跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/10 01:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭宇宏
研究生(外文):Yu-hong Shau
論文名稱:鐵鉑合金奈米顆粒作為具有腫瘤標定之雙重顯影劑
論文名稱(外文):Iron-Platinum alloy nanoparticles dual targeting imaging contract
指導教授:謝達斌王東堯
指導教授(外文):Dar-Bin ShiehTung-Yiu Wong
學位類別:碩士
校院名稱:國立成功大學
系所名稱:口腔醫學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:81
中文關鍵詞:鐵鉑奈米顆粒顯影劑
外文關鍵詞:MRICTFePt
相關次數:
  • 被引用被引用:0
  • 點閱點閱:284
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
鐵鉑合金奈米粒子在2000年首次被發表以來,由於它高密度的磁紀錄特性而被當作硬碟的碟片材料。在可以控制合成的粒子直徑大小,超順磁的效果,同時的也在細胞核的傳送載體、核磁共振顯影和電腦斷層掃描顯影之顯影劑上有著高度的潛力。本實驗以穿透式電子顯微鏡、磁性特性,以及X光晶格繞射了解其物理特性,且顯示在不同合成方法下可控制其直徑大小從3~4 奈米, 5~6奈米 以及 12~14奈米,同時在核磁共振照影以及電腦斷層掃描照影下,也都具有加強顯影的效果。細胞實驗中也顯示其高度的生物相容性。此外,C3H/HEN品系的老鼠用來測試鐵鉑奈米顆粒的器官分布,在12小時的時間後12奈米直徑的鐵鉑奈米顆粒主要會集中於脾臟(241.5μg/g)以及肺臟(120.4μg/g)並隨時間漸漸降低。 6奈米直徑的鐵鉑奈米顆粒主要集中於肺臟(247.9μg/g)以及脾臟(204.9μg/g)並其組織中濃度在48小時達最大值。而3奈米直徑的鐵鉑奈米顆粒主要集中於脾臟(146.6μg/g)、肺臟(96.5μg/g)以及肝臟(41.9μg/g),亦在48小時達最大值。值得注意的是12奈米直徑的鐵鉑奈米顆粒在48小時仍可有102.2μg/g之血中濃度。相較下較小粒徑之奈米粒子在12小時前即達到最高血中濃度。另外,三種尺寸之奈米粒子在腦中之濃度皆在24小時達最高;12奈米與3奈米最高,6奈米較低。
在X射線電腦斷層顯影(CT)上,在等鐵離子濃度下12nm粒子有最高之顯影對比,次為程度接近之3nm粒子,6nm粒子最差。但三者在100微莫耳濃度即有可偵測之CT對比值,訊號分別為緩衝液之1.39、1.43、及1.13倍。在磁振顯影方面12nm粒子之顯影效果最佳,在1毫莫耳濃度以上即有可偵測對比。3及6nm粒子顯影能力相近,需25毫莫耳以上之濃度。
為評估鐵鉑奈米顆粒在癌症治療的專一標定治療潛力,我們在鐵鉑奈米顆粒表面接上抗Her2的抗體,並且利用具有Her2高度表現的小鼠膀胱癌細胞及其核酸干擾降表現之細胞株為研究模型。在細胞實驗中,核磁共振T2訊號上顯示接上抗Her2抗體的鐵鉑奈米顆粒確能選擇性的標的具有高度表現Her2抗原的細胞。且12奈米粒子較3奈米之對比性更佳。
另外,在動物活體實驗中,將鐵鉑奈米顆粒從尾靜脈打入具膀胱癌的老鼠,結果在核磁共振T2的訊號上,3~4奈米和12~14奈米的鐵鉑奈米顆粒分別成功的改變訊號強度9%以及29%。最後,我們成功的將入細胞核生太接上鐵鉑奈米粒,並證明其入核效果,顯示鐵鉑奈米顆粒具攜帶基因訊息入核進行基因治療之可行性。總之,鐵鉑奈米顆粒在作為核磁共振和電腦斷層掃描之多模式加強顯影劑以及攜帶藥物至特定細胞及其胞器上有著很高的發展潛力。
The FePt alloy nanoparticle (FePt-np) was first introduced in 2000. It was originally designed for the high-density magnetic recordings due to its superparamagnetic property, stability, high electron density and controllable small size. This research project explore the potential for using FePt-np as novel cellular and sub-cellular nuclear targeted vehicles with dual contrast property in combined X-ray computed tomography (CT scan) and magnetic resonance imaging (MRI).
The physical properties of the nanoparticles such as TEM, magnetic property, and XRD were characterized. The nanoparticles presented a tunable sizes from 3~4 nm, 5~6nm and 12~14nm in diameter. The in vitro biocompatibility evaluation revealed satisfactory results in both cytotoxicity and hemolysis tests. The biological distribution of the as synthesized particles in C3H/HEN mice reavealed that 12nmFePt-nps mainly accumulated in the spleen (241.5μg/g) and lung (120.4μg/g) in 12 hr then gradually decreased toward normal level. The 6nm particles mainly accumulated in the lung (247.9μg/g) and spleen (204.9μg/g) and reached plateau at 48hr. Tissue accumulation of 3nm FePt-nps also reached plateau at 48hr in the spleen (146.6μg/g), lung (96.5μg/g) and liver (41.9μg/g). The 12nm particles presented longer circulation time that a high blood concentration of 102.2μg/g could still be detected after 48hr. On the other hand, 3 and 6nm particles reached highest blood concentration before 12hr. All three types of nanoparticles reached highest concentration in the brain at 24hr with highest concentration for 12 and 3nm particles then 6nm particles.
We then measured the image contract effect of the particles in CT and MRI. At equal iron concentration, 12 nanometer particles presented the highest image contrast in CT followed by 3nm and 6nm particles. All three nanoparticles show detectable image contrast at above 100�嵱 (1.39, 1.43. and 1.13 folds to the phosphate buffer control). The 12nm particles presented the best T2* MRI contrast property with a detection limit at 1mM. 3 and 6nm particles required more than 25mM of iron concentration for detectable image contrast. Furthermore, in order to improve the specificity of FePt in targeting cancer diagnostics and therapy, the anti-Her2 monoclonal antibody was conjugated onto the nanoparticles. The MBT-2 cells with high endogenous Her2 expression and the control knock down cell line (MBT-KD) were applied as the model system. to the targeting nanoparticles demonstrated specific taggeting to MBT cells under T2 pulse sequence. The 12nm particles outperform the 3nm size particles.
In the tumor bearing C3H/HEN mice, we further demonstrated that significant inversed MRI contrast (9% for 3nm particles and 29% for the 12nm particles) of the tumor lesion in the T2 sequence could be achieved after tail vein injection of the anti-Her2 tagged 3nm and 12nm nanoparticles. Finally, the nuclear –targeting for improved gene delivery was investigated for combined cellular targeting, trans-membrane transport and nuclear trafficking. The NLS-FePt-nps were successfully synthesized. Their sub-cellular delivery, The NLS-peptide tagged nanoparticles show preferred uptake by HeLa cell nuclei over the non-NLS-labeled nanoparticles. In conclusion, FePt-nps show a promising potental for multi-modal molecular imaging in both MRI and CT and as a therapeutic vector for target specific organelles in specific cells.
中文摘要 4
Abstract 6
I. INTRODUCTION 8
1. Nanotechnology 8
1.1. The general characteristics of nanoparticles 9
1.1.1. Surface modification 9
1.1.2. Magnetic property 10
1.1.3. Catalytic property 11
1.1.4. Optical property 12
1.2. FePt- nanoparticles 12
2. Cancer 13
2.1 Cancer Epidemiology 13
2.2 Cancer Diagnosis 14
2.3 Molecular imaging of diagnostic medicine 15
2.3.1. The computed tomography 15
2.3.2. The magnetic resonance imaging (MRI) 16
2.4 Nanoparticles for molecular imaging probe 17
2.4.1. Nanoparticle for imaging probe of X-ray computed tomography 18
2.4.2. Nanoparticle for magnetic resonance imaging 19
2.5 The cancer therapy 20
2.5.1. Gene therapy for cancer 20
2.5.2. Challenge of Targeted nuclear delivery 21
2.5.3. Nanoparticles for nuclear targeting 21
2.5.4. The Ligand-directed targeting of nanoparticles 22
2.5.5. The kinetic properties of nanoparticles 23
2.6 The Development of a noninvasive molecular diagnostic contrast agent by MRI and CT and a nuclear transport vector 23
II. Materials and Methods 26
FePt-nps preparation and characterization 26
Cell lines culture 28
Animal model 31
The in vitro biocompatibility evaluation 31
Tumor targeting 35
III. Results 37
1. Anti-Her2 antibody tagged nanoparticles as MR imaging contrast agent 37
1.1. Physical property characterization of the nanoparticles 37
1.2. Cytotoxicity and hemolysis analysis 38
1.3. Cellular uptake and biodistribution of FePt-nps 39
1.4. The in vitro targeting assay by MR imaging 42
1.5. The in vivo targeting and tracing by MR imaging. 42
1.6. Nuclear targeting of NLS tagged FePt-nps 44
IV. Discussion 45
Size dependent property of FePt-nanoparticles 46
Biodistribution of FePt-nps 48
Magnetic Resonance Imaging of Biological Targets 49
Nuclear targeting of FePt-nps 51
Conclusion 53
V. Figures 54
VI. References 68
VII. Appendix 74
VIII. About the author 81
張仕欣,王崇人, ”金屬奈米粒子的吸收光譜” ,化學, 1998, 56, 209-222
吳亞娜,謝達斌,”超順磁性奈米粒子在腫瘤表面分子診斷及作為治療用途之評估及應用” 國立成功大學分子醫學研究所碩士論文,民國94年

A
Aslan, K., Gryczynski, I., Malicka, J., Matveeva, E., Lakowicz, J. R. and Geddes, C. D., 2005. Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr Opin Biotechnol. 16, 55-62.
Alexander G. Tkachenko, Huan Xie, Donna Coleman, Wilhelm Glomm, Joseph Ryan, Miles F. Anderson, Stefan Franzen, and Daniel L. Feldheim., .;2003. Multifunctional Gold Nanoparticle-Peptide Complexes for Nuclear Targeting. J. Am. Chem. Soc. 125, 4700-4701
Babes, L., Denizot, B., Tanguy, G., Le Jeune, J. J. and Jallet, P., 1999. Synthesis of Iron Oxide Nanoparticles Used as MRI Contrast Agents: A Parametric Study. J Colloid Interface Sci. 212, 474-482.
Burda, C., Chen, X., Narayanan, R. and El-Sayed, M. A., 2005. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025-1102.
Brink JA, 2003. Use of high concentration contrast media (HCCM): principles and rationale-body CT. Eur J Radiol. 45:S53–8.
Bilbao, G., Gomez-Navarro, J., Curiel, D., 1998. In Targeted AdenoViral Vectors for Cancer Gene Therapy; Walden, P., et al., Eds.; Plenum Press: New York. 57, 365-374.
C. Berry, J, Curtis A., 2003. Fictionalization of magnetic nanoparticles for application in biomedicine. J Phys D: Appl Phys 36, R198–R206.
Chenjie Xu, Jin Xie, Nathan Kohler, Edward G. Walsh, Y. Eugene Chin, and Shouheng Sun., 2008. Monodisperse Magnetite Nanoparticles Coupled with Nuclear Localization Signal Peptide for Cell-Nucleus Targeting. Chem. Asian J. 3, 548 – 552
C. Antoniak, J. Lindner, M. Spasova, D. Sudfeld, M. Acet, and M. Farle., 2006. Enhanced orbital magnetism in Fe50Pt50 nanoparticles. Phys. Rev. Lett. 97, 117201.
Citri, A., Skaria, K. B. and Yarden, Y., 2003. The deaf and the dumb: the biology of ErbB-2 and ErbB-3. Exp Cell Res. 284, 54-65.
Catherine C Berry and Adam S G Curtis., 2003. Fictionalization of magnetic nanoparticles for applications in biomedicine J. Phys. D: Appl. Phys. 36 R198–R206
Dongkyu Kim, Sangjin Park, Jae Hyuk Lee, Yong Yeon Jeong and Sangyong Jon., 2007. Antibiofouling Polymer-Coated Gold Nanoparticles as a Contrast Agent for in Vivo X-ray Computed Tomography Imaging. J. Am. Chem. Soc. 129, 7661-7665
Daniel L. J. Thorek, Antony K. Chen, Julie Czupryna, and Aanrew Tsourkas, 2006. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng. 34(1): 23-38.
Dodd, C. H., Hsu, H. C., Chu, W. J., Yang, P., Zhang, H. G., Mountz, J. D., Jr., Zinn, K., Forder, J., Josephson, L., Weissleder, R., Mountz, J. M. and Mountz, J. D., 2001. Normal T-cell response and in vivo magnetic resonance imaging of T cells loaded with HIV transactivator-peptide-derived superparamagnetic nanoparticles. J Immunol. Methods. 256, 89-105.
Graus-Porta, D., Beerli, R. R., Daly, J. M. and Hynes, N. E., 1997. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. Embo. J. 16, 1647-1655.
Guerin, M., Barrois, M., Terrier, M. J., Spielmann, M. and Riou, G., 1988. Over expression of either c-myc or c-erbB-2/neu proto-oncogenes in human breast carcinomas: correlation with poor prognosis. Oncogene Res. 3, 21-31.
Hicks RJ, Lau E, Alam NZ, Chen RY., 2007. Imaging in the diagnosis and treatment of non-small cell lung cancer. Respirology. 12:165–72.
Hizoh I, Haller C., 2002. Radiocontrast-induced renal tubular cell apoptosis. Invest Radiol;37:428-434.
Haller C, Hizoh, 2004. The cytotoxicity of iodinated radiocontrast agents on renal cells in vitro. Invest Radiol. 39,149-154.
H. Kodama, S. Momose, T. Sugimoto, T. Uzumaki, and A. Tanaka., 2005. Chemically synthesized FePt nanoparticle material for ultrahigh-density recording. IEEE Trans. Magn., 41 ( 2) 665–669
Hillyer JF., Albrecht RM., 2001. Gastrointestinal presorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm. Sci., 90:1927~36.
Hillyer JF., Albrecht RM., 1999. Correlative instrumental neutron activation analysis, light microscopy, transmission electron microscopy, and X-ray microanalysis for qualitative and quantitative detection of colloidal gold spheres in biological specimens. Microsc. Microanal, 4:481e 90.
H. Kodama., S. Momose., T. Sugimoto., T. Uzumaki., and A. Tanaka., 2005. Chemically synthesized FePt nanoparticle material for ultrahigh-density recording. IEEE Trans. Magn., 41, (2), 665–669
Ji ZQ., Sun H., Wang H., Xie Q., Liu Y., Wang Z., 2006. Biodistribution and tumor uptake of C60 (OH)x in mice. J Nanopart. Res, 8:53e63.
Jun, Y., Huh, Y.-M., Choi, J.-s., Lee, J.-H., Song, H.-T., Kim, S. J., Yoon, S., Kim, K.-S., Shin, J.-S., Suh, J.-S., Cheon, J., 2005. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J. Am. Chem. Soc. 127, 5732–5733.
Kaim, A. H., Wischer, T., O'Reilly, T., Jundt, G., Frohlich, J., von Schulthess, G. K. and Allegrini, P. R., 2002. MR imaging with ultrasmall superparamagnetic iron oxide particles in experimental soft-tissue infections in rats. Radiology. 225, 808-814.
Kang, H. W., Josephson, L., Petrovsky, A., Weissleder, R. and Bogdanov, A., Jr., 2002. Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture. Bioconjug. Chem. 13, 122-127.
Koropchak, J. A., Sadain, S., Yang, X., Magnusson, L. E., Heybroek, M., Anisimov, M. and Kaufman, S. L., 1999. Nanoparticle detection technology for chemical analysis. Anal Chem. 71, 386A-394A.
Kachra, Z., E. Beaulieu., L. Delbecchi., N. Mousseau., F. Berthelet., R. Moumdjian., R. Del Maestro., and R. Beliveau., 1999. Expression of matrix metalloproteinases and their inhibitors in human brain tumors. Clin. Exp. Metastasis. 17, 555–566
Kalderon D., Roberts BL., Richardson WD., Smith AE., 1984. A short amino acid sequence able to specify nuclear location. Cell 39 (3 Pt 2), 499-509
Koenig, S. H., Keller, K. E., 1995. Theory of 1/T1 and 1/T2 NMRD profiles of solutions of magnetic nanoparticles. Magn. Reson. Med. 34, 227–233.
Lin CC, Chou CW, Shiau AL, Tu CF, Ko TM, Chen YL, Yang BC, Tao MH, Lai MD. (2004), Therapeutic HER2/Neu DNA vaccine inhibits mouse tumor naturally overexpressing endogenous neu. Mol Ther.10(2):290-301.
Lee, J. H., Huh, Y. M., Jun, Y. W., Seo, J. W., Jang, J. T., Song, H. T., Kim, S., Cho, E. J., Yoon, H. G., Suh, J. S., Cheon, J., 2006. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 13, 95-99.
Lanza, G. M., Winter, P. M., Caruthers, S. D., Morawski, A. M., Schmieder, A. H., Crowder, K. C. and Wickline, S. A., 2004. Magnetic resonance molecular imaging with nanoparticles. J Nucl Cardiol. 11, 733-743.
Lauterbur, P. C., 1973. Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature. 242, 190-191.
Masayuki Suda., Masaru Nakagawa., Tomokazu Iyoda., and Yasuaki Einaga., 2007. Reversible Photoswitching of Ferromagnetic FePt-nps at Room Temperature. J. am. chem. SOC. 129, 5538-5543
M. A. M. Gijs, Magnetic bead handling on-chip: New opportunities fors analytical applications. Microfluid Nanofluid. 1, 22–40.
McIntire GL., Bacon ER., Toner JL., Cornacoff JB., Losco PE., 1998. Iodinated CT X-ray contrast agents to lung draining lymph nodes in dogs. J Pharma Sci. 87,1466–70.
Niidome T., Yamagata M., Okamoto Y., Akiyama Y., Takahishi H., Kawano T., et al.., 2006. PEG-modified gold nanorods with a stealth character for in vivo application. J Control Release. 114, 343-347.
Ogan, M. D., Schmiedl U., Moseley M. E., Grodd W., Paajanen H.,. and Brasch R. C., 1987. Albumin labeled with Gd-DTPA. An intravascular contrast-enhancing agent for magnetic resonance blood pool imaging: preparation and characterization. Invest Radiol, 22, 665-71
Oeffinger, B. E. and Wheatley, M. A., 2004. Development and characterization of a nano-scale contrast agent. Ultrasonics. 42, 343-347.
Pankhurst, Q. A., Connolly, J., Jones, S. K., Dobson, J., 2003 Applications of magnetic nanoparticles in biomedicine. J. Phys. D. 36, R167–R181.
Reimer, P. and Tombach, B., 1998. Hepatic MRI with SPIO: detection and characterization of focal liver lesions. Eur Radiol. 8, 1198-1204.
Rockall, A. G., Sohaib, S. A., Harisinghani, M. G., Babar, S. A., Singh, N., Jeyarajah, A. R., Oram, D. H., Jacobs, I. J., Shepherd, J. H. and Reznek, R. H., 2005. Diagnostic performance of nanoparticle-enhanced magnetic resonance imaging in the diagnosis of lymph node metastases in patients with endometrial and cervical cancer. J Clin Oncol. 23, 2813-2821.
Rosi, N. L. and Mirkin, C. A., 2005. Nanostructures in biodiagnostics. Chem. Rev. 105, 1547-1562.
Rabin O., Manuel Perez J., Grimm J., Wojtkiewicz G., Weissleder R., 2006. An X-ray computed tomography imaging agent based on long circulating bismuthsulphide nanoparticles. Nat. Mater. 5, 118–22.
R. Ivkov., S. J. DeNardo., W. Daum., A. R. Foreman, R. C. Goldstein, V. S. Nemkov, G. L. De Nardo., 2005. Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer. Clin Cancer Res. 11,7093s-7103s
Schellenberger, E. A., Bogdanov, A., Jr., Hogemann, D., Tait, J., Weissleder, R. and Josephson, L., 2002. Annexin V-CLIO: a nanoparticle for detecting apoptosis by MRI. Mol Imaging. 1, 102-107.
Simon, H. U., Haj-Yehia, A. and Levi-Schaffer, F., 2000. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis. 5, 415-418.
Sokolov, K., Aaron, J., Hsu, B., Nida, D., Gillenwater, A., Follen, M., MacAulay, C., Adler-Storthz, K., Korgel, B., Descour, M., Pasqualini, R., Arap, W., Lam, W. and Richards-Kortum, R., 2003. Optical systems for in vivo molecular imaging of cancer. Technol Cancer Res Treat. 2, 491-504.
Sau TK., Pal A., Pal T., 2001. Size regime dependent catalysis by gold nanoparticles for the reduction of eosin. J Phys Chem B. 105, 9266–9272
S. Sun., S. Anders., H. F. Hamann., J. U. Thiele., J. F. Baglin., T. Thomson., E. E. Fullerton., C. B. Murray and B. D. Terris., 2002. Polymer mediated self-assembly of magnetic nanoparticles. J. Amer. Chem. Soc. 124, 2884–2885.
Shouheng Sun., C. B. Murray.,1 Dieter Weller., Liesl Folks., Andreas Moser., 2000. Monodisperse FePt-nps and Ferromagnetic FePt Nanocrystal Superlattices. Science. 287, 1989
Tsao, M. S., Grisham, J. W. and Nelson, K. G., 1985. Clonal analysis of tumorigenicity and paratumorigenic phenotypes in rat liver epithelial cells chemically transformed in vitro. Cancer Res. 45, 5139-5144.
Weissleder, R., Elizondo, G., Wittenberg, J., Rabito, C. A., Bengele, H. H. and Josephson, L., 1990. Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology. 175, 489-493.
W. H. Buckingham., M. Domanus., S. Hetzel., G. Kunkel and J. Storhoff., 2004. Direct detection of bacterial genomic DNA using gold Nanoparticle probes. Proc. 26th Annual Int. Conf. IEEE EMBS. 1953–1955.
Weissleder, R., Lee, A. S., Khaw, B. A., Shen, T. and Brady, T. J., 1992. Antimyosin-labeled monocrystalline iron oxide allows detection of myocardial infarct: MR antibody imaging. Radiology. 182, 381-385.
Whitesides, G. M., 2003. The 'right' size in nanobiotechnology. Nat Biotechnol. 21, 1161-1165.
X. Yang., C. Liu., J. Ahner., J. Yu., T. Klemmer., E. Johns., D. Weller., 2004. Fabrication of FePt-nps for self-organized magnetic array. J. Vac. Sci. Technol., B , 22, 31.
Yasumura Y., Kawakita M., 1963. "The research for the SV40 by means of tissue culture technique. Nippon Rinsho 21 (6): 1201–1219.
Yarden, Y. and Sliwkowski, M. X., 2001. Untangling the ErbB signaling network. Nat Rev Mol Cell Biol. 2, 127-137.
Yoo JS, 1998. Selective gas-phase oxidation at oxide nanoparticles on microporous materials., Springer Science Business Media Catal Today. 41,409–432
Young-Wook Jun., Jung-wook Seo and Jinwoo Cheon., 2008. Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Accounts Chem. Res. 41 (2), 179-189
Zhou, X. D., Tang, Z. Y., Yang, B. H., Lin, Z. Y., Ma, Z. C., Ye, S. L., Wu, Z. Q., Fan, J., Qin, L. X. and Zheng, B. H., 2001. Experience of 1000 patients who underwent hepatectomy for small hepatocellular carcinoma. Cancer. 91, 1479-1486.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top