic organs of piglets inoculated with classical swine fever virus. Vet Microbiol. 75 : 1-9, 2000.
Shubina NG, Gusev AA, Toloknov AS, Zakharov VM, Rybakova SS, Lobacheva SB, B''iadovskaia OP, Iushchenko IuA, Kolontsov AA, and Makarov VV. Natural killers and cytotoxic lymphocytes in classical hog cholera Vopr Virusol. 40 : 182-186, 1995.
Summerfield A, Hofmann MA, and McCullough KC. Low density blood granulocytic cells induced during classical swine fever are targets for virus infection. Vet Immunol Immunopathol. 63 : 289-301, 1998.
Summerfield A, Knötig SM, and McCullough KC. Lymphocyte apoptosis during classical swine fever: implication of activation-induced cell death. J Virol. 72 : 1853-1861, 1998.
Summerfield A, Knoetig SM, Tschudin R, and McCullough KC. Pathogenesis of granulocytopenia and bone marrow atrophy during classical swine fever involves apoptosis and necrosis of uninfected cells. Virology. 272 : 50-60, 2000.
Susa M, König M, Saalmüller A, Reddehase MJ, and Thiel HJ. Pathogenesis of classical swine fever: B-lymphocyte deficiency caused by hog cholera virus. J Virol. 66 : 1171-1175, 1992.
Terpstra C, and de Smit AJ. The 1997/1998 epizootic of swine fever in the Netherlands: control strategies under a non-vaccination regimen. Vet Microbiol. 77 : 3-15, 2000. Mittelholzer1 C, Moser2 C, Tratschin JD, and Hofmann MA. Analysis of classical swine fever virus replication kinetics allows differentiation of highly virulent from avirulent strains. Vet Microbiol. 74 : 293-308, 2000.
Thiel HJ, Stark R, Weiland E, Rümenapf T, and Meyers G. Hog cholera virus: molecular composition of virions from a pestivirus. J. Virol. 65 : 4705-4712, 1991.
Tratschin JD, Moser C, Ruggli N, and Hofmann MA. Classical swine fever virus leader proteinase Npro is not required for viral replication in cell culture. J Virol. 72 : 7681-7684, 1998.
Trautwein G. Pathology and pathogenesis of the disease. In : Classical swine fever and related viral disease. Luess B ( ed. ), Martinus Nijhoff Publishing, Boston, USA, pp. 27-54, 1988.
Tu C, Lu Z, Li H, Yu X, Liu X, Li Y, Zhang H, and Yin Z. Phylogenetic comparison of classical swine fever virus in China. Virus Res. 81 : 29-37, 2001.
van Gennip HG, Hesselink AT, Moormann RJ, Hulst MM. Dimerization of glycoprotein E(rns) of classical swine fever virus is not essential for viral replication and infection. Arch Virol. 150: 2271-2286, 2005.
Van Oirschot JT, Classical swine fever ( hog cholera ). In : disease of swine, 8th edit., Straw BE, Mengeling WL, Allaire SD, and Taylor DJ. Iowa State University Press, Ames, Iowa, pp. 159-172, 1999.
Van Oirschot JT, and Terpstra CA. A congenital persistant swine fever infection. I. Clinical and virological observations. II. Immune response to swine fever and unrelated antigens. Vet Microbiol. 2 : 121-142, 1977.
von Freyburg M, Ege A, Saalmüller A, and Meyers G. Comparison of the effects of RNase-negative and wild-type classical swine fever virus on peripheral blood cells of infected pigs. J Gen Virol. 85 : 1899-1908, 2004.
Weiland E, Stark R, Haas B, Rümenapf T, Meyers G, and Thiel HJ. Pestivirus glycoprotein which induces neutralizing antibodies forms part of a disulfide-linked heterodimer. J. Virol. 64 : 3563–3569, 1990.
Weiland F, Weiland E, Unger G, Saalmüller A, and Thiel HJ. Localization of pestiviral envelope proteins E ( rns ) and E2 at the cell surface and on isolated particles. J. Gen. Virol. 80 : 1157–1165, 1999.
Widjojoatmodjo MN, van Gennip HG, Bouma A, van Rijn PA, and Moormann RJ. Classical swine fever virus Erns deletion mutants: trans-complementation and potential use as nontransmissible, modified, live-attenuated marker vaccines. J Virol. 74 : 2973-2980, 2000.
Wilson R, and Johansson MK. Photoluminescence and electrochemiluminescence of a Ru(II)(bpy)3-quencher dual-labeled oligonucleotide probe. Chem Commun (Camb). 7 : 2710-2711, 2003.
Zaffuto KM, Piccone ME, Burrage TG, Balinsky CA, Risatti GR, Borca MV, Holinka LG, Rock DL, Afonso CL. Classical swine fever virus inhibits nitric oxide production in infected macrophages. J Gen Virol. 88: 3007-3012, 2007.
Zhao JJ, Cheng D, Li N, Sun Y, Shi Z, Zhu QH, Tu C, Tong GZ, and Qiu HJ. Evaluation of a multiplex real-time RT-PCR for quantitative and differential detection of wild-type viruses and C-strain vaccine of Classical swine fever virus. Vet Microbiol.126 : 1-10, 2008.
Zipper H, Brunner H, Bernhagen J, and Vitzthum F. Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. Nucleic Acids Res. 32 : e103, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊