(18.210.12.229) 您好!臺灣時間:2021/03/03 17:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王壹
研究生(外文):Yi Wang
論文名稱:抑制肝醣合成酶激酶-3改善内毒血症引起的急性腎衰竭:小鼠模式的研究
論文名稱(外文):Inhibiting Glycogen Synthase Kinase-3 Improves Acute Renal Failure in a Mouse Model of Endotoxemia-induced Sepsis
指導教授:林秋烽余俊強
指導教授(外文):Chiou-Feng LinChun-Keung Yu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微生物暨免疫學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
畢業學年度:96
語文別:英文
論文頁數:58
中文關鍵詞:急性腎衰竭腫瘤壞死因子肝醣合成酶激酶-3脂多醣體發炎細胞凋亡
外文關鍵詞:Acute Renal FailureTNF-alphaGSK-3LPSInflammationApoptosis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:138
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
急性腎衰竭為致命性疾病,歸因於許多因素包含敗血症;而敗血性急性腎衰竭極具高致死率且尚無有效的治療方法。研究發現,過量表現的促發炎細胞激素腫瘤壞死因 (TNF) 及細胞凋亡現象在敗血性急性腎衰竭的致病機轉中扮演重要的角色。肝醣合成酶激酶-3 (GSK-3) 被證實具有促發炎及促細胞凋亡的生物功能,我們假設抑制GSK-3的作用將可改善敗血性急性腎衰竭。實驗發現GSK-3抑制劑包括鋰鹽、6-bromo- indirubin-3’-oxime (BIO) 以及4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5- dione (TDZD) 有效地降低內毒素脂多醣體 (LPS) 誘發小鼠的致死率。組織及血清分析的結果顯示GSK-3抑制劑減緩腎臟中腎小管擴張、空泡化和脫落的病變,並可降低血清中尿素氮的表現量。利用酵素免疫吸附分析法進一步發現在LPS處置的小鼠血清中及小鼠皮質集尿管上皮細胞株 (M1) 培養液中,抑制GSK-3可降低細胞激素TNF以及化學趨化激素RANTES並提高抗發炎細胞激素-介白素10 (IL-10) 的表現量。我們進而發現抑制GSK-3可以減少LPS誘發轉錄因子NF-kappaB從細胞質轉移至細胞核的表現。另外,抑制GSK-3可以減少TNF於大鼠近曲小管上皮細胞株 (NRK52E) 促使誘發型一氧化氮生成酶的表現。因此,我們推測LPS和TNF活化發炎反應的過程中係透過GSK-3依賴性的調控機制。除了抗發炎作用,GSK-3抑制劑可以降低體內LPS誘發小鼠腎臟組織中的細胞凋亡現象。我們進而證明體外模式給予TNF可造成大鼠近曲小管上皮細胞株的死亡,然而體外模式給予LPS並無此效應。然而,GSK-3抑制劑只能輕微減緩TNF造成細胞死亡的現象。綜合而論,我們的實驗結果顯示抑制GSK-3可以減緩LPS誘發TNF的表現以提供抗發炎及抗細胞凋亡的保護作用進而改善敗血性急性腎衰竭的發生。
Acute renal failure (ARF) is a fatal disease and attributed to many reasons including sepsis; septic ARF is characterized by high mortality rate; nevertheless, an efficient therapy for improving septic ARF remains unavailable. Excessive tumor necrosis factor-alpha (TNF-alpha) and apoptosis play pathogenic roles in endotoxemia-induced ARF. A lot of studies have shown that glycogen synthase kinase (GSK-3) promotes inflammation such as TNF-alpharelease and enhances apoptosis. Since GSK-3 plays an emergency role in inflammation and apoptosis, we hypothesize that inhibiting GSK-3 may improve septic ARF. By histology and serology analyses, GSK-3 inhibitors inhibited renal tubular dilatation, vacuolization and sloughing and caused down-regulation in blood urea nitrogen in lipopolysaccharide (LPS)-treated C3H/HeN mice. ELISA analysis further showed that inhibiting GSK-3 decreased systemic TNF-alpha and regulated upon activation normal T-cell expressed and secreted but increased anti-inflammatory interleukin-10 (IL-10) in LPS-treated mice and murine kidney cortical collecting duct epithelial M1 cells. Further in vitro studies demonstrated that LPS-induced
NF-kappaB nuclear translocation was blocked by GSK-3 inhibition. Additionally, inhibiting GSK-3 efficiently decreased TNF-alpha-induced inducible nitric oxide synthase expression in rat kidney proximal tubular epithelial NRK52E cells. Thus, the inflammatory activation of LPS and TNF-alpha is GSK-3-dependent. Notably, treating mice with GSK-3 inhibitor showed a decrease in LPS-induced renal cell apoptosis in vivo. We further demonstrated that TNF-alpha but not LPS, caused cytotoxicity in NRK52E cells time- and dose-dependently. However, inhibiting GSK-3 slightly decreased TNF-alpha-induced cell apoptosis. Taken together, these results suggest that inhibiting GSK-3 confers anti-inflammation and anti-apoptosis reactions to prevent septic ARF mainly by down-regulating LPS-induced TNF-alpha.
Contents
Abstract in Chinese II
Abstract in English III
Acknowledgement IV
Abbreviations V
Contents VII
List of Figures XI
Chapter I Introduction 1
A Sepsis and Epidemiology of Septic Acute Renal Failure (ARF) 1
B Hemodynamic Pathogenesis of Septic ARF 1
C Nonhemodynamic Pathogenesis of Septic ARF 2
D Relationship between TNF-, Apoptosis, and Septic ARF 3
E Glycogen Synthase Kinase-3 (GSK-3) in Inflammation and Apoptosis 3
F GSK-3 as a Target for Treating Inflammation-Associated Disease 5
Chapter II Study Objective and Specific Aims 7
Objective 7
Specific Aims 7
Chapter III Materials and Methods 9
A Animal Treatment 9
B Histology 9
C Serological Examination 9
D Enzyme-linked Immunosorbent Assay (ELISA) 9
E Cell Culture 10
F Immunostaining 10
G Western Blot 10
H Apoptosis Assay 11
I Cytotoxicity and Viability assay 11
J Statistics 12
Chapter IV Results 13
A LPS Caused Nephrotoxicity Following Systemic Inflammation and Renal Cell Apoptosis 13
B Inhibiting GSK-3 Reduced Mortality and Nephrotoxicity in Endotoxemia-treated C3H/HeN Mice 13
C Inhibiting GSK-3 Suppressed LPS-induced Inflammation In Vivo and In Vitro 14
D Inhibiting GSK-3 Blocked LPS-induced NF-B Nuclear Translocation 15
E Inhibiting GSK-3 Reduced TNF--induced iNOS Expression 15
F Inhibiting GSK-3 Attenuated Renal Cell Apoptosis in LPS-treated Mice But Not in TNF--treated Renal Epithelial Cells 15
Chapter V Discussion 17
Chapter VI Conclusion 22
References 23
Figures and Figure Legends 32
Appendix 45
A Materials 45
A-1 Chemicals 45
A-2 Antibodies and Recombinant Proteins 47
A-3 Consumables 48
A-4 Apparatus 48
B Methods 50
B-1 Animal Experiment 50
B-1.1 Reagents 50
B-1.2 Isolation and treatment of peritoneal macrophages 50
B-1.3 Sacrifice procedures 50
B-2 Animal Survival 51
B-3 Histology 51
B-3.1 Reagents 51
B-3.2 Fixation, dehydration, and embedding 51
B-3.3 Deparaffinization 52
B-3.4 Haematoxylin and Eosin (H&E) Staining 52
B-3.5 Terminal Deoxynucleotidyl Transferase (TdT)-mediated dUTP-Biotin Nick-End Labeling (TUNEL) 52
B-4 Enzyme-linked Immunosorbent Assay (ELISA) 53
B-5 Griess’s Reaction 53
B-6 Protein Concentration Determination 53
B-7 Cell Culture 54
B-7.1 Cell Culture Medium 54
B-7.2 Cell Passage 54
B-7.3 Cell Freeze 54
B-7.4 Cell Defreeze 55
B-8 Immunocytochemistry 55
B-9 Western Blot 55
B-9.1 Lysis buffer 55
B-9.2 5X loading dye and TBS-T 55
B-9.3 Running gel preparation 56
B-9.4 Stacking gel preparation 56
B-9.5 Cell lysate preparation 56
B-9.6 SDS-PAGE 57
B-10 Cell Death and Viability Assay 57
B-10.1 Cytotoxicity detection kit (LDH assay) 57
B-10.2 Cell counting kit-8 (CCK-8 assay) 57
B-10.3 PI staining 57
CURRICULUM VITAE 58
Anderson, R.J. (2007). Kidney in sepsis. Crit. Care Med. 35, 2223-2224.
Baud, L., Oudinet, J.P., Bens, M., Noe, L., Peraldi, M.N., Rondeau, E., Etienne, J., and Ardaillou, R. (1989). Production of tumor necrosis factor by rat mesangial cells in response to bacterial lipopolysaccharide. Kidney Int. 35, 1111-1118.
Beaulieu, J.M., Marion, S., Rodriguiz, R.M., Medvedev, I.O., Sotnikova, T.D., Ghisi, V., Wetsel, W.C., Lefkowitz, R.J., Gainetdinov, R.R., and Caron, M.G. (2008). A -arrestin 2 signaling complex mediates lithium action on behavior. Cell 132, 125-136.
Beaulieu, J.M., Sotnikova, T.D., Yao, W.D., Kockertiz, L., Woodgett, J.R., Gainetdinov, R.R., and Caron, M.G. (2004). Lithium antagonizes dopamine-dependent behaviors mediated by an Akt/glycogen synthase kinase 3 signaling cascade. Proc. Natl. Acad. Sci. 101, 5099-5104.
Bhat, R.V., Leonov, S., Luthman, J., Scott, C.W., and Lee, C.M. (2002). Interactions between GSK3beta and caspase signalling pathways during NGF deprivation induced cell death. J. Alzheimers Dis. 4, 291-301.
Bijur, G.N., De Sarno, P., and Jope, R.S. (2000). Glycogen synthase kinase-3beta facilitates staurosporine- and heat shock-induced apoptosis. Protection by lithium. J. Biol. Chem. 275, 7583-7590.
Cohen, P., and Frame, S. (2001). The renaissance of GSK-3. Nat. Rev. Mol. Cell Biol. 2, 769-776.
Cross, D.A., Alessi, D.R., Cohen, P., Andjelkovich, M., and Hemmings, B.A. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785-789.
Cunningham, P.N., Dyanov, H.M., Park, P., Wang, J., Newell, K.A., and Quigg, R.J. (2002). Acute renal failure in endotoxemia is caused by TNF acting directly on TNF receptor-1 in kidney. J. Immunol. 168, 5817-5823.
Cunningham, P.N., Wang, Y., Guo, R., He, G., and Quigg, R.J. (2004). Role of Toll-like receptor 4 in endotoxin-induced acute renal failure. J. Immunol. 172, 2629-2635.
Cuzzocrea, S., Malleo, G., Genovese, T., Mazzon, E., Esposito, E., Muia, C., Abdelrahman, M., Di Paola, R., and Thiemermann, C. (2007a). Effects of glycogen synthase kinase-3beta inhibition on the development of cerulein-induced acute pancreatitis in mice. Crit. Care Med 35, 2811-2821.
Cuzzocrea, S., Mazzon, E., Di Paola, R., Muia, C., Crisafulli, C., Dugo, L., Collin, M., Britti, D., Caputi, A.P., and Thiemermann, C. (2006). Glycogen synthase kinase-3beta inhibition attenuates the degree of arthritis caused by type II collagen in the mouse. Clin. Immunol. 120, 57-67.
Cuzzocrea, S., Mazzon, E., Esposito, E., Muia, C., Abdelrahman, M., Di Paola, R., Crisafulli, C., Bramanti, P., and Thiemermann, C. (2007b). Glycogen synthase kinase-3beta inhibition attenuates the development of ischaemia/reperfusion injury of the gut. Intensive Care Med. 33, 880-893.
de Visser, K.E., Eichten, A., and Coussens, L.M. (2006). Paradoxical roles of the immune system during cancer development. Nat. Rev. Cancer 6, 24-37.
Deng, J., Kohda, Y., Chiao, H., Wang, Y., Hu, X., Hewitt, S.M., Miyaji, T., McLeroy, P., Nibhanupudy, B., Li, S., et al. (2001). Interleukin-10 inhibits ischemic and cisplatin-induced acute renal injury. Kidney Int. 60, 2118-2128.
Dugo, L., Abdelrahman, M., Murch, O., Mazzon, E., Cuzzocrea, S., and Thiemermann, C. (2006a). Glycogen synthase kinase-3beta inhibitors protect against the organ injury and dysfunction caused by hemorrhage and resuscitation. Shock 25, 485-491.
Dugo, L., Collin, M., Allen, D.A., Murch, O., Foster, S.J., Yaqoob, M.M., and Thiemermann, C. (2006b). Insulin reduces the multiple organ injury and dysfunction caused by coadministration of lipopolysaccharide and peptidoglycan independently of blood glucose: role of glycogen synthase kinase-3beta inhibition. Crit. Care Med 34, 1489-1496.
Dugo, L., Collin, M., Allen, D.A., Patel, N.S., Bauer, I., Mervaala, E., Louhelainen, M., Foster, S.J., Yaqoob, M.M., and Thiemermann, C. (2007a). Inhibiting glycogen synthase kinase 3beta in sepsis. Novartis Found. Symp. 280, 128-142; discussion 142-146, 160-164.
Dugo, L., Collin, M., Allen, D.A., Patel, N.S., Bauer, I., Mervaala, E.M., Louhelainen, M., Foster, S.J., Yaqoob, M.M., and Thiemermann, C. (2005). GSK-3beta inhibitors attenuate the organ injury/dysfunction caused by endotoxemia in the rat. Crit. Care Med. 33, 1903-1912.
Dugo, L., Collin, M., and Thiemermann, C. (2007b). Glycogen synthase kinase 3beta as a target for the therapy of shock and inflammation. Shock 27, 113-123.
Endo, H., Nito, C., Kamada, H., Nishi, T., and Chen, P.H. (2006). Activation of the Akt/GSK3beta signaling pathway mediates survival of vulnerable hippocampal neurons after transient global cerebral ischemia in rats. J. Cereb. Blood Flow Metab. 26, 1479-1489.
Frame, S., and Cohen, P. (2001). GSK3 takes centre stage more than 20 years after its discovery. Biochem. J. 359, 1-16.
Giannopoulou, M., Dai, C., Tan, X., Wen, X., Michalopoulos, G.K., and Liu, Y. (2008). Hepatocyte growth factor exerts its anti-inflammatory action by disrupting nuclear factor-B signaling. Am. J. Pathol. 173, 30-41.
Gong, R., Rifai, A., and Dworkin, L.D. (2005). Activation of PI3K-Akt-GSK3beta pathway mediates hepatocyte growth factor inhibition of RANTES expression in renal tubular epithelial cells. Biochem. Biophys. Res. Commun. 330, 27-33.
Gong, R., Rifai, A., and Dworkin, L.D. (2006a). Anti-inflammatory effect of hepatocyte growth factor in chronic kidney disease: targeting the inflamed vascular endothelium. J. Am. Soc. Nephrol. 17, 2464-2473.
Gong, R., Rifai, A., and Dworkin, L.D. (2006b). Hepatocyte growth factor suppresses acute renal inflammation by inhibition of endothelial E-selectin. Kidney Int. 69, 1166-1174.
Gong, R., Rifai, A., Ge, Y., Chen, S., and Dworkin, L.D. (2008). Hepatocyte growth factor suppresses proinflammatory NFkappaB activation through GSK3beta inactivation in renal tubular epithelial cells. J. Biol. Chem 283, 7401-7410.
Guo, R., Wang, Y., Minto, A.W., Quigg, R.J., and Cunningham, P.N. (2004). Acute renal failure in endotoxemia is dependent on caspase activation. J. Am. Soc. Nephrol. 15, 3093-3102.
Gupta, A., Berg, D.T., Gerlitz, B., Sharma, G.R., Syed, S., Richardson, M.A., Sandusky, G., Heuer, J.G., Galbreath, E.J., and Grinnell, B.W. (2007). Role of protein C in renal dysfunction after polymicrobial sepsis. J. Am. Soc. Nephrol. 18, 860-867.
Henriksen, E.J. and Dokken, B.B. (2006). Role of glycogne synthase kinase-3 in insulin resisitance and type 2 diabetes. Curr. Drug Targets 7, 1435-1441.
Hetman, M., Cavanaugh, J.E., Kimelman, D., and Xia, Z. (2000). Role of glycogen synthase kinase-3beta in neuronal apoptosis induced by trophic withdrawal. J. Neurosci. 20, 2567-2574.
Hetman, M., Hsuan, S.L., Habas, A., Higgins, M.J., and Xia, Z. (2002). ERK1/2 antagonizes glycogen synthase kinase-3beta-induced apoptosis in cortical neurons. J. Bio. Chem. 277, 49577-49584.
Hoeflich, K.P., Luo, J., Rubie, E.A., Tsao, M.S., Jin, O., and Woodgett, J.R. (2000). Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature 406, 86-90.
Hongisto, V., Smeds, N., Brecht, S., Herdegen, T., Courtney, M.J., and Coffey, E.T. (2003). Lithium blocks the c-Jun stress response and protects neurons via its action on glycogen synthase kinase 3. Mol. Cell. Biol. 23, 6027-6036.
Hooper, C., Killick, R., and Lovestone, S. (2008). The GSK3 hypothesis of Alzheimer's disease. J. Neurochem. 104, 1433-1439.
Hotchkiss, R.S., and Karl, I.E. (2003). The pathophysiology and treatment of sepsis. N. Engl J. Med. 348, 138-150.
Huang, H.C., and Klein, P.S. (2006). Multiple roles for glycogen synthase kinase-3 as a drug target in Alzheimer's disease. Curr. Drug Targets 7, 1389-1397.
Ivaska, J., Nissinen, L., Immonen, N., Erikson, J.E., Kähäri, V.M., and Heino, J. (2002). Integrin alpha2beta1 promotes activation of protein phosphatase 2A and dephosphorylation of Akt and glycogen synthase kinase 3 beta. Mol. Cell. Biol. 22, 1352-1359.
Jo, S.K., Cha, D.R., Cho, W.Y., Kim, H.K., Chang, K.H., Yun, S.Y., and Won, N.H. (2002). Inflammatory cytokines and lipopolysaccharide induce Fas-mediated apoptosis in renal tubular cells. Nephron 91, 406-415.
Jope, R.S., and Bijur, G.N. (2002). Mood stabilizers, glycogen synthase kinase-3beta and cell survival. Mol. Psychiatry 7 Suppl 1, S35-45.
Jope, R.S., and Johnson, G.V. (2004). The glamour and gloom of glycogen synthase kinase-3. Trends Biochem. Sci. 29, 95-102.
Jope, R.S., Yuskaitis, C.J., and Beurel, E. (2007). Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics. Neurochem. Res. 32, 577-595.
Khan, R.Z., and Badr, K.F. (1999). Endotoxin and renal function: perspectives to the understanding of septic acute renal failure and toxic shock. Nephrol. Dial. Transplant. 14, 814-818.
King, T.D., Bijur, G.N., and Jope, R.S. (2001). Caspase-3 activation induced by inhibition of mitochondrial complex I is facilitated by glycogen synthase kinase-3beta and attenuated by lithium. Brain Res. 919, 106-114.
Klover, P.J., Zimmers, T.A., Koniaris, L.G., and Mooney, R.A. (2003). Chronic exposure to interleukin-6 causes hepatic insulin resistance in mice. Diabetes 52, 2784-2789.
Knotek, M., Rogachev, B., Wang, W., Ecder, T., Melnikov, V., Gengaro, P.E., Esson, M., Edelstein, C.L., Dinarello, C.A., and Schrier, R.W. (2001). Endotoxemic renal failure in mice: Role of tumor necrosis factor independent of inducible nitric oxide synthase. Kidney Int. 59, 2243-2249.
Koide, N., Narita, K., Kato, Y., Sugiyama, T., Chakravortty, D., Morikawa, A., Yoshida, T., and Yokochi, T. (1999). Expression of Fas and Fas ligand on mouse renal tubular epithelial cells in the generalized shwartzman reaction and its relationship to apoptosis. Infect. and Immun. 67, 4112-4118.
Li, X., Bijur, G.N., and Jope, R.S. (2002). Glycogen synthase kinase-3beta, mood stabilizers, and neuroprotection. Bipolar Disord. 4, 137-144.
Lin, C.F., Chen, C.L., Chiang, C.W., Jan, M.S., Huang, W.C., and Lin, Y.S. (2007). Glycogen synthase kinase-3beta acts downstream of PP2A and the PI 3-kinase-Akt pathway, and upstream of caspase-2 in ceramide-induced mitochondrial apoptosis. J. Cell Sci. 120, 2935-2943.
Loberg, R.D., Vesely, E., and Brosius, F.C., 3rd (2002). Enhanced glycogen synthase kinase-3beta activity mediates hypoxia-induced apoptosis of vascular smooth muscle cells and is prevented by glucose transport and metabolism. J. Biol. Chem. 277, 41667-41673.
Loisa, P., Rinne, T., Laine, S., Hurme, M., and Kaukinen, S. (2003). Anti-inflammatory cytokine response and the development of multiple organ failure in severe sepsis. Acta. Anaesth. Scand. 47, 319-325.
Marshall, J.C., Vincent, J.L., Fink, M.P., Cook, D.J., Rubenfeld, G., Foster, D., Fisher, C.J., Jr., Faist, E., and Reinhart, K. (2003). Measures, markers, and mediators: toward a staging system for clinical sepsis. A report of the Fifth Toronto Sepsis Roundtable, Toronto, Ontario, Canada, October 25-26, 2000. Crit. Care Med. 31, 1560-1567.
Martin, G.S., Mannino, D.M., Eaton, S., and Moss, M. (2003). The epidemiology of sepsis in the United States from 1979 through 2000. N. Engl. J. Med. 348, 1546-1554.
Martin, M., Rehani, K., Jope, R.S., and Michalek, S.M. (2005). Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat. Immunol. 6, 777-784.
Martinez, A., Alonso, M., Castro, A., Perez, C., and Moreno, F.J. (2002). First non-ATP competitive glycogen synthase kinase 3  (GSK-3) inhibitors: thiadiazolidinones (TDZD) as potential drugs for the treatment of Alzheimer’s disease. J. Med. Chem. 45, 1292-1299.
Matsuoka, Y., Picciano, M., Malester, B., LaFrancois, J., Zehr, C., Daeschner, J.M., Olschowka, J.A., Fonseca, M.I., O'Banion, M.K., Tenner, A.J., et al. (2001). Inflammatory responses to amyloidosis in a transgenic mouse model of Alzheimer's disease. Am. J. Pathol. 158, 1345-1354.
Messmer, U.K., Briner, V.A., and Pfeilschifter, J. (1999). Tumor necrosis factor-alpha and lipopolysaccharide induce apoptotic cell death in bovine glomerular endothelial cells. Kidney Int. 55, 2322-2337.
Moore, K.W., de Waal Malefyt, R., Coffman, R.L., and O'Garra, A. (2001). Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19, 683-765.
Nadiri, A., Wolinski, M.K., and Saleh, M. (2006). The inflammatory caspase: key players in the host response to pathogenic invasion and sepsis. J. Immunol. 177, 4239-4245.
Neveu, H., Kleinknecht, D., Brivet, F., Loirat, P., and Landais, P. (1996). Prognostic factors in acute renal failure due to sepsis. Results of a prospective multicentre study. The French Study Group on Acute Renal Failure. Nephrol. Dial. Transplant. 11, 293-299.
Obligado, S.H., Ibraghimov-Beskrovnaya, O., Zuk, A., Meijer, L., and Nelson, P.J. (2008). CDK/GSK-3 inhibitors as therapeutic agents for parenchymal renal diseases. Kidney Int. 73, 684-690.
O'Farrell, A.M., Liu, Y., Moore, K.W., and Mui, A.L. (1998). IL-10 inhibits macrophage activation and proliferation by distinct signaling mechanisms: evidence for Stat3-dependent and -independent pathways. EMBO J. 17, 1006-1018.
Ortiz A, Justo P, Sanz A, Lorz C, and Egido J. (2003). Targeting apoptosis in acute tubular injury. Biochem. Pharmacol. 66, 1589-1594.
Ortiz-Arduan, A., Danoff, T.M., Kalluri, R., Gonzalez-Cuadrado, S., Karp, S.L., Elkon, K., Egido, J., and Neilson, E.G. (1996). Regulation of Fas and Fas ligand expression in cultured murine renal cells and in the kidney during endotoxemia. Am. J. Physiol. 271, F1193-1201.
Ougolkov, A.V., and Billadeau, D.D. (2006). Targeting GSK-3: a promising approach for cancer therapy? Future Oncol. 2, 91-100.
Pap, M., and Cooper, G.M. (1998). Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-kinase/Akt cell survival pathway. J. Bio. Chem. 273, 19929-19932.
Pap, M., and Cooper, G.M. (2002). Role of translation initiation factor 2B in control of cell survival by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3beta signaling pathway. Mol. Cell. Biol. 22, 578-586.
Pickup, J.C. (2004). Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care 27, 813-823.
Plotnikov, E.Y., Kazachenko, A.V., Vyssokikh M.Y., et al. (2007) The role of mitochondria in oxidative and nitrosative stress during ischemia/reperfusion in the rat kidney. Kidney Int. 72, 1493-1502.
Poljakovic, M., Nygren, J.M., and Persson, K. (2003). Signalling pathways regulating inducible nitric oxide synthase expression in human kidney epithelial cells. Eur. J. Pharmacol. 469, 21-28.
Polychronopoulos, P., Magiatis, P., Skaltsounis A.L., Myrianthopoulos, V., Mikros, E., Tarricone, A., Musacchio, A., Roe, S.M., Pearl, L., Leost, M., et al. (2004). J. Med. Chem. 47, 935-946.
Reynolds, J.L., Ignatowski, T.A., Sud, R., and Spengler, R.N. (2005). An antidepressant mechanism of desipramine is to decrease tumor necrosis factor-alpha production culminating in increases in noradrenergic neurotransmission. Neuroscience 133, 519-531.
Ring, D. B., Johnson, K. W., Henriksen, E. J., Nuss J. M., Goff, D., Kinnick, T. R., Ma, S. T., Reeder, J. W., Samuels, I., Slabiak, T., et al. (2003). Selective glycogen synthase kinase 3 inhibitors potentiate insulin activation of glucose transport and utilization in vitro and in vivo. Diabetes 52, 588-595.
Rossig, L., Badorff, C., Holzmann, Y., Zeiher, A.M., and Dimmeler, S. (2002). Glycogen synthase kinase-3 couples Akt-dependent signaling to the regulation of p21Cip1 degradation. J. Bio. Chem. 277, 9684-9689.
Russell, J.A. (2006). Management of sepsis. N. Engl. J. Med. 355, 1699-1713.
Ryves, W.J., and Harwood A.J. (2001). Lithium inhibits glycogen synthase kinase-3 by competition for magnesium. Biochem. Biophys. Res. Commun. 280, 720-725.
Sastre, M., Klockgether, T., and Heneka, M.T. (2006). Contribution of inflammatory processes to Alzheimer's disease: molecular mechanisms. Int. J. Dev. Neurosci. 24, 167-176.
Schiepers, O.J., Wichers, M.C., and Maes, M. (2005). Cytokines and major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 29, 201-217.
Schmidt, C., Hocherl, K., and Bucher, M. (2007a). Cytokine-mediated regulation of urea transporters during experimental endotoxemia. Am. J. Physiol. 292, F1479-F1489.
Schmidt, C., Hocherl, K., and Bucher, M. (2007b). Regulation of renal glucose transporters during severe inflammation. Am. J. Physiol. 292, F804-F811.
Schmidt, C., Hocherl, K., Schweda, F., and Bucher, M. (2007c). Proinflammatory cytokines cause down-regulation of renal chloride entry pathways during sepsis. Crit. Care Med. 35, 2110-2119.
Schrier, R.W., and Wang, W. (2004). Acute renal failure and sepsis. N. Engl. J. Med. 351, 159-169.
Seeling J.M., Miller, J.R., Gil, R., Moon, R.T., White, R., and Virshup, D.M. (1999). Regulation of beta-Catenin signaling by the B56 subunit of protein phosphatase 2A. Science. 283, 2089-2091.
Somervaille, T.C., Linch, D.C., and Khwaja, A. (2001). Growth factor withdrawal from primary human erythroid progenitors induces apoptosis through a pathway involving glycogen synthase kinase-3 and Bax. Blood 98, 1374-1381.
Song, G.Y., Chung, C.S., Chaudry, I.H., and Ayala, A. (1999). What is the role of interleukin 10 in polymicrobial sepsis: anti-inflammatory agent or immunosuppressant? Surgery 126, 378-383.
Song, L., De Sarno, P., and Jope, R.S. (2002). Central role of glycogen synthase kinase-3beta in endoplasmic reticulum stress-induced caspase-3 activation. J. Biol. Chem. 277, 44701-44708.
Soos, T.J., Meijer, L., and Nelson, P.J. (2006). CDK/GSK-3 inhibitors as a new approach for the treatment of proliferative renal diseases. Drug News Perspect. 19, 325-328.
Takada, Y., Fang, X., Jamaluddin, M.S., Boyd, D.D., and Aggarwal, B.B. (2004). Genetic deletion of glycogen synthase kinase-3beta abrogates activation of IkappaBalpha kinase, JNK, Akt, and p44/p42 MAPK but potentiates apoptosis induced by tumor necrosis factor. J. Biol. Chem. 279, 39541-39554.
Thadhani, R., Pascual, M., and Bonventre, J.V. (1996). Acute renal failure. N. Engl. J. Med. 334, 1448-1460.
Trinchieri, G., and Sher, A. (2007). Cooperation of Toll-like receptor signals in innate immune defence. Nat. Rev. Immunol. 7, 179-190.
Uchino, S., Kellum, J.A., Bellomo, R., Doig, G.S., Morimatsu, H., Morgera, S., Schetz, M., Tan, I., Bouman, C., Macedo, E., et al. (2005). Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 294, 813-818.
Uysal, K.T., Wiesbrock, S.M., Marino, M.W., and Hotamisligil, G.S. (1997). Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 389, 610-614.
van der Poll, T., Marchant, A., Buurman, W.A., Berman, L., Keogh, C.V., Lazarus, D.D., Nguyen, L., Goldman, M., Moldawer, L.L., and Lowry, S.F. (1995). Endogenous IL-10 protects mice from death during septic peritonitis. J. Immunol. 155, 5397-5401.
Wan, L., Bagshaw, S.M., Langenberg, C., Saotome, T., May, C., and Bellomo, R. (2008). Pathophysiology of septic acute kidney injury: what do we really know? Crit. Care Med. 36, S198-S203.
Wan, L., Bellomo, R., Di Giantomasso, D., and Ronco, C. (2003). The pathogenesis of septic acute renal failure. Curr. Opin. Crit. Care 9, 496-502.
Watcharasit, P., Bijur, G.N., Song, L., Zhu, J., Chen, X., and Jope, R.S. (2003). Glycogen synthase kinase-3beta (GSK3beta) binds to and promotes the action of p53. J. Bio. Chem. 278, 48872-48879.
Whittle, B.J., Varga, C., Posa, A., Molnar, A., Collin, M., and Thiemermann, C. (2006). Reduction of experimental colitis in the rat by inhibitors of glycogen synthase kinase-3beta. Br. J. Pharmacol. 147, 575-582.
Woodgett, J.R., and Ohashi, P.S. (2005). GSK3: an in-Toll-erant protein kinase? Nat. Immunol. 6, 751-752.
Wu, X., Guo, R., Wang, Y., and Cunningham, P.N. (2007). The role of ICAM-1 in endotoxin-induced acute renal failure. Am. J. Physiol. 293, F1262-F1271.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔