(34.239.150.57) 您好!臺灣時間:2021/04/14 22:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳佳慶
研究生(外文):Chia-Ching Chen
論文名稱:電漿處理組織工程用支架之研究
論文名稱(外文):The study of tissue engineering scaffold by plasma treatment
指導教授:李澤民李澤民引用關係
指導教授(外文):T. M. Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:口腔醫學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:68
中文關鍵詞:接觸角量測電漿處理組織工程支架
外文關鍵詞:Tissue engineeringscaffoldplasma treatmentcontact angle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:205
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
組織工程是一門用來發展及操作,替代或再生有功能缺陷或身體損害部分的分子、細胞、組織、或器官的廣泛研究領域。而支架,則是提供移植媒介供細胞培養以及引導組織再生的模板,在組織工程中扮演重要的角色。在先前的研究中,許多不同的支架製造方式已經被提出,例如快速成型法、自由形體成型法、電氣紡織法等。而本研究的目的則是利用電漿處理來改變支架的表面性質。在接觸角量測的結果,可以發現未處理的PLGA試片的接觸角的角度比較大。然而,經由電漿處理後,接觸角會顯著降低。這也證實電漿處理程序可以改善PLGA的親疏水性質。另外,透過ESCA分析可得知試片在經過電漿處理後,C含量會降低,而O會增加。在C1s方面,則可以發現C-C (285.0 eV)、C-O (286.4 eV)、C=O (288.6 eV) 特徵峰,而隨著電漿處理時間的增加C-C 特徵峰面積比例會下降,而C-O與C=O則有增加的趨勢性。由原子力顯微鏡的觀察,可以知道PLGA film於電漿處理前後,其表面形態以及粗糙度皆有明顯改變和增加。進行生物相容性測試中,在薄膜上培養人類骨母細胞,進行體外試驗,結果顯示隨著作用的時間增加,其黏附的細胞數量增加,而且貼附伸展效果較佳。因此,經由電漿處理能夠確實改善PLGA材料的親疏水性,並影響骨細胞的貼附行為。
Tissue engineering is an intensive research area about the development and manipulation of laboratory-grown molecules, cells, tissues, or organs to replace or regenerate the function of defective or injured body parts. Scaffolds, serving as transplant vehicles for cultured cells and templates for guiding tissue regeneration, play important roles in tissue engineering. In recent studies, many of different fabrication methods for scaffold have been reported, such as rapid prototyping (RP), solid free-form (SFF), electrospinning etc. The aim of this study is utilized plasma treatment on changed scaffold property. In contact angle assay, we found untreated PLGA films showed higher contact angle values than treated PLGA films and they decreased with increasing plasma treatment time. The results indicate that plasma treatment can improve the hydrophilic property on the PLGA film. Besides, plasma treated PLGA films showed lower C content and higher O content by ESCA spectrum analysis, and it has three peak in binding energies of C1s, included C-C (285.0 eV), C-O (286.4 eV), C=O (288.6 eV). The intensity of C-C decreased and C-O, C=O increased with prolonged treatment time. We also found the roughness was increased on treated films by atomic microscopy assay. In vitro assay, human fetal osteoblast (hFOB) cells were cultured on PLGA thin films, and it showed the attachment of cells was improved with prolonged treatment time. In conclusion, these results indicate that plasma treatment can improve the hydrophilic property of PLGA surface, and influence and the osteoblastic responses.
摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VI
圖目錄 VII
縮寫表 IX
第一章 緒論 1
1-1背景介紹 1
1-1-1自體移植 (Autograft) 1
1-1-2異體移植 (Allograft) 1
1-1-3異種移植 (Xenograft) 1
1-1-4 其他方式 2
1-2組織工程 2
1-3生醫材料 3
1-3-1生醫材料之需求 3
1-3-2 生醫材料分類 4
1-4組織支架 5
1-5組織支架用生醫材料 5
1-5-1 組織支架用生醫材料特性 5
1-5-2 高分子材料分類 5
第二章 理論基礎與文獻回顧 9
2-1 組織支架之特性 9
2-2生物活性化表面處理技術 9
2-3 生物活性化表面處理技術分類 10
2-4 電漿介紹 11
2-5 電漿原理 11
2-6 電漿處理技術的應用與功能 11
2-7 電漿處理技術分類 12
2-8實驗動機與目的 13
第三章 材料與方法 14
3.1實驗所需藥品耗材與儀器: 14
3.2 第一部分:PLGA薄膜製備 15
3-2-1 PLGA溶液配製與薄膜製備 15
3-2-2 氬氣電漿表面處理 15
3-2-3 接觸角量測 15
3-2-4 ESCA分析 16
3-2-5 表面形態觀測 17
3.2.6 AFM量測 17
3-2-7 細胞培養 17
第四章 結果與討論 19
4-1第一部分:PLGA film測試 19
4-1-1 電漿參數測試:功率與氣體流量 19
4-1-2 電漿參數測試:反應時間 19
4-1-3 ESCA分析 21
4-1-4 表面形態觀察 22
4-1-5 AFM量測 23
4-1-6 細胞培養 23
第五章 結論與未來展望 25
參考文獻 27
表目錄
表1-1 合成高分子的醫療用途 34
表1-2 天然高分子的醫療用途 34
表2-1 低溫電漿與高溫電漿應用在不同材料上的優缺點比較 35
表2-2 電漿氣體源與相關應用 36
表3-1 電漿處理測試參數 37
表4-1 不同電漿處理條件的contact angle 值變化 38
表4-2 Chloroform混合In Vigor 製備之PLGA薄膜電漿處理後C1s的鍵結變 化表 39
表4-3 1,4-dioxane混合In Vigor 製備之PLGA薄膜電漿處理後C1s的鍵結變 化表 40
表4-4 In Vigor PLGA薄膜電漿處理前後的表面形態粗糙度數值表 41













圖目錄
圖1-1 組織工程三要素 42
圖1-2 3D支架示意圖 42
圖1-3 PLA材料於骨固定器產品的應用實例 43
圖2-1 電漿作用圖-表面離子轉換 44
圖3-1 實驗流程圖 45
圖3-2 VigorSorb®75DGOH-020 PLGA 化學結構式 46
圖3-3 低溫的電漿處理系統 (PCD150 plasma cleaner system) 47
圖3-4 接觸角量測 – 三點平衡的移動載台 48
圖4-1置放一天後不同電漿處理條件的contact angle 值變化圖 49
圖4-2 chloroform混合In Vigor PLGA製備之薄膜經由電漿處理後水滴接觸角 變化示意圖 50
圖4-3 chloroform混合In Vigor PLGA製備之薄膜經由電漿處理後水滴接觸角量化圖 51
圖4-4 chloroform混合polysciences PLGA製備之薄膜電漿處理後水滴接觸角變化示意圖 52
圖4-5 chloroform混合polysciences PLGA製備之薄膜經由電漿處理後水滴接觸角量化圖 53
圖4-6 chloroform混合In Vigor PLGA製備之薄膜電漿處理後與置放24天後的接觸角變化圖 54
圖4-7 chloroform混合polyscience PLGA製備之薄膜經由電漿處理後與置放24天後的接觸角變化圖 55
圖4-8 In Vigor 與polysciences 製備之PLGA薄膜水滴接觸角比較圖 56
圖4-9 1,4-dioxane混合In Vigor PLGA製備之薄膜經由電漿處理後水滴接觸角變化示意圖 57
圖4-10 1,4-dioxane混合In Vigor PLGA製備之薄膜經由電漿處理後水滴接觸角量化圖 58
圖4-11 未處理之Chloroform 混合In Vigor 製備之PLGA 薄膜ESCA圖譜 59
圖4-12 Chloroform 混合In Vigor 製備之PLGA薄膜電漿處理後C1s的鍵結變化 60
圖4-13 未處理之1,4-dioxane混合In Vigor 製備之PLGA ESCA圖譜 61
圖4-14 1,4-dioxane 混合In Vigor 製備之PLGA薄膜電漿處理後C1s的鍵結變化 62
圖4-15 In Vigor PLGA薄膜電漿處理前後的表面形態示意圖(FE-SEM, 500X) 63
圖4-16 In Vigor PLGA薄膜電漿處理前後的表面形態粗糙度示意圖 64
圖4-17 In Vigor PLGA薄膜電漿處理前後細胞貼附情形示意圖(FM, 100X) 65
圖4-18 In Vigor PLGA薄膜電漿處理前後細胞貼附數量量化圖 66
圖4-19 In Vigor PLGA薄膜電漿處理前後細胞貼附型態示意圖(FM, 400X) 67
圖4-20 In Vigor PLGA薄膜電漿處理前後細胞貼附型態圖 68














縮寫表

AFM Atomic Force Microscopy

ESCA Electron Spectroscopy for Chemical Analysis

FE-SEM Field Emission Scanning Electron Microscope

FBS Fetal Bovine Serum

FM Fluorescent Microscope

OM Optical Microscopy

PLGA Poly (lactic acid-co-glycolic acid)

PBS Phosphate Buffer Saline
[1] 吳侑峻,骨的組織工程研究:利用聚乳酸-聚乙醇酸共聚物當作支架,國立成功大學 生物科技研究所 碩士論文 (2003)。

[2] Scott J. Hollister, “Porous scaffold design for tissue engineering”, Nature Materials 4, 518-524 (2005).

[3] 宋信文,梁晃千,建立人類的身體工房:組織工程,科學發展362,6-11 (2003)。

[4] X.H. Wang, D.P. Li, W.J. Wang, Q.L. Feng, F.Z. Cui, Y.X. Xu, X.H. Song, “Covalent immobilization of chitosan and heparin on PLGA surface”, International Journal of Biological Macromolecules 33, 95-100 (2003).

[5] Thomas Weigel, Gregor Schinkel, Andreas Lendlein, “Design and preparation of polymeric scaffolds for tissue engineering”, Expert Review of Medical Devices 6, 835-851 (2006).

[6] 黃仁波,以冷凍式快速原型法製作組織工程支架,國立中央大學 機械工程研究所 碩士論文 (2005)。

[7] Buddy D. Ratner, Allan S. Hoffman, Frederick J. Schoen, Jack E. Lemons, Biomaterials Science: An Introduction to Materials in Medicine, 2nd Edition, Elsevier (2004).


[8] DF(ed) Williams, Definitions in Biomaterials. Progress in Biomedical Engineering, 4.edition, Elsevier, Amsterdam (1987).

[9] 龔冠臣,鈦金屬陽極化表面處理之研究,國立成功大學 口腔醫學研究所 碩士論文 (2007)。

[10] L. L. Hench, “Bioceramics: from concept to Clinic”, Journal of the American Ceramic Society 74, 1487-1510 (1991).
[11] 楊詩屏,單向性微米結構對細胞反應之影響,國立成功大學 口腔醫學研究所 碩士論文 (2006)。
[12] Z. Fang, B. Starly, W. Sun, “Computer-aided characterization for effective mechanical properties of porous tissue scaffolds”, Computer-Aided Design 37, 65-72 (2005).

[13] Valerie Liu Tsang, Sangeeta N. Bhatia, “Three-dimensional tissue fabrication”, Advanced Drug Delivery Reviews 56, 1635-1647 (2004).

[14] Wai-Yee Yeong, Chee-Kai Chua, Kah-Fai Leong, Margam Chandrasekaran, “Rapid prototyping in tissue engineering: challenges and potential”, Trends in Biotechnology 22 (2004).

[15] Gianluca Clardelli, Valeria Chiono, Caterina Cristallini, Niccoletta Barbanl, Arti Ahluwalia, Glovanni Vozzi, Antonino Previti, Giovanni Tantussi, Paolo Giusti, “Innovative tissue engineering structures through advanced manufacturing technologies”, Journal of Materials Sciences: Materials in Medicine 15, 305-310 (2004).

[16] Rudiger Landers, Ute Hubner, Rainer Schmelzeisen, Rolf Mulhaupt, “Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering”, Biomaterials 23, 4437-4447 (2002).

[17] F. Wang, L. Shor, A. Darling, S. Khalil, W. Sun, S. Giiceri, A. Lau, “Precision extruding deposition and characterization of cellular poly-e-caprolactone tissue scaffolds”, Rapid Prototyping Journal 10, 42-49 (2004).

[18] Dietmar W. Hutmacher, Thorsten Schantz, Iwan Zein, Kee Woei Ng, Swee Hin Teoh, Kim Cheng Tan, “Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling”, Mechanical properties and cell cultural response, Journal of Biomedical Materials Research 55,203-216 (2001).

[19] 呂�睆謘A組織工程用精密支架之製造,國立中央大學 機械工程研究所 碩士論文 (2002)。

[20] 江怡文,生物可吸收性的多孔質聚左乳酸/氫氧基磷灰石複合材的製備及其性質的探討,台北醫學院 醫學研究所 碩士論文 (2000)。

[21] 胡淑文,生分解性聚乳酸作為修復關節軟骨材料之研究,國立中興大學 化學研究所 碩士論文 (1998)。

[22] J. B. Moser, E. P. Lautenschlager, B. J. Horbal, “Mechanical properties of polyglycolic acid sutures in oralsurgery”, Journal of Dental Research 53, 804-808 (1974).


[23] Sanjeeb K. Sahoo, Amulya K. Panda, Vinod Labhasetwar, “Characterization of porous PLGA/PLA microparticles as a scaffold for three dimensional growth of breast cancer cells”, Biomacromolecules 6, 1132-1139 (2005).

[24] P.S. Tan, S.H. Teoh, “Effect of stiffness of polycaprolactone (PCL )membrane on cell proliferation”, Materials Science and Engineering C 27, 304-308 (2007).

[25] Lauren Shor, Selcuk Guceri, Xuejun Wen, Milind Gandhi, Wei Sun, “Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro”, Biomaterials 28, 5291-5297 (2007).

[26] S.S. Liao, F.Z. Cui, “In vitro and in vivo degradation of mineralized collagen-based composite scaffold: nanohydroxyapatite/collagen/poly(L- lactide)", Tissue Engineering 10, 73-80 (2004).

[27] Sundararajan V. Madihally, Howard W.T. Matthew, “Porous chitosan scaffolds for tissue engineering”, Biomaterials 20, 1133-1142 (1999).

[28] E. C. Huskisson, S. Donnelly, “Hyaluronic acid in the treatment of osteoarthritis of the knee”, Rheumatology 38, 602-607 (1999).

[29] E. Alsberg, H.J. Kong, Y. Hirano, M.K. Smith, A. Albeiruti, D.J. Mooney, “Regulating bone formation via controlled scaffold degradation”, Journal of Dental Research 82, 903-908 (2003).


[30] T. B. F. Woodeld, J. Malda, J. de Wijn, F. Peters, J. Riesle, C. A. van Blitterswijk, “Design of porous scaffolds for cartilage tissue engineering using a three-dimensional ber-deposition technique”, Biomaterials 25, 4149-4161 (2004).

[31] X. Ma Peter, Ji-Won Choi, “Biodegradable polymer scaffolds with well-defined interconnected spherical pore network”, Tissue Engineering 7, 23-37 (2001).

[32] 陳世浚,矽表面官能化與接枝聚亞醯胺研究,私立中原大學 化學工程學系 碩士論文 (2007)。

[33] Natasha K. Hussain, Morgan Sheng, “Making Synapses: A Balancing Act”, Science 307, 1207-1208 (2005).

[34] Chih-Ling Huang, Ying-Yi Lin, Jiunn-Der Liao, “Immobilization of chitosan on the plasma-activated poly-L-lactic acid film surface using evaporated acrylic acid as the intermediate”, Advances in Science and Technology 49, 197-202 (2006).

[35] Hong Shen, Xixue Hu, Jianzhong Bei, Shenguo Wang, “The immobilization of basic broblast growth factor on plasma-treated poly(lactide-co-glycolide)”, Biomaterials 29, 2388-2399 (2008).

[36] Jian Yang, Yuqing Wan, Junlin Yang, Jianzhong Bei, Shenguo Wang, “Plasma-treated, collagen-anchored polylactone: Its cell affinity evaluation under shear or shear-free conditions”, Journal of Biomedical Material Research 67A, 1139-1147 (2003).

[37] Jian Yang, Jianzhong Bei, Shenguo Wang, “Improving cell affinity of poly(D,L-lactide) film modified by anhydrous ammonia plasma treatment”, Polymers for Advanced Technologies 13, 220-226 (2002).

[38] 陳秋萍,杜振源,李魁然,黃雅夫,賴君義,氧氣電漿誘導後接枝丙烯醯胺被覆多孔性鐵氟龍薄膜於滲透揮發分離程序應用,1-4 (2004)。

[39] Chen-Yuan Tu, Kueir-Rarn Lee, James Huang, Juin-Yih Lai, “Surface modification of expanded poly(tetrafluoroethylene) membrane and deposition of acetylene/nitrogen plasma polymerization”, 1-3 (2005).

[40] 錢瑞龍,利用醋酸電漿處理聚乳酸-聚甘醇酸及不織布增進材料表面之細胞貼附性,私立大同大學 材料工程研究所 碩士論文 (2005)。

[41] Z. Zhang, R. Foerch, W. Knoll, “Surface modification by plasma polymerization and application of plasma polymers as biomaterials”, European Cells and Materials 6, 52-52 (2003).

[42] G.S. Selwyn, H.W. Herrmann, J. Park, and I. Henins, “Materials processing using an atmospheric pressure, RF-generated plasma source”, Contributions to Plasma Physics 6 , 610−619 (2001).

[43] A. Gutsol, “Thermal insulation of plasma in reverse vortex flow”, Fusion and Plasma Physics 29, 2611-2614 (1998).

[44] N. Gomathi, A. Sureshkumar and Sudarsan Neogi, “RF plasma-treated polymers for biomedical applications”, Current Science 94, 1478-1486(2008)

[45] Yu-Chun Wu, Shyh-Yu Shaw, Hong-Ru Lin, Tzer-Min Lee, Chyun-Yu Yang, “Bone tissue engineering evaluation based on rat calvaria stromal cells cultured on modied PLGA scaffolds”, Biomaterials 27, 896-904 (2006).

[46] 劉家菁,利用電漿技術進行聚酯類表面生物相容性改質,私立大同大學 材料工程研究所 碩士論文 (2004)。

[47] Xue Qu, Wenjin Cui, Fei Yang, Changchun Min, Hong Shen, Jianzhong Bei, Shenguo Wang, “The effect of oxygen plasma pretreatment and incubation in modied simulated body uids on the formation of bone-like apatite on poly(lactide-co-glycolide)(70/30)”, Biomaterials 28, 9-18 (2007).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔