跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/12 01:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳素足
研究生(外文):Su-tsu Chen
論文名稱:管制圖在環境資料監測上的應用研究
論文名稱(外文):Applying Control Charts for Monitoring Environmental Data
指導教授:潘浙楠潘浙楠引用關係
口試委員:黃景祥潘浙楠曾勝滄路繼先鄭順林蘇永在
學位類別:博士
校院名稱:國立成功大學
系所名稱:統計學系
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:76
中文關鍵詞:多變量舒華特累和管制圖自我迴歸移動平均部份整合模式多變量指數平滑與移動平均管制圖多變量累和管制圖自我迴歸移動平均整合模式單變量舒華特累和管制圖
外文關鍵詞:MEWMA chartsShewhart-likeCUSUM chartsARFIMAARIMAMCUSUM chartsSMCUSUM charts
相關次數:
  • 被引用被引用:0
  • 點閱點閱:240
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
  工業界常用統計管制圖作為監控製程穩定性的工具,近年來管制圖亦被應用於環境品質,如空氣品質及工業廢棄物污染的改善上。一般而言,當製程資料呈現自我相關時,使用傳統管制圖可能會導致誤判之狀況。因此,發展一種有別於傳統的特殊管制圖有其必要,雖然此種適合相關資料的單變量管制圖已廣受討論,但環境資料常呈現長期記憶(long memory)之特性,我們應該使用自我迴歸移動平均部份整合模式(ARFIMA),而非自我迴歸移動平均整合模式(ARIMA)去配適它。為了監控呈現長期記憶的環境資料,本論文提出使用ARFIMA模式的管制圖去監控呈自我相關的空氣品質資料。最後,我們以南台灣地區空氣品質資料比較使用ARFIMA模式與ARIMA模式在監控空氣品質之間的差異。結果顯示使用ARFIMA模式的殘差管制圖較使用ARIMA模式的殘差管制圖適當(可及早偵測出異常點)。
  至於多變量累和管制圖(MCUSUM)與多變量指數平滑與移動平均管制圖(MEWMA)則常用於偵測多變量製程的微量移動(small shift)上。不過,此種多變量管制圖皆假設製程服從常態分配,而並不符合現況。為了發展一個簡單而且實用的多變量管制圖,本論文提出了多變量舒華特累和管制圖(SMCUSUM)。SMCUSUM管制圖與單變量舒華特累和管制圖(Shewhart-like CUSUM)類似,其優點在於無需給定目標值與參數我們即可偵測製程的微量移動。模擬結果顯示SMCUSUM管制圖之偵測表現就平均串長度而言較MCUSUM管制圖與MEWMA管制圖均佳。
  由於多變量製程資料常呈現自我相關,因此模式選擇的正確與否會直接影響多變量製程監控的表現。我們以一組美國水文的資料為例,說明SMCUSUM管制圖可適用於監控多變量自我相關資料。實例分析結果顯示,SMCUSUM管制圖在偵測製程異常變動的表現亦較MCUSUM管制圖與MEWMA管制圖為佳。
  The statistical control chart is commonly used in industry to help ensure stability of the manufacturing process. It can also be used to monitor environmental quality; such as a change in air quality, industrial pollution, etc. When process data are autocorrelated, traditional control charts may lead to false results. Hence, nontraditional control charts are needed and this area has been widely discussed for the univariate case.
  Sometimes processes have not only short memory, but long memory as well. Instead of following the autoregressive integrated moving-average (ARIMA) models, these processes with long memory follow the so called fractionally integrated autoregressive moving-average (ARFIMA) models. In this thesis, a control chart for autocorrelated data using the ARFIMA model is proposed to monitor the longmemory air quality data. Finally, we use the air quality data for Taiwan to compare the difference between the ARFIMA and ARIMA models. The results show that
residual control charts using the ARFIMA models are more appropriate than those using the ARIMA models.
  For multivariate processes, various control charts including the multivariate cumulative sum (MCUSUM) and multivariate exponentially weighted moving average
(MEWMA) charts were proposed to monitor small process shifts. However, the calculation of optimal parameters assume that the distribution of a manufacturing process is known. This may not be true in practice. In order to develop a simple yet practical multivariate control chart, a Shewhart-like multivariate CUSUM (SMCUSUM) control chart is proposed. Similar to the univariate Shewhart-like
CUSUM chart, it has the advantage of detecting the small process shift without requiring target values and parameters. The results of our simulation study show that our proposed SMCUSUM chart outperforms the MEWMA and MCUSUM charts in terms of in-control and out-of-control ARLs.
  Similar to univariate processes, the data for multivariate processes may also be autocorrelated. Thus, choosing an appropriate model is also critical for monitoring autocorrelated processes. To demonstrate the application of SMCUSM chart to autocorrelated processes, an example of hydrological data is used to compare the
  performance of SMCUSUM, MEWMA, and MCUSUM charts. The results show that the SMCUSUM chart is more sensitive than MEWMA and MCUSUM charts.
Contents
1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Process Outputs are Correlated . . . . . . . . . . . . . . . . . . . . . 2
1.3 The Calculation of ARLs for Control Charts . . . . . . . . . . . . . . 3
1.4 Development of a Sensitive Multivariate Control Chart . . . . . . . . 4
2 Literature Review 6
2.1 Long Memory Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Hotelling’s T2 Control Chart . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 MCUSUM Control Chart . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 MEWMA Control Chart . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Shewhart-like CUSUM control chart . . . . . . . . . . . . . . . . . . 20
3 Development of Univariate Control Charts for Monitoring Long
Memory Data 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 The Properties of Air Quality Data . . . . . . . . . . . . . . . . . . . 24
3.3 Development of Statistical Control Charts for Long Memory Data . . 27
3.4 Comparison of ARFIMA and ARIMA Models . . . . . . . . . . . . . 30
3.4.1 Example of Using the PM10 Data of Nantsz . . . . . . . . . . 30
3.4.2 Example of Using the PM10 data of Tsoying . . . . . . . . . . 35
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4 Development of a Shewhart-likeMultivariate CUSUMControl Chart 41
4.1 Development of Shewhart-like MCUSUM Control Charts . . . . . . . 42
4.1.1 SMCUSUM chart for individual observations (n = 1) . . . . . 43
4.1.2 SMCUSUM chart for multiple observations (n > 1) . . . . . . 48
4.2 Comparison of SMCUSUM and Other Multivariate Control Charts . 51
4.2.1 The Comparison of Detecting Performance of Various Multivariate
Control Charts . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Application of SMCUSUM Control Chart to Hydrological Data . . . 55
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5 Conclusions and Future Research 67
Alwan, L. C. and Roberts, H. V. (1988). Time-Series Modeling for Statistical
Process Control. Journal of Business & Economic Statistics,January, 6(1):87-
95.
Anderson, T. W. (1984). An Introduction to Multivariate Statistical Analysis, 2nd
edn, John Wiley, New York.
Aparisi, F. and Garc´ı-D´ıaz, J. C. (2004). Optimization of Univariate and Multivariate
Exponentially Weighted Moving-Average Control Charts. Computers
& Operations Research, 31:1437-1454.
Baillie, R. (1996). Long Memory Processes and Fractional Integration in Econometrics.
Journal of Econometrics, 73:5-59.
Beran, J. (1994). Statistics for Long-Memory Processes, Chapman & Hall, New
York.
Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods,
Springer-Verlag, New York.
Bodden, K. M. and Rigdon, S. E. (1999). A Program for Approximating the
In-Control ARL for the MEWMA Chart. Journal of Quality Technology,
31(1):120-123.
Bodnar, O. and Schmid, W. (2005). Multivariate Control Charts Based on a
Projection Approach. Allgemeines Statistisches Archiv, 89:75-93.
Borror, C. M.; Montgomery, D. C. and Runger, G. C. (1999). Robustness of
the EWMA Control Chart to Non-normality. Journal of Quality Technology,
31(3):309-316.
Caballero, R.; Jewson, S. and Brix, A. (2002). Long Memory in Surface Air Temperature:
Detection, Modeling, and Application to Weather Derivative Valuation.
Climate Research, 21(2): 127-140.
Chan, C. C. and Hwang, J. S. (1996). Selling The Blue Skies: Some Reflection
on Air Pollution Fee Policy in Taiwan. Journal of the Chinese Institute of
Environmental Engineering, 6:235-246.
Chang, Y. S. and Bai, D. S. (2001). Median Control Charts for Skewed Populations.
Asia Pacific Management Review, 6(2):211-246.
Corbett, C. and Pan, J. N. (2002). Evaluating Environmental Performance Using
Statistical Process Control Techniques. European Journal of Operational
Research, 139(1):68-83.
Crosier, R. B. (1988). Multivariate Generalizations of Cumulative Sum Quality
Control Schemes. Technometrics, 30:291-303.
Crowder, S. V. (1987a). A Simple Method for Studying Run-length Distributions of
Exponentially Weighted Moving Average Charts. Technometrics, 29:401-407.
———(1987b). Average Run Lengths of Exponentially Weighted Moving Average
Control Charts. Journal of Quality Technology, 19:161-164.
DeVor, R. E.; Chang, T. H.; and Sutherland, J. W. (1992). Statistical Quality
Design and Control , Macmillan Publishing, New York, NY.
Faltin, F. W.; Mastrangelo, C. M. and Runger, G. C. (1997). Considerations in
the Monitoring of Aautocorrelated and Independent Data. Journal of Quality
Technology, 29(2):131-133.
Fass`o, A. (1999). One-SidedMEWMA Control Charts. Communications in Statistics-
Simulation and Computation, 28(2):381-401.
Fu, J. C.; Spiring, F. A. and Xie, H. (2002). On the Average Run Lengths of Quality
Control Schemes Using a Markov Chain Approach. Statistics & Probability
Letters, 56:369-380.
Galeano, P. and Pe˜na, D. (2007). Covariance Changes Detection in Multivariate
Time Series. Journal of Statistical Planning and Inference, 137(1):194-211.
Granger, C. W. J. and Joyeux, R. (1980). An Introduction to Long-Memory Time
Series Models and Fractional Differencing. Journal of Time Series Analysis,
1:15-29.
Hipel, K. W. and McLeod, A. I. (1994). Time Series Modelling of Water Resources
and Environmental Systems, Elsevier, Amsterdam, the Netherland.
Hosking, J. R. M. (1981). Fractional Differencing. Biometrika, 68:165-176.
Hunter, J. S. (1986). The Exponentially Weighted Moving Average. Journal of
Quality Technology, 18:203-210.
Hurst, H. E. (1951). Long-Term Storage Capacity of Reservoirs. Transactions of
the American Society of Civil Engineers, 116:770-799.
Hussain, S. and Elbergali, A. (1999). Fractional Order Estimation and Testing,
Application to Swedish Temperature Data. Environmetrics, 10(3):339-349.
Hussain, S.; Elbergali, A.; Al-Masri, A. and Shukur G. (2004). Parsimonious
Modelling, Testing and Forecasting of Long-Range Dependence inWind Speed.
Environmetrics, 15(2):155-171.
Jensen, D. R. (1970). The Joint Distribution of Quadratic Forms and Related
Distributions. Australian Journal of Statistics, 12:13-22.
Kan, H. D.; Chen, B. H.; Fu, C. W.; Yu, S. Z. and Mu, L. N. (2005). Relationship
Between Ambient Air Pollution and Daily Mortality of SARS in Beijing.
Biomedical and Environmental Sciences, 18(1):1-4.
Khoo, M. B. C. (2004). Increasing the Sensitivity of Multivariate EWMA Control
Chart. Quality Engineering, 16(1):75-85.
Khoo, M. B. C. and Quah, S. H. (2002). Computing the Percentage Points of the
Run-Length Distributions of Multivariate CUSUM Control Charts. Quality
Engineering, 15(2):299-310.
Kim, K. and Reynolds, M. R. (2005). Multivariate Monitoring Using an MEWMA
Control Chart With Unequal Sample Sizes. Journal of Quality Technology,
37:267-281.
Kramer, H. and Schmid, W. (1997). EWMA Charts for Multivariate Time Series.
Sequential analysis, 16(2):131-154.
Kuei, C. H. and Madu, C. N. (2001). Identifying Critical Success Factors for Supply
Chain Quality Management. Asia Pacific Management Review, 6(4):211-246.
Lee, M. H. and Khoo, M. B. C. (2006a). Optimal Statistical Designs of a Multivariate
CUSUM Chart Based on ARL and MRL. International Journal of
Reliability, Quality and Safety Engineering, 13(5):479-497.
———(2006b). Optimal Statistical Design of a Multivariate EWMA Chart Based
on ARL and MRL. Communications in Statistics-Simulation and Computa-
tion, 35:831-847.
Linderman, K. and Love, T. E.(2000a). Economic and Economic Statistical Designs
for MEWMA Control Charts. Journal of Quality Technology, 32(4):410-417.
———(2000b). Implementing Economic and Economic Statistical Designs for
MEWMA Charts. Journal of Quality Technology, 32(4): 457-463.
Liu, Y. M. (1996). An Improvement for MEWMA in Multivariate Process Control.
Computer & Industrial Engineering, 31:779-781.
Love, T. E. and Linderman, K. (2003). A Weibull Process Failure Mechanism for the Economic Design of MEWMA Control Charts. Journal of statistical
computation and simulation, 73(3):195-202.
Lowry, C. A. and Montgomery, D. C. (1995). A Review of Multivariate Control
Charts. IIE Transactions, 27:800-810.
Lowry, C. A.; Woodall, W. H.; Champ, C. W.; and Rigdon, S. E. (1992). A
Multivariate Exponentially Weighted Moving Average Control Chart. Tech-
nometrics, 34(1):46-53.
Lu, C. W. and Reynolds, M. R., Jr. (1999a). Control Charts for Monitoring the
Mean and Variance of Autocorrelated Processes. Journal of Quality Technol-
ogy, 31(3):259-274.
———(1999b). EWMA Control Charts forMonitoring theMean of Autocorrelated
Process. Journal of Quality Technology, 31(2):166-188.
———(2001). CUSUM Charts for Monitoring an Autocorrelated Process. Journal
of Quality Technology, 33(3):66-81.
Lucas, J. M. and Saccucci, M. S. (1990). Exponentially Weighted Moving Average
Control Schemes: Properties and Enhancements. Technometrics, 32(1):1-12.
Madu, C. N. (1996). Managing Green Technologies for Global Competitiveness.
Quorum Books, Westport, CT.
Mathai, A.M. and Provost. S. B. (1992). Quadratic Forms in Random Variables:
Theory and Applications, M. Dekker, New York.
Mindell, J. and Joffe, M. (2004). Predicted Health Impacts of Urban Air Quality
Management. Journal of Epidemiology and Community Health, 58(2):103-113.
Molnau, W. E.; Runger, G. C.; Montgomery, D. C.; Skinner, K. R.; Loredo, E. N.;
and Prabhu, S. S. (2001). A Program for ARL Calculation for Multivariate
EWMA Charts. Journal of Quality Technology, 33(4):515-521.
Molnau, W. E.; Montgomery, D. C.; and Runger, G. C. (2001). Statistically Constrained
Economic Design of the Multivariate Exponentially Weighted Moving
Average Control Chart. Quality and Reliability Enngineering International ,
17:39-49.
Montgomery, D. C. (2005). Introduction to statistical quality control , 5nd edn,
John Wiley, New York.
Ngai, H. M. and Zhang, J. (2001). Multivariate Cumulative Sum Control Charts
Based on Projection Pursuit. Statistica Sinica, 11:747-766.
Noorossana, R. and Vaghefi, S. J. M. (2006). Effect of Autocorelation on Performance
of the MCUSUM Control Chart. Quality and Reliability Engineering
International , 22(2):191-197.
Pan, J. N. (2007). A Study of Multivariate Pre-Control Charts. International
journal of production Economics, 105:160-170.
Pan, J. N. and Chen, B. D. (2004). The Comparison of Environmental Control
Charts for Monitoring Autocorrelated Air Pollution Data in Taipei Area.
Journal of The Chinese Statistical Association, 42(1): 31-62.
Pan, J. N. and Chen, S. T. (2007). Monitoring Long-Memory Air Quality Data
Using ARFIMA Model. Environmetrics , 19(2):209-219.
Pan, X. (2005). An Alternative Approach to Multivariate EWMA Control Chart.
Journal of Applied Statistics, 32(7):695-705.
Pignatiello, J. J. Jr. and Runger, G. C. (1990). Comparisons of Multivariate
CUSUM Charts. Journal of Quality Technology, 22(3):173-186.
Prabhu, S. S. and Runger, G. C. (1997). Designing a Multivariate EWMA Control
Chart. Journal of Quality Technology, 29(1):8-15.
Qiu, P. and Hawkins, D. (2001). A Rank-Based Multivariate CUSUM Procedure.
Technometrics, 43(2):120-132.
Qiu, P. and Hawkins, D. (2003). A Nonparametric Multivariate CUSUM Procedure
For Detecting Shifts In All Directions. Journal of the Royal Statistical Society
Series D-The Statistician, 52:15-164.
Rao, B. V.; Disney, R. L. and Pignatiello, J. J. (2001). Uniqueness and Convergence
of Solutions to Average Run Length Integral Equations for Cumulative Sum
and Other Control Charts. IIE Transactions, 33(6):463-469.
Reynolds, M. R. and Kim, K. (2005). Multivariate Monitoring of the Process Mean
Vector With Sequential Sampling. Journal of Quality Technology, 37(2):149-
162.
Reynolds, M. R. and Cho, G. Y. (2006). Multivariate Control Charts for Monitoring
the Mean Vector and Covariance Matrix. Journal of Quality Technology,
38:230-253.
Rigdon, S. E. (1995a). A Double-Integral Equation for the Average Run-Length of
a Multivariate ExponentiallyWeighted Moving Average Control Chart. Statis-
tics & Probability Letters, 24:365-373.
———(1995b). An Integral Equation for the In-Control Average Run Length of a
Multivariate Exponentially Weighted Moving Average Control Chart. Journal
of Statistical Computation and Simulation, 52:351-365.
Roberts, S. W. (1959). Control Chart Tests Based on Geometric Moving Averages.
Technometrics, 1:239-250.
Runger, G. C.; Keats, J. B.; Montgomery, D. C.; and Scranton, R. D. (1999).
Improving the Performance of the Multivariate Exponentially Weighted Moving
Average Control Chart. Quality and Reliability Engineering International ,
15:161-166.
Runger, G. C. and Prabhu, S. S. (1996). A Markov Chain Model for the Multivariate
Exponentially Weighted Moving Average Control Chart. Journal of the
American Statistical Association, 91(436):1701-1706.
Runger, G. C. and Testik, M. C. (2004). Multivariate Extensions to Cumulative
Sum Control Charts. Quality and Reliability Engineering International ,
20(6):587-606.
Samet, J. M.; Dominici, F.; McDermott, A. and Zegert, S. L. (2003). New Problems
for an Old Design: Time Series Analyses of Air Pollution and Health.
Epidemiology, 14(1):11-12.
Saraie, A. (2007). Economic-Statistical Design of MC1 Control Charts. The In-
ternational Journal of Advanced Manufacturing Technology, 32(1-2):157-161.
Schwartz, J, and Marcus, A. (1990). Mortality and Air Pollution in London: a
Time Series Analysis. American Journal of Epidemiology, 131(1):185-194.
Scranton, R.; Runger, G. C.; Keats, J. B. and Montgomery, D. C. (1996). Efficient
Shift Detection Using Multivariate Exponentially-Weighted Moving Average
Control Charts and Principal Components. Quality and reliability engineering
international , 12(3):165-171.
Stieb, D. M.; Judek, S. and Burnett, R. T. (2002). Meta-Analysis of Time-Series
Studies of Air Pollution and Mortality: Effects of Gases and Particles and the
Influence of Cause of Death, Age, and Season. Journal of the Air & Waste
Management Association, 52:470-484.
Stoumbos, Z. G. and Sullivan, J. H. (2002). Robustness to Non-Normality of the
Multivariate EWMA Control Chart. Journal of Quality Technology, 34(3):260-
276.
T`ellez-Rojo, M. M.; Romieu, I.; Ruiz-Velasco, S.; Lezana, M. A. and Hern`andez-
Avila, M. M. (2000). Daily Respiratory Mortality and PM10 Pollution in
Mexico City: Importance of Considering Place of Death. European Respiratory
Journal , 16:391-396.
T`ellez-Rojo, M. M.; Romieu, I.; Ruiz-Velasco, S. and Hern`andez-Avila, M. M.
(2001). Daily Respiratory Mortality and PM10 Pollution in Mexico City. Eu-
ropean Respiratory Journal , 18:1076-1076.
Testik, M. C. and Borror, C. M. (2004). Design Strategies for the Multivariate Exponentially
Weighted Moving Average Control Chart. Quality and Reliability
Engineering International , 20(6):571-577.
Testik, M. C.; Runger, G. C.; and Borror, C. M. (2003). Robustness Properties
of Multivariate EWMA Control Charts. Quality and Reliability Engineering
International , 19:31-38.
Wang, C. L. (2002). Statistical Control Charts of I(d) processes. Masters Thesis,
National Sun Yat-Sen University.
Wei, W. W. S. (1990). Time Series Analysis: Univariate and Department of Ap-
plied Mathematics Multivariate Methods, Addison-Wesley, Redwood City.
Welty, L. J. and Zeger, S. L. (2005). Are the Acute Effects of Particulate Matter on
Mortality in the National Morbidity, Mortality, and Air Pollution Study the
Result of Inadequate Control for Weather and Season? A Sensitivity Analysis
Using Flexible Distributed Lag Models. American Journal of Epidemiology,
162(1):80-88.
Yeh, A. B.; Huwang, L.; and Wu, C. W. (2005). A Multivariate EWMA Control
Chart for Monitoring Process Variability with Individual Observations. IIE
Transactions, 37:1023-1035.
Yeh, A. B.; Lin, D. K. J.; Zhou, H. H.; and Venkataramani, C. (2003). A Multivariate
Exponentially Weighted Moving Average Control Chart for Monitoring
Process Variability. Journal of Applied Statistics, 30(5):507-536.
Zhang, N. F. (1997). Detection Capability of Residual Control Chart for Stationary
Process Data. Journal of Applied Statistics, 24(4):475-492.
———(1998). A Statistical Control Chart for Stationary Process Data. Techno-
metrics, 40(1):24-38.
———(2000). Statistical Control Charts for Monitoring the Mean of a Stationary
Process. Journal of Statistical Computation & Simulation, 66(3):249-258.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top