跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 04:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:汪思賢
研究生(外文):Szu-Hsien Wang
論文名稱:在聚碳酸酯基板上以直流磁控濺鍍法研製超薄金屬錫膜之特性研究
論文名稱(外文):Characterization and Deposition of Ultrathin Sn Films on Polycarbonate Substrates by DC Magnetron Sputtering
指導教授:武東星
學位類別:碩士
校院名稱:國立中興大學
系所名稱:精密工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:79
中文關鍵詞:超薄錫膜電阻率尺寸效應不導電真空金屬鍍膜
外文關鍵詞:Ultrathin tin filmsResistivitySize effectNCVM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:350
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
塑膠表面金屬化處理是讓塑膠表面有著金屬質感的外觀,又保有質輕又抗刮的特性;因應通訊產品為了外型美觀而採用了內建天線 (internal antenna) 的設計,而塑膠外殼上所鍍上的金屬膜可能會造成對於電磁訊號傳送與接收的干擾,進而影響通訊品質,故一個新技術:不導電真空金屬鍍膜 (non-conductive vacuum metallization, NCVM) 因應而生。
本研究以直流磁控濺鍍法以沈積金屬錫 (Sn) 薄膜在塑膠 PC 基板上,而基板先以 RF 電漿處理以增加附著性。對於沈積之薄膜,利用透光率儀分析薄膜的光學性質,以薄膜厚度量測儀量膜厚,場發射掃瞄式電子顯微鏡分析薄膜之表面形貌和成長結構,以原子力顯微鏡觀察薄膜三維空間的表面形貌,利用四點探針量測片電阻值,以化學分析電子能譜儀分析薄膜成分,另以 TriScanner Pro SL 來判斷薄膜是否通過 NCVM 的標準。
藉由三個可控制的鍍膜參數: DC 功率、載盤移動時間及氬氣流量的互相搭配下,討論得到選擇低載盤移動時間 (0.5 or 1.0 sec) ,搭配適當的 DC 功率 (7 kW 以下) 與高氬氣流量 (400 sccm) ,製備的試片能通過 NCVM 標準,且能節省製程時間。為了保有金屬光澤的外觀,薄膜透光率需在10%以下,膜厚需要大於28 nm為佳。另本實驗探討的薄膜皆是在厚度100 nm以內的超薄膜。
Metallization treatment on the plastic surface can make surface with metal-like look and keep the surface being light and tough. Among all the techniques, a new technique: non-conductive vacuum metallization (NCVM) is applied in order to eliminate the disadvantages of metal coating on the plastic surface, which may cause the interruption of sending and receiving of electromagnetic signal, and this is the technique I applied in the experiment.
This research used DC magnetron sputtering to deposit tin thin films on polycarbonate substrates, and the substrates were pretreated by RF plasma to improve adhesion. The characterization techniques include transmission meter for optical properties, α-step for the thickness, FESEM for the surface and growth structure, AFM for the three-dimensional look, four-point for sheet electric resistance, ESCA for the composition, and TriScanner Pro SL to determine whether the thin films pass the criterion of NCVM or not.
By controlling three variables, which are DC power, travel time of carrier, and the flow rate of argon gas, we get the result that in order to meet the NCVM criterion and save the process time, the low travel time of carrier (0.5 or 1.0 sec) and appropriate DC power (below 7 kW) and high argon flow rate (400 sccm) are needed. Besides, the transmission of films must be below 10% and the film thickness must be thicker than 28 nm to maintain the metal gloss look. The films we investigated are all thinner than 100 nm.
誌謝辭 III
摘要 IV
Abstract V
目次 VI
表目次 IX
圖目次 X
第一章 緒論 1
1-1 前言 1
1-2 研究動機 4
第二章 理論基礎與文獻回顧 5
2-1 直流磁控濺鍍原理 5
2-1-1 電漿原理 5
2-1-2 濺鍍理論 6
2-1-3 直流輝光放電 (DC glow discharge) 7
2-1-4 磁控濺鍍原理與特點 9
2-2 薄膜形成與成長 10
2-2-1 薄膜生長的三種模式 11
2-2-2 薄膜沈積機制 13
2-3 塑膠基材與 RF 電漿前處理 15
2-4 超薄金屬膜的尺寸效應與電性質 16
2-5 超薄金屬膜對電磁波的影響 18
2-6 電磁屏蔽理論 20
2-7 製程參數對鍍膜的影響 21
2-8 薄膜的結構與缺陷 23
第三章 實驗流程與設計 26
3-1 實驗設計 26
3-2 實驗所需材料與基材前處理 28
3-2-1 靶材 (target) 28
3-2-2 基材 (substrate) 28
3-2-3 工作氣體 28
3-2-4 基材前處理 28
3-3 濺鍍系統 29
3-4 量測與分析儀器 30
3-4-1 光穿透率測量儀 30
3-4-2 片電阻測試儀 (4-point probe) 31
3-4-3 薄膜厚度量測系統 (α-step) 32
3-4-4 場發射掃瞄式電子顯微鏡 (FESEM) 32
3-4-5 原子力顯微儀 (AFM) 33
3-4-6 化學分析電子能譜儀 (ESCA) 34
3-4-7 TriScanner Pro SL 36
第四章 結果與討論 37
4-1 RF 電漿處理後基板表面的變化 39
4-2 不同載盤移動時間對於薄膜的影響 47
4-2-1 薄膜的顯微結構分析 47
4-2-2 薄膜的膜厚與光學分析 51
4-2-3 薄膜的電性分析 51
4-2-4 薄膜的 NCVM 分析 55
4-3 不同功率對於薄膜的影響 56
4-3-1 薄膜的微結構分析 56
4-3-2 薄膜的膜厚與光學分析 60
4-3-3 薄膜的電性分析 60
4-3-4 薄膜的 NCVM 分析 62
4-4 改變 Ar 流量對於薄膜的影響 64
4-4-1 薄膜的微結構分析 64
4-4-2 薄膜的膜厚與光學分析 69
4-4-3 薄膜的電性分析 69
4-4-4 薄膜的 NCVM 分析 69
第五章 結論 73
參考文獻 75
附錄一 金屬鍍膜材料物性表 80
附錄二 蒸鍍金屬銦膜導電性與否之表面SEM圖 81
附錄三 各種導體金屬的趨膚深度 82
附錄四 Zircon TriScanner Pro SL 83
1.莊允中,3C 產業之鍍膜技術與應用市場分析,金屬中心,2001。
2.艾啟峰,電漿技術在傳統表面處理產業之應用,電漿處理在環境工程之應用技術研習會,2004。
3.許政皓,陳泰源,張明詔,一種塑膠基材不導電金屬化的製造方法及其結構,中華民國發明專利,第 I238768 號,2005。
4.Richard C. Eisfeller, “Vacuum Metallizing a Dielectric Substrate with Indium and Products Thereof,” U.S. Patent 4 431 711, Feb. 14 , 1984.
5.各金屬性質,維基百科,網址:http://zh.wikipedia.org/w/index.php?title=%E9%A6%96%E9%A1%B5&variant=zh-twU.
6.林倉賢,鉅亨網新聞中心研究報告,2007,網址:Uhttp://news.cnyes.com/RSH/dsprsh.asp?rno=1&kind=STCK&pagetype=index2&sdt=&edt=&fi=Research20070823823-6016-R4.HTMU.
7.張旭宏,位速布局高階非導電真空濺鍍,工商時報,2007,網址: Uhttp://www.ccrrob-stock.com/modules/news/article.php?storyid=729U.
8.張立信,真空與鍍膜技術講義,中興大學,2007。
9.盧志銘,磁控濺鍍氧化鋅鋁 (ZnO : Al) 薄膜之特性與應用研究,中興大學材料所碩士論文,2007。
10.D. S. Richerby and A. Matthews, Advanced Surface Coatings, Chapman and Hall, New York, 1994, pp. 24.
11.邱繼暐,直流磁控濺鍍輔以氧離子助鍍光學薄膜於塑膠基板,中央大學光電科學研究所碩士論文,2003。
12.何英杰,裝飾性氮化鋯鍍膜運用 OES 系統調控薄膜顏色之研究,明道管理學院材料暨系統工程研究所碩士論文,2004。
13.J. A. Venables, G.. D. T. Spiller and M. Hanbucken, “Nucleation and Growth of Thin Films,” Rep. Prog. Phys., vol. 47, pp. 399-459, 1984.
14.王兵,吳自勤,超薄金屬膜生長研究新進展,物理,25卷,12期,724-729,1996。
15.林桂如,高密度電漿對塑膠基材之表面處理及其對鍍膜附著特性之影響,中興大學材料所碩士論文,2004。
16.王宣文,以電漿表面預處理法在塑膠基板上製鍍抗反射膜,中央大學光電科學研究所碩士論文,2005。
17.E. H. Sondheimer, “The Mean Free Path of Electrons in Metals,” Advan. Phys., vol. 1, Issue 1, pp. 1-42, 1952.
18.A. F. Mayadas and M. Shatzkes, “Electrical-Resistivity Model for Polycrystalline Films: the Case of Arbitrary Reflection at External Surfaces,” Phys. Rev. B, vol. 1, No. 4, pp. 1382-1389, 1970.
19.P. Wissmann, “On the Influence of Polycrystalline Structure on the Electric Resistivity of Evaporated Nickel Films,” Thin Solid Films, vol. 5, pp. 329, 1970.
20.B. Stolecki, A. Borodziuk-Kulpa and C. Wesolowska, “The Electrical Properties of Polycrystalline Tin Films Evaporated onto a Cooled Substrate,” Thin Solid Films, vol. 46, pp. 299-309, 1979.
21.E. A. Abou-Saif, A. A. Mohamed and M. G. El-Khodary, “Correlation of The Structure with Electrical and Optical Properties of Thin Tin Films,” Thin Solid Films, vol. 94, pp. 133-142, 1982.
22.G. Chandra and O. P. Katyal, “The Study of Electrical Properties of Polycrystalline Tin Films,” Phys. stat. sol. (a), vol. 86, pp. 765-772, 1984.
23.H. D. Liu, T. P. Zhao, G. Ramanath, S. P. Murarka and G. C. Wang, “Thickness Dependent Electrical Resistivity of Ultrathin (< 40 nm) Cu Films,” Thin Solid Films, vol. 384, pp. 151-156, 2001.
24.W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen and K. Maex, “Influence of the Electron Mean Free Path on the Resistivity of Thin Metal Films,” Microelectronic Engineering, vol. 76, pp. 146-152, 2004.
25.K. Y. Chan, T. Y. Tou and B. S. Teo, “Thickness Dependence of the Structural and Electrical Properties of Copper Films Deposited by DC Magnetron Sputtering Technique,” Microelectronics Journal, vol. 37, pp. 608-612, 2006.
26.唐兆麟,黃榮芳,聞立時,超薄鋁膜電導特性的原位測量研究,金屬學報,32卷,03期,308-312,1996。
27.唐兆麟,黃榮芳,聞立時,超薄金屬膜電阻率尺寸效應,材料研究學報,11卷,04期,438-440,1997。
28.G. Fishman and D. Calecki, “Surface-Induced Resistivity of Ultrathin Metallic Films: A Limit Law,” Phys. Rev. Lett., vol. 62, No. 11, pp. 1302-1305, 1989.
29.范平,超薄金屬膜的電導特性,金屬學報,35卷,03期,261-264, 1999。
30.C. A. Neugebauer and M. B. Webb, “Electrical Conduction Mechanism in Ultrathin, Evaporated Metal Films,” J. Appl. Phys., vol. 33, No. 1, pp. 74-82, 1962.
31.Z. Tesanovic, M. V. Jaric and S. Maekawa, “Quantum Transport and Surface Scattering,” Phys. Rev. Lett., vol. 57, No. 21, pp. 2760-2763, 1986.
32.N. Trivedi and N. W. Ashcroft, “Quantum Size Effects in Transport Properties of Metallic Films,” Phys. Rev. B, vol. 38, No. 17, pp. 298-309, 1988.
33.L. Sheng, D. Y. Xing, and Z. D. Wang , “Transport Theory in Metallic Films: Crossover from the Classical to the Quantum Regime,” Phys. Rev. B, vol. 51, No. 11, pp. 7325-7328, 1995.
34.董正超,盛利,邢定鈺,董錦明,金屬薄膜的量子傳輸理論,物理學報,46卷,03期,568-578,1997。
35.聞立時,黃榮芳,劉得成,胡新天,白雪東,孫超,宮駿,納米結構電磁工程微觀原理研究,真空,04期,1-9,2000。
36.杜昊,肖金泉,譚明暉,孫超,黃榮芳,聞立時,利用有效媒質理論對納米金屬薄膜介電函數的初步分析,金屬學報,36卷,11期,1165-1168,2000。
37.杜昊,白雪東,肖金泉,孫超,黃榮芳,聞立時,超薄Ti膜吸收率的尺寸效應,材料研究學報,15卷,02期,215-218,2001。
38.杜昊,宮駿,孫超,黃榮芳,聞立時,超薄Ti膜介電函數的尺寸效應,自然科學進展,11卷,10期,1099-1104,2001。
39.譚明暉,杜昊,盧春燕,宮駿,黃榮芳,聞立時,超薄Fe膜吸收率的尺寸效應,金屬學報,37卷,10期,1097-1099,2001。
40.H. Du, H. Chen, J. Gong, T. G. Wang, C. Sun, S. W. Lee, L. S. Wen, “Use of Effective Medium Theory to Model the Effect of the Microstructure on DC Conductivity of Nano-Titanium Films,” Appl. Surf. Sci., vol. 233, pp. 99-104, 2004.
41.王鐵鋼,宮駿,杜昊,劉健鋼,孫超,聞立時,超薄金屬膜電磁波傳輸性能的研究,金屬學報,41卷,08期,814-818,2005。
42.邱首凱,塑膠複合材料電磁屏蔽效應之研究,中山大學光電工程研究所碩士論文,2001。
43.李建輝,新型編織碳纖維複合材料應用於 2.5 Gb / s 光收發模組電磁屏蔽效應之研究,中山大學光電工程研究所碩士論文,2004。
44.施振遠,聚苯胺/聚胺酯之共聚合物薄膜應用於電磁波屏蔽效應之研究,台灣大學化學工程研究所,2003。
45.任玉鎖,劉文言,曲敬信,FeCoV(N) 薄膜的直流磁控濺射工藝及其結構,金屬熱處理,30卷,05期,33-37,2005。
46.程丙勛,吳衛東,何智兵,許華,唐永建,盧鐵城,濺射功率對直流磁控濺射Ti膜結構的影響,強激光與粒子束,18卷,06期, 961-964,2006。
47.T. Fukami, F. Shintani, M. Naoe, “Observations on the Operation of a Planar Magnetron Sputtering System by Target Erosion Patterns,” Thin Solid Films, vol. 151, pp. 373-381, 1987.
48.徐均琪,易紅偉,蔡長龍,杭凌俠,磁控濺射膜厚均勻性與靶-基距關系的研究,真空,41卷,02期,25-28,2004。
49.羅吉宗,薄膜科技與應用,全華科技圖書股份有限公司,2005。
50.J. A. Thornton, “The Microstructure of Sputter-Deposited Coatings,” J. Vac. Sci. Technol. A, vol. 4, No. 6, pp. 3059-3065, 1986.
51.Zircon偵測感應設備,網址:Uhttp://www.omniserv.com.tw/zircon/zi_21.htmU.
52.Zircon TriScanner Pro SL: Uhttp://www.zircon.com/discontinued/scanning_triscanner_pro_sl.htmlU.
53.TriScanner Pro SL Electronic Stud: Uhttp://www.contractor-books.com/ZR/TriScanner_Pro_SL.htmU.
54.How Metal Detectors Work: Uhttp://www.howmetaldetectorswork.comU.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊