|
Alwan, L. C. and Roberts, H. V. (1988). Time-Series Modeling for Statistical Process Control. Journal of Business & Economic Statistics,January, 6(1):87- 95. Anderson, T. W. (1984). An Introduction to Multivariate Statistical Analysis, 2nd edn, John Wiley, New York. Aparisi, F. and Garc´ı-D´ıaz, J. C. (2004). Optimization of Univariate and Multivariate Exponentially Weighted Moving-Average Control Charts. Computers & Operations Research, 31:1437-1454. Baillie, R. (1996). Long Memory Processes and Fractional Integration in Econometrics. Journal of Econometrics, 73:5-59. Beran, J. (1994). Statistics for Long-Memory Processes, Chapman & Hall, New York. Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods, Springer-Verlag, New York. Bodden, K. M. and Rigdon, S. E. (1999). A Program for Approximating the In-Control ARL for the MEWMA Chart. Journal of Quality Technology, 31(1):120-123. Bodnar, O. and Schmid, W. (2005). Multivariate Control Charts Based on a Projection Approach. Allgemeines Statistisches Archiv, 89:75-93. Borror, C. M.; Montgomery, D. C. and Runger, G. C. (1999). Robustness of the EWMA Control Chart to Non-normality. Journal of Quality Technology, 31(3):309-316. Caballero, R.; Jewson, S. and Brix, A. (2002). Long Memory in Surface Air Temperature: Detection, Modeling, and Application to Weather Derivative Valuation. Climate Research, 21(2): 127-140. Chan, C. C. and Hwang, J. S. (1996). Selling The Blue Skies: Some Reflection on Air Pollution Fee Policy in Taiwan. Journal of the Chinese Institute of Environmental Engineering, 6:235-246. Chang, Y. S. and Bai, D. S. (2001). Median Control Charts for Skewed Populations. Asia Pacific Management Review, 6(2):211-246. Corbett, C. and Pan, J. N. (2002). Evaluating Environmental Performance Using Statistical Process Control Techniques. European Journal of Operational Research, 139(1):68-83. Crosier, R. B. (1988). Multivariate Generalizations of Cumulative Sum Quality Control Schemes. Technometrics, 30:291-303. Crowder, S. V. (1987a). A Simple Method for Studying Run-length Distributions of Exponentially Weighted Moving Average Charts. Technometrics, 29:401-407. ———(1987b). Average Run Lengths of Exponentially Weighted Moving Average Control Charts. Journal of Quality Technology, 19:161-164. DeVor, R. E.; Chang, T. H.; and Sutherland, J. W. (1992). Statistical Quality Design and Control , Macmillan Publishing, New York, NY. Faltin, F. W.; Mastrangelo, C. M. and Runger, G. C. (1997). Considerations in the Monitoring of Aautocorrelated and Independent Data. Journal of Quality Technology, 29(2):131-133. Fass`o, A. (1999). One-SidedMEWMA Control Charts. Communications in Statistics- Simulation and Computation, 28(2):381-401. Fu, J. C.; Spiring, F. A. and Xie, H. (2002). On the Average Run Lengths of Quality Control Schemes Using a Markov Chain Approach. Statistics & Probability Letters, 56:369-380. Galeano, P. and Pe˜na, D. (2007). Covariance Changes Detection in Multivariate Time Series. Journal of Statistical Planning and Inference, 137(1):194-211. Granger, C. W. J. and Joyeux, R. (1980). An Introduction to Long-Memory Time Series Models and Fractional Differencing. Journal of Time Series Analysis, 1:15-29. Hipel, K. W. and McLeod, A. I. (1994). Time Series Modelling of Water Resources and Environmental Systems, Elsevier, Amsterdam, the Netherland. Hosking, J. R. M. (1981). Fractional Differencing. Biometrika, 68:165-176. Hunter, J. S. (1986). The Exponentially Weighted Moving Average. Journal of Quality Technology, 18:203-210. Hurst, H. E. (1951). Long-Term Storage Capacity of Reservoirs. Transactions of the American Society of Civil Engineers, 116:770-799. Hussain, S. and Elbergali, A. (1999). Fractional Order Estimation and Testing, Application to Swedish Temperature Data. Environmetrics, 10(3):339-349. Hussain, S.; Elbergali, A.; Al-Masri, A. and Shukur G. (2004). Parsimonious Modelling, Testing and Forecasting of Long-Range Dependence inWind Speed. Environmetrics, 15(2):155-171. Jensen, D. R. (1970). The Joint Distribution of Quadratic Forms and Related Distributions. Australian Journal of Statistics, 12:13-22. Kan, H. D.; Chen, B. H.; Fu, C. W.; Yu, S. Z. and Mu, L. N. (2005). Relationship Between Ambient Air Pollution and Daily Mortality of SARS in Beijing. Biomedical and Environmental Sciences, 18(1):1-4. Khoo, M. B. C. (2004). Increasing the Sensitivity of Multivariate EWMA Control Chart. Quality Engineering, 16(1):75-85. Khoo, M. B. C. and Quah, S. H. (2002). Computing the Percentage Points of the Run-Length Distributions of Multivariate CUSUM Control Charts. Quality Engineering, 15(2):299-310. Kim, K. and Reynolds, M. R. (2005). Multivariate Monitoring Using an MEWMA Control Chart With Unequal Sample Sizes. Journal of Quality Technology, 37:267-281. Kramer, H. and Schmid, W. (1997). EWMA Charts for Multivariate Time Series. Sequential analysis, 16(2):131-154. Kuei, C. H. and Madu, C. N. (2001). Identifying Critical Success Factors for Supply Chain Quality Management. Asia Pacific Management Review, 6(4):211-246. Lee, M. H. and Khoo, M. B. C. (2006a). Optimal Statistical Designs of a Multivariate CUSUM Chart Based on ARL and MRL. International Journal of Reliability, Quality and Safety Engineering, 13(5):479-497. ———(2006b). Optimal Statistical Design of a Multivariate EWMA Chart Based on ARL and MRL. Communications in Statistics-Simulation and Computa- tion, 35:831-847. Linderman, K. and Love, T. E.(2000a). Economic and Economic Statistical Designs for MEWMA Control Charts. Journal of Quality Technology, 32(4):410-417. ———(2000b). Implementing Economic and Economic Statistical Designs for MEWMA Charts. Journal of Quality Technology, 32(4): 457-463. Liu, Y. M. (1996). An Improvement for MEWMA in Multivariate Process Control. Computer & Industrial Engineering, 31:779-781. Love, T. E. and Linderman, K. (2003). A Weibull Process Failure Mechanism for the Economic Design of MEWMA Control Charts. Journal of statistical computation and simulation, 73(3):195-202. Lowry, C. A. and Montgomery, D. C. (1995). A Review of Multivariate Control Charts. IIE Transactions, 27:800-810. Lowry, C. A.; Woodall, W. H.; Champ, C. W.; and Rigdon, S. E. (1992). A Multivariate Exponentially Weighted Moving Average Control Chart. Tech- nometrics, 34(1):46-53. Lu, C. W. and Reynolds, M. R., Jr. (1999a). Control Charts for Monitoring the Mean and Variance of Autocorrelated Processes. Journal of Quality Technol- ogy, 31(3):259-274. ———(1999b). EWMA Control Charts forMonitoring theMean of Autocorrelated Process. Journal of Quality Technology, 31(2):166-188. ———(2001). CUSUM Charts for Monitoring an Autocorrelated Process. Journal of Quality Technology, 33(3):66-81. Lucas, J. M. and Saccucci, M. S. (1990). Exponentially Weighted Moving Average Control Schemes: Properties and Enhancements. Technometrics, 32(1):1-12. Madu, C. N. (1996). Managing Green Technologies for Global Competitiveness. Quorum Books, Westport, CT. Mathai, A.M. and Provost. S. B. (1992). Quadratic Forms in Random Variables: Theory and Applications, M. Dekker, New York. Mindell, J. and Joffe, M. (2004). Predicted Health Impacts of Urban Air Quality Management. Journal of Epidemiology and Community Health, 58(2):103-113. Molnau, W. E.; Runger, G. C.; Montgomery, D. C.; Skinner, K. R.; Loredo, E. N.; and Prabhu, S. S. (2001). A Program for ARL Calculation for Multivariate EWMA Charts. Journal of Quality Technology, 33(4):515-521. Molnau, W. E.; Montgomery, D. C.; and Runger, G. C. (2001). Statistically Constrained Economic Design of the Multivariate Exponentially Weighted Moving Average Control Chart. Quality and Reliability Enngineering International , 17:39-49. Montgomery, D. C. (2005). Introduction to statistical quality control , 5nd edn, John Wiley, New York. Ngai, H. M. and Zhang, J. (2001). Multivariate Cumulative Sum Control Charts Based on Projection Pursuit. Statistica Sinica, 11:747-766. Noorossana, R. and Vaghefi, S. J. M. (2006). Effect of Autocorelation on Performance of the MCUSUM Control Chart. Quality and Reliability Engineering International , 22(2):191-197. Pan, J. N. (2007). A Study of Multivariate Pre-Control Charts. International journal of production Economics, 105:160-170. Pan, J. N. and Chen, B. D. (2004). The Comparison of Environmental Control Charts for Monitoring Autocorrelated Air Pollution Data in Taipei Area. Journal of The Chinese Statistical Association, 42(1): 31-62. Pan, J. N. and Chen, S. T. (2007). Monitoring Long-Memory Air Quality Data Using ARFIMA Model. Environmetrics , 19(2):209-219. Pan, X. (2005). An Alternative Approach to Multivariate EWMA Control Chart. Journal of Applied Statistics, 32(7):695-705. Pignatiello, J. J. Jr. and Runger, G. C. (1990). Comparisons of Multivariate CUSUM Charts. Journal of Quality Technology, 22(3):173-186. Prabhu, S. S. and Runger, G. C. (1997). Designing a Multivariate EWMA Control Chart. Journal of Quality Technology, 29(1):8-15. Qiu, P. and Hawkins, D. (2001). A Rank-Based Multivariate CUSUM Procedure. Technometrics, 43(2):120-132. Qiu, P. and Hawkins, D. (2003). A Nonparametric Multivariate CUSUM Procedure For Detecting Shifts In All Directions. Journal of the Royal Statistical Society Series D-The Statistician, 52:15-164. Rao, B. V.; Disney, R. L. and Pignatiello, J. J. (2001). Uniqueness and Convergence of Solutions to Average Run Length Integral Equations for Cumulative Sum and Other Control Charts. IIE Transactions, 33(6):463-469. Reynolds, M. R. and Kim, K. (2005). Multivariate Monitoring of the Process Mean Vector With Sequential Sampling. Journal of Quality Technology, 37(2):149- 162. Reynolds, M. R. and Cho, G. Y. (2006). Multivariate Control Charts for Monitoring the Mean Vector and Covariance Matrix. Journal of Quality Technology, 38:230-253. Rigdon, S. E. (1995a). A Double-Integral Equation for the Average Run-Length of a Multivariate ExponentiallyWeighted Moving Average Control Chart. Statis- tics & Probability Letters, 24:365-373. ———(1995b). An Integral Equation for the In-Control Average Run Length of a Multivariate Exponentially Weighted Moving Average Control Chart. Journal of Statistical Computation and Simulation, 52:351-365. Roberts, S. W. (1959). Control Chart Tests Based on Geometric Moving Averages. Technometrics, 1:239-250. Runger, G. C.; Keats, J. B.; Montgomery, D. C.; and Scranton, R. D. (1999). Improving the Performance of the Multivariate Exponentially Weighted Moving Average Control Chart. Quality and Reliability Engineering International , 15:161-166. Runger, G. C. and Prabhu, S. S. (1996). A Markov Chain Model for the Multivariate Exponentially Weighted Moving Average Control Chart. Journal of the American Statistical Association, 91(436):1701-1706. Runger, G. C. and Testik, M. C. (2004). Multivariate Extensions to Cumulative Sum Control Charts. Quality and Reliability Engineering International , 20(6):587-606. Samet, J. M.; Dominici, F.; McDermott, A. and Zegert, S. L. (2003). New Problems for an Old Design: Time Series Analyses of Air Pollution and Health. Epidemiology, 14(1):11-12. Saraie, A. (2007). Economic-Statistical Design of MC1 Control Charts. The In- ternational Journal of Advanced Manufacturing Technology, 32(1-2):157-161. Schwartz, J, and Marcus, A. (1990). Mortality and Air Pollution in London: a Time Series Analysis. American Journal of Epidemiology, 131(1):185-194. Scranton, R.; Runger, G. C.; Keats, J. B. and Montgomery, D. C. (1996). Efficient Shift Detection Using Multivariate Exponentially-Weighted Moving Average Control Charts and Principal Components. Quality and reliability engineering international , 12(3):165-171. Stieb, D. M.; Judek, S. and Burnett, R. T. (2002). Meta-Analysis of Time-Series Studies of Air Pollution and Mortality: Effects of Gases and Particles and the Influence of Cause of Death, Age, and Season. Journal of the Air & Waste Management Association, 52:470-484. Stoumbos, Z. G. and Sullivan, J. H. (2002). Robustness to Non-Normality of the Multivariate EWMA Control Chart. Journal of Quality Technology, 34(3):260- 276. T`ellez-Rojo, M. M.; Romieu, I.; Ruiz-Velasco, S.; Lezana, M. A. and Hern`andez- Avila, M. M. (2000). Daily Respiratory Mortality and PM10 Pollution in Mexico City: Importance of Considering Place of Death. European Respiratory Journal , 16:391-396. T`ellez-Rojo, M. M.; Romieu, I.; Ruiz-Velasco, S. and Hern`andez-Avila, M. M. (2001). Daily Respiratory Mortality and PM10 Pollution in Mexico City. Eu- ropean Respiratory Journal , 18:1076-1076. Testik, M. C. and Borror, C. M. (2004). Design Strategies for the Multivariate Exponentially Weighted Moving Average Control Chart. Quality and Reliability Engineering International , 20(6):571-577. Testik, M. C.; Runger, G. C.; and Borror, C. M. (2003). Robustness Properties of Multivariate EWMA Control Charts. Quality and Reliability Engineering International , 19:31-38. Wang, C. L. (2002). Statistical Control Charts of I(d) processes. Masters Thesis, National Sun Yat-Sen University. Wei, W. W. S. (1990). Time Series Analysis: Univariate and Department of Ap- plied Mathematics Multivariate Methods, Addison-Wesley, Redwood City. Welty, L. J. and Zeger, S. L. (2005). Are the Acute Effects of Particulate Matter on Mortality in the National Morbidity, Mortality, and Air Pollution Study the Result of Inadequate Control for Weather and Season? A Sensitivity Analysis Using Flexible Distributed Lag Models. American Journal of Epidemiology, 162(1):80-88. Yeh, A. B.; Huwang, L.; and Wu, C. W. (2005). A Multivariate EWMA Control Chart for Monitoring Process Variability with Individual Observations. IIE Transactions, 37:1023-1035. Yeh, A. B.; Lin, D. K. J.; Zhou, H. H.; and Venkataramani, C. (2003). A Multivariate Exponentially Weighted Moving Average Control Chart for Monitoring Process Variability. Journal of Applied Statistics, 30(5):507-536. Zhang, N. F. (1997). Detection Capability of Residual Control Chart for Stationary Process Data. Journal of Applied Statistics, 24(4):475-492. ———(1998). A Statistical Control Chart for Stationary Process Data. Techno- metrics, 40(1):24-38. ———(2000). Statistical Control Charts for Monitoring the Mean of a Stationary Process. Journal of Statistical Computation & Simulation, 66(3):249-258.
|