跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/27 14:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許信男
研究生(外文):Hsin-Nan Hsu
論文名稱:設計一新微槳型樑結構量測銅薄膜材料之機械行為
論文名稱(外文):Designing a novel paddle cantilever beam in measurement of the mechanical behavior of copper thin films
指導教授:林明澤林明澤引用關係
指導教授(外文):Ming-Tzer Lin
學位類別:碩士
校院名稱:國立中興大學
系所名稱:精密工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:76
中文關鍵詞:機械行為微槳型樑試件
外文關鍵詞:mechanical behaviorpaddle cantilever beam
相關次數:
  • 被引用被引用:1
  • 點閱點閱:101
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於半導體產業及微機電產業之蓬勃發展,並且其尺度線寬已達到微-奈米等級之下,因此,本論文提出了一項新的研究奈米尺度下金屬薄膜材料之機械行為的構想。在這項新的微槳型樑試件上,薄膜材料尺度可以降低至十奈米到幾百奈米。此微槳型試件是藉由標準的黃光製作流程所完成,懸臂樑設計成梯形主要是為了提供均勻平面應力,以避免傳統平行樑應力分佈不均勻的缺點,實驗時沉積金屬薄膜材料於微槳型試件上後,再使用靜電力驅動微槳型結構使其產生偏移量,並且搭配光學干涉儀器,用於量測試件受到外力作用下之平面偏移的數據。
藉由力學理論及數學模型分析計算,最後將實驗結果與理論分析進行驗證且吻合,也就代表著本實驗系統之架構具有可靠性,期許在不久的將來能量測出更多金屬薄膜材料的機械行為,以提供產業及學術界所需要的材料性質,作為產品設計之參考依據。
In this thesis ,a new technique for studying the mechanical behavior of nano-scale thin metal films on silicon substrate is presented. The test structure was designed on this novel “paddle” cantilever beam specimens with dimensions as few hundred nanometers to less than 10 nanometers. This beam is in triangle shape in order to provide uniform plane stress distribution. Standard clean room processing was used to prepare the paddle sample. The experiment can be operated by using the electrostatic deflection on the “paddle”cantilever beam and then measure the deposited thin metal film materials on top of it. The optical interference technique was used to measure the deflection of beam with the force.
摘要 i
Abstract ii
圖目錄 v
表目錄 vii
第一章 序論 1
1-1前言 1
1-2 研究動機 2
1-3 薄膜金屬材料之沉積 3
1-4研究目的 4
1-5論文架構 4
第二章 文獻探討 6
2-1 導論 6
2-1濺鍍原理 6
2-3 量測薄膜材料之機械行為的方法 8
2-3-1 晶片彎曲法 9
2-3-2 奈米壓痕法 11
2-3-3晶格常數應變量測 15
2-3-4 膨脹測試法 17
2-3-5 微型樑撓度測試 19
2-3-6 共振測試法 20
2-3-7 微拉伸測試法 21
第三章 試件設計與製程—微槳形樑結構 27
3-1 前言 27
3-2 試件設計 27
3-3 試件製程 30
第四章 設備建立與實驗方法 37
4-1 前言 37
4-2 光學量測系統 37
4-3 四步相位移法 41
4-4靜電驅動系統 44
4-5 量測系統整合 45
第五章 結果與討論 50
5-1前言 50
5-2實驗結果 50
5-2-1等應力樑之計算推導過程 50
5-2-2沉積不同厚度之銅金屬薄膜材料之比較 57
5-3結論與未來展望 72
參考文獻: 75
[1].http://cdnet.stpi.org.tw/techroom/market/eeic/2008/eeic_08_001.htm .
[2].http://epochtw.com/7/5/7/54895.htm.
[3].http://www.eettaiwan.com/ART_8800480964_480502_NT_e62cf80f.HTM?click_from=RSS.
[4].莊達人,”VLSI製造技術”,高立圖書有限公司,2003.
[5].R.P.Vinci and J.J.Vlassak, “Mechanical behavior of thin
films,”Annu. Rev.
[6].W.D.Nix, “Mechanical Properties of Thin Films” p289, January,2005.
[7]. I.N. Sneddon, International Journal of Engineering Science
3, 47(1965).
[8].丁志華,管正平,黃新言,戴寶通,“奈米壓痕量測系統簡介”,
奈米通訊第九卷第三期.
[9].B.Taljat, T.Zacharia, G.M.Pharr,” Pile-up behavior of spherical indentations in engineering materials”, Materials Research Society Symposium-Proceedings, Vol 522, Fundamentals of Nanoindentation and Nanotribology, p 33-38, 1998.
[10].W.D.Nix, “Mechanical Properties of Thin Films” p71-73,
January 2005.
[11]. M. G. Allen, M. Mehregany and R. T. Howe, “Microfabricated structures for the in situ measurement of residual stress, Young’s modulus, and ultimate strain of thin films,” Applied Physics Letters 51 (4), 241-3 (1987).
[12].A. J. Kalkman and A. H. Verbruggen, “High-temperature bulge-test setup for mechanical testing of free-standing thin films,” Rev. Sci. Instrum., Vol. 74, No. 3, March 2003.
[13].R. Spolenak and W.L. Brown, “Bulge testing of mechanical properties of thin copper films,” Lucent Tech., Bell Labs Innovations (2000).
[14].W.D.Nix, Metallurg. Trans. 20A 2217 (1-989).
[15]. J.A.Schweitz, “Mechanical characterization of thin films
by micromechanical techniques,” MRS Bulletin 17 (7), 34-45
(1992).
[16].T.P.Weihs, S.Hong and J.C.Bravman, “Mechanical
deflection of cantilever microbeams: a new technique for
testing the mechanical properties of thin films,” Journal of
Materials Research 3 (5), 931-42 (1988).
[17].http://ceaspub.eas.asu.edu/imtl/HTML/Manuals/MC106_Cons
tant_Stress.htm.
[18].http://parts.jpl.nasa.gov/docs.
[19].K. Najafi and K. Suzuki, “A novel technique and structure for the measurement of intrinsic stress and Young’s modulus of thin films,” Proceedings: IEEE Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots (IEEE Cat. No.89THO249-3) , 96-7 (1989).
[20].R. I. Pratt, G. C. Johnson and R. T. Howe ,“Characterization of thin filmsusing micromechanical structures,” Smart Materials Fabrication and Materials for Micro-Electro-Mechanical Systems , 197-202 (1992).
[21].Ye et al, “Determination of the mechanical properties of microstructures”, Sensors and Actuators, A: Physical, Vol 54, n 1-3, June, 1996, p 750-754.
[22].D.T.Read and J.W.Dally, “Strength, ductility, and fatigue
life of aluminum thin films,” International Journal of
Microcircuits and Electronic Packaging 16 (4), 313-18 (1993).
[23].M.A. Haque and Saif, M.T.A., “In Situ Tensile Testing of
nano-scale Specimens in SEM and TEM,” Experimental Mechanics,
42(1), 123-128 (2001).
[24].M.A. Haque and Saif, M.T.A., Sensor and Actuator A 97-98
(2002) 239-245.
[25]. R. Abermann and R. Koch, “The intrinsic stress of polycrystalline and epitaxial thin metal,” J. Phys.: Candens. Matter 6 (1994) p9519-9550.
[26]. J.N. Florando and W.D. Nix, “A microbeam bending method for studying stress–strain relations for metal thin films on silicon substrates,” Journal of the Mechanics and Physics of solids 53 (2005) 619–638.
[27]. Qian Kemao, Miao Hong and Wu Xiaoping,“Real-time polarization phase shifting technique for dynamic deformation measurement,” Optics and Lasers in Engineering 31 (1999) 289-295.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top