跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 18:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝創宇
研究生(外文):Chuang-Yu Hsieh
論文名稱:具雙面粗化及高反射鏡面基板之高效率氮化鎵發光二極體之研製
論文名稱(外文):Investigation of High-Efficient GaN Light-Emitting Diodes with Double-Sides Roughened Surfaces and High Reflectivity Mirror Substrate
指導教授:洪瑞華
學位類別:碩士
校院名稱:國立中興大學
系所名稱:精密工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:97
中文關鍵詞:氮化鎵發光二極體雷射剝離技術粗化散熱
外文關鍵詞:GaNlight-emitting diodes (LEDs)laser lift-off (LLO)rougheningthermal conductivity
相關次數:
  • 被引用被引用:3
  • 點閱點閱:242
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
論文主要利用圖案化基板、雙面粗化(n-GaN 、p-GaN)、高反射鏡面及高熱傳導基板來製作氮化鎵發光二極體,並探討其元件特性及製程可行性。其中p-GaN 粗化是由於磊晶時利用低溫成長方式產生六角孔洞 ; n-GaN 是將磊晶薄膜黏貼於暫時基板,利用氫氧化鈉溶液蝕刻成六角錐狀,再將已鍍好銀鏡面之矽基板,利用低溫黏貼方式轉移磊晶薄膜於具銀鏡面之矽基板即完成。
電特性方面,元件於基板的轉移過程並未造成其順向電壓上升,隨著操作電流加大至1000 mA時,Si-DR-LED(高反射鏡面矽基板、雙面粗化結構)及PSS-SR-LED(圖案化基板、單面粗化結構)之順向偏壓分別為4.89 V與4.85 V,依此結果推測,具有矽基板的Si-DR-LED其接面溫度低於藍寶石基板的PSS-SR-LED所造成 ; 在逆向偏壓方面,當在-5 V時,PSS-SR-LED之漏電流為0.086 μA,而Si-DR-LED為0.087 μA,幾乎不變,維持低於一般-5 V時,漏電流小於1 μA的標準,此電特性結果顯示此製程研究之可行性。光特性方面(光輸出功率),封裝後,在電流350 mA注入下,Si-DR-LED較PSS-SR-LED提升50.2%,電光轉換效率亦由14.33%提升至20.96%,而光取出效率由49.09%提升至73.72%,元件效率明顯改善。熱特性方面,於350 mA時,PSS-SR-LED的接面溫度由205.5°C下降至Si-DR-LED的158.9°C,降低了46.6°C,結果顯示氮化鎵薄膜經由基板轉移至矽基板後,可以得到較佳的熱傳導途徑,大電流操作下仍然可以維持良好的電特性及穩定性。
This thesis discussed the effects of patterned substrate, double-sides roughening (n-GaN and p-GaN), high reflectivity mirror, and high thermal conductivity substrate on the fabrication and performances of high brightness light emitting diodes (LEDs). The hexagonal cavities of the p-GaN was using low temperature growth method, whereas the n-GaN was roughened using NaOH wet etching method which resulted in hexagonal pyramidal structure. The samples with double-sides roughened morphologies were bonded to Si substrate with silver mirror by transparent adhesive layer.
On the electrical characteristics, the forward voltage of transferred-type device was almost the same as the original LEDs. As the injection current increased up to 1A, the forward voltages of LEDs with double-sides roughened surfaces LEDs transferred to reflective mirror silicon (Si-DR-LED) and LEDs with single roughened surface grown on patterned sapphire substrate (PSS-SR-LED) were corresponding to 4.89 V and 4.85 V, respectively. On the -5 V reverse voltage, the leakage current of Si-DR-LED and PSS-SR-LED are 0.087 μA and 0.086 μA, respectively. On the optical characteristics, the output power (350 mA injection) of encapsulated Si-DR-LED increased 50.2% as compared with that of encapsulated PSS-SR-LED. Moreover the power efficiency of Si-DR-LED and PSS-SR-LED was 20.96% and 14.33%, respectively. Correspondingly, the light extraction efficiency of Si-DR-LED and PSS-SR-LED was 49.09% and 73.72%, respectively. On the thermal characteristics, the junction temperature of PSS-SR-LED is 205.5°C, whereas Si-DR-LED is 158.9°C. Obviously, there is 46.6°C junction temperature decreasing for the Si-DR-LED as compared with that for the PSS-SR-LED.
目錄
封面內頁
簽名頁
授權書
誌謝 Ⅰ
中文摘要 Ⅱ
Abstract Ⅲ
目錄 Ⅳ
表目錄 Ⅶ
圖目錄 Ⅷ
第一章 緒論 1
1-1 前言 1
1-2 發光二極體之歷史回顧及發展 1
1-3 研究背景與動機 3
1-4 本論文之研究方向及架構 7
第二章 發光二極體理論模型簡介 8
2-1 光電特性 8
2-2 金屬與半導體接面之影響 9
2-2-1 金屬/半導體接觸之原理 9
2-2-2 歐姆接觸之原理 10
2-3 發光二極體之發光機制 11
2-4 熱效應對發光二極體之影響 14
2-4-1 接面溫度之量測理論 15
2-4-2 接面溫度之量測 17
第三章 金屬基板型氮化鎵發光二極體製作 19
3-1 前言 19
3-2 元件製作 ..19
3-2-1 氮化鎵試片之磊晶結構 19
3-2-2 試片之清洗 19
3-2-3 平台(Meas)蝕刻 20
3-2-4 電極之製作 20
3-2-5 藍寶石基板之剝離 22
3-2-6 n-GaN表面粗化 23
3-2-7 具鏡面之高熱傳導基板之製作與晶片黏貼 23
3-2-8 暫時基板之移除 24
3-3 元件切割、打線與封裝 24
3-4 量測元件特性 24
3-4-1 原子力顯微鏡原理之簡介 25
3-4-2 光激光譜特性量測原理之簡介 25
第四章 實驗結果與討論 27
4-1 前言 27
4-2 雷射剝離氮化鎵試片之分析 27
4-2-1 雷射剝離氮化鎵試片之表面形貌分析 27
4-2-2 原子力顯微鏡對雷射剝離氮化鎵試片之分析 27
4-2-3 雷射剝離氮化鎵試片之光激光譜特性量測 28
4-3 鏡面探討 28
4-3-1 金屬的選擇與熱穩定性 28
4-3-2 透光黏貼層及銀鏡面模擬 29
4-4 n型氮化鎵磊晶層表面粗化之探討 29
4-5 暫時黏著層與透光黏貼層的選擇 30
4-5-1 暫時黏著層 30
4-5-2 透明黏貼層 31
4-6 元件特性分析 32
4-6-1 電流-電壓特性 32
4-6-2 發光強度分析 32
4-6-3 發光光場圖形分析 33
4-6-4 光輸出功率、電光轉換效率 34
4-6-5 光取出效率 35
4-6-6 接面溫度之量測 36
4-6-7 EL量測 37
第五章 結論 38
參考文獻 40
參考文獻
[1]史光國, “半導體發光二極體及固態照明,” 全華科技,台北,台灣, p. 1.1 (2005).
[2]T. C. Wen, S. J. Chang, L. W. Wu, Y. K. Su, W. C. Lai, C.H. Kuo, C. H. Chen, J. K. Sheu, and J. F. Chen, Electron Devices, IEEE Transactions 49,1093 (2002).
[3]D. B. Eason, W. C. Hughes, J. Ren, M. Riegner, Z. Yu, J. W. Cook, J. F. Schetzina, G. Cantwell, and W. C. Harsch, Electron. Lett. 30, 1178 (1994).
[4]G. E. Stillman, V. M. Robbins, and N. Tabatabaie, Electron Devices, IEEE Transactions 31, 1643 (1984).
[5]K. H. Kim, Z. Y. Fan, M. Khizar, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 85, 4777 (2004).
[6]H. Sugawara, and M. Ishikawa, and G. Hatakoshi, App. Phys. Lett. 58, 1010 (1991).
[7]H. Sugawara, and M. Ishikawa, and G. Hatakoshi, App. Phys. Lett. 61, 1752 (1992).
[8]D. A. Vanderwater, I. H. Tan, G. E. Hofler, D. C. DeFevere, and F. A. Kish, IEEE. 85, 1752 (1997).
[9]S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, Jpn. J. Appl. Phys. 34, L1332 (1995).
[10]F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, and M. G. Craford, Appl. Phys. Lett. 64, 2839 (1994).
[11]F. A. Kish, D. A. Vanderwater, D. C. DeFevere, D. A. Steigerwald, G. E. Hofler, K. G. Park, and F. M. Steranka, Electron. Lett. 32, 132 (1996).
[12]J. I. Pankove, and P. E. Norris, RCA (Radio Corporation of America) Review. 33, 377 (1972).
[13]S. Yoshida, S. Misawa, and S. Gonda, Journal of Vacuum Science & Technology B. 1, 250 (1982).
[14]M. Hao, T. Sugahara, H. Sato, Y. Morishima, Y. Naoi, L. T. Romano, and S. Sakai, Jpn. J. Appl. Phys. 37, L291 (1998).
[15]E. Kuokstis, C. Q. Chen, J. W. Yang, M. Shatalov, M. E. Gaevski, V. Adivarahan, and M. A. Khan, Appl. Phys. Lett. 84, 2998 (2004).
[16]A. Zukauskas, M. S. Shur, and R. Gaska, Introduction to Solid-State Lighting. New York: Wiley and Sons (2002).
[17]S. Nakamura and S. F. Chichibu, Introduction to Nitride Semiconductor Blue Laser Diode and Light Emitter Diodes. London: Taylor and Francis (2000).
[18]S. Nakamura and G. Fasol, The Blue Laser Diode: GaN Based Light Emitters and Lasers. Berlin: Springer (2000).
[19]M. R. Krames, M. O. Holocomb, G. E. Hofler, C. C. Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, and M. G. Carford, Appl. Phys. Lett. 75, 2365 (1999).
[20]M. R. Krames, G. Christenson, D. Coffins., L. W. Cook M. G. Craford, A. Edwards, R. M., Fletcher, N. Gardner, W. Goetz, W. Imler, E. Johnson, R. S. Kern, R. Khare, F. A. Kish, C. Lowery, M. J. Ludowise, R. Mann, M. Maranowski, S. Maranowski, P. S. Martin, J. O''Shea, S. Rudaz, D. Steigerwald, J. Thompson, J. J. Wierer, J. Yu, SPIE Proc. 3938, 2 (2000).
[21]J. J. Wierer, J. C. Bhat, C. H. Chen, G. Christenson, L. W. Cook, M. G. Craford, N. F. Gardner, W. Götz, R. S. Kern, R. Khare, A. Kim, M. R. Krames, M. J. Ludowise, R. Mann, P. S. Martin, M. Misra, J. O''Shea, Y. C. Shen, F. M. Steranka, S. A. Stockman, S. Subramanya, S. L. Rudaz, D. A. Steigerwald, J. Yu, SPIE Proc. 4278, 127 (2001).
[22]C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, J, Appl. Phys. 93, 9383 (2003).
[23]S. J. Chang, L. W. Wu, Y. K. Su, Y. P. Hsu, W. C. Lai, J. M. Tsai, J. K. Sheu, and C. T. Lee, IEEE Photo Technol. Lett. 16, 144 (2004).
[24]S. M. Pan, R. C. Tu, Y.M. Fan, R. C. Yeh, and J. T. Hsu, IEEE Photon Technol. Lett. 15, 646 (2003).
[25]S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and J. T. Hsu, IEEE Photon Technol. Lett. 15, 649 (2003).
[26]C. S. Chang, S. J. Chang, Y. K. Su, C. T. Lee, Y. C. Lin, W. C. Lai, S. C. Shei, J. C. Ke, and H. M. Lo, IEEE Photon Technol. Lett. 16, 750 (2004).
[27]C. C. Kao, H. C. Kuo, H. W. Huang, J. T. Chu, Y. C. Peng, Y. L. Hsieh, C. Y. Luo, S. C. Wang, C. C. Yu, and C. F. Lin, IEEE Photon. Technol. Lett. 17, 19 (2005).
[28]J. Baur, B. Hahn, M. Fehrer, D. Eisert, W. Stein, A. Plössl, F. Kuhn, H. Zull, M. Winter, and V. Harle, Phys. Stat. Sol. (a) 194, 399 (2002).
[29]Z. S. Luo, Y. Cho, V. Loryuenyong, T. Sands, N. W. Cheung, and M. C. Yoo, IEEE Photon Technol. Lett. 14, 1400 (2002).
[30]K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato and T. Taguchi, Phys. Stat. Sol. (a), 188, 121 (2001).
[31]施敏 原著, 張俊彥 譯著, “半導體元件物理與製程技術,” 第三 版, 高立圖書有限公司, 台北, 台灣, pp. 104-206 (2000).
[32]D. K. Schroder, Semiconductor Material and Device Characterization. New York, Wiley (1998).
[33]V. M. Burmedez, J. Appl. Phys. vol. 80, 1190 (1996).
[34]史光國, “半導體發光二極體及固態照明,” 全華科技,台北,台灣, pp. 2.1-2.4 (2005).
[35]Y. Xi and E. F. Schubert, Appl. Phys. Lett. 85, 2163 (2004).
[36]Y. Xi, J. Q. Xi, Th. Gessmann, J. M. Shah, J. K. Kim, E. F. Schubert, A. J. Fischer, M. H. Crawford, K. H. A. Bogart, and A. A. Allerman, Appl. Phys. Lett. 86, 031907 (2005).
[37]Lumileds, “Thermal Management Considerations for Super Flux LEDs,” Application Note, 1149-4.
[38]S. Todoroki, M. Sawai, and K. Aiki, J. Appl. Phys. 58, 1124 (1985).
[39]H. I. Abdelkader, H. H. Hausien, and J. D. Martin, Rev. Sci. Instrum. 63,2004 (1992).
[40]S. Murata, and H. Nakada, J. Appl. Phys. 72, 2514 (1992).
[41]C. H. Liu, R. W. Chuang, S. J. Chang, Y. K. Su, L. W. Wu, C. C. Lin, Mater. Sci. & Eng. B, 112, 10 (2004).
[42]J. K. Sheu, Y. K. Su, G. C. Chi, W. C. Chen, C. Y. Chen, C. N. Huang, J. M. Hong, Y. C. Yu, C. W. Wang, and E. K. Lin, J. Appl. Phys. 83, 3172 (1998).
[43]J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, C. Y. Chen, and K. K. Shih, Appl. Phys. Lett. 74, 1275 (1999).
[44]J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. K. Shih, L. C. Chen, F. R. Chen, and J. J. Kai, J. Appl. Phys. 86, 4491 (1999).
[45]S. R. Jeon, Y. Ho. Song, H. J. Jang, and G. M. Yang, Appl. Phys. Lett. 78, 3265 (2001).
[46]T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P.DenBaars, and L. A. Coldren, Appl. Phys. Lett. 74, 3930 (1999).
[47]R. H. Horng, D. S. Wuu, Y. C. Lien, and W. H. Lan, Appl. Phys. Lett. 79, 2925 (2001).
[48]C. S. Chang, S. J. Chang, Y. K. Su, C. H. Kuo, W. C. Lai, Y. C. Lin, Y. P. Hsu, S. C. Shei, J. M. Tsai, H. M. Lo, J. C. Ke, J. K. Sheu, IEEE. 50, 2208 (2003).
[49]S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and J. T. Hsu, IEEE. 15, 646 (2003).
[50]P. R. Tavernier and D. R. C. Dunn, J. Appl. Phys. 89, 1527 (2001).
[51]Z. Li, X. Hu, K. Chen, R. Nie, X. Luo, X. Zhang, T. Yu, B. Zhang, S. Chen, Z. Yang, Z. Chen and G. Zhang, Micron, 36, 281 (2005).
[52]M. V. Allmen and A. Blastter, Berlin, 2nd Springer Publisher (1995).
[53]R. Groh, G. Gerey, L. Bartha, and J. I. Pankove, Phys. Stat. Sol. (a) 26, 353 (1974).
[54]C. J. Sun, P. Kung, A. Saxler, H. Ohsato, E. Bigan, and M. Razeghi, J. Appl. Phys. 76, 236 (1994).
[55]M. E. Lin, B. N. Sverdlov, and H. Morkoc, Appl. Phys. Lett. 63, 3625 (1993).
[56]W. S. Wong, Y. Cho, N. J. Quitoriano, T. Sands, A. B. Wengrow and N. W. Cheung, J. Electronic Mater. 28, 1409 (1999).
[57]L. Ma, K. F. Adeni, C. Zeng, Y. Jin, K. Dandu, Y. Saripalli, M. Johnson, D. Barlage, CS MANTECH Conference, April 24-27 (2006).
[58]J. Neugebauer and C. G. Van de Walle, Appl. Phys. Lett. 69, 503 (1996).
[59]L. W. Tu, Y. C. Lee, S. J. Chen, I. Lo, D. Stocker and E. F. Schubert, Appl. Phys. Lett. 73, 2802 (1998).
[60]R. H. Horng, D. S. Wuu, S. C. Wei, C. Y. Tseng, M. F. Huang, K. H. Chang, P. H. Liu, and K. C. Lin, Jpn. J. Appl. Phys. 39, 2357 (2000).
[61]Z. Li, X. Hu, K. Chen, R. Nie, X. Luo, X. Zhang, T. Yu, B. Zhang, S. Chen, Z. Yang, Z. Chen and G. Zhang, Micron, 36, 281 (2005).
[62]林義豐, 金屬基板型氮化鎵發光二極體之開發研究, 中興大學材料工程學系碩士學位論文 (2006).
[63]黃少華,以磊晶膜轉移技術研製高效率磷化鋁銦鎵與氮化銦鎵發光二極體, 中興大學材料科學與工程學系博士學位論文 (2007).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊