張仕欣,王崇人, ”金屬奈米粒子的吸收光譜” ,化學, 1998, 56, 209-222吳亞娜,謝達斌,”超順磁性奈米粒子在腫瘤表面分子診斷及作為治療用途之評估及應用” 國立成功大學分子醫學研究所碩士論文,民國94年A
Aslan, K., Gryczynski, I., Malicka, J., Matveeva, E., Lakowicz, J. R. and Geddes, C. D., 2005. Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr Opin Biotechnol. 16, 55-62.
Alexander G. Tkachenko, Huan Xie, Donna Coleman, Wilhelm Glomm, Joseph Ryan, Miles F. Anderson, Stefan Franzen, and Daniel L. Feldheim., .;2003. Multifunctional Gold Nanoparticle-Peptide Complexes for Nuclear Targeting. J. Am. Chem. Soc. 125, 4700-4701
Babes, L., Denizot, B., Tanguy, G., Le Jeune, J. J. and Jallet, P., 1999. Synthesis of Iron Oxide Nanoparticles Used as MRI Contrast Agents: A Parametric Study. J Colloid Interface Sci. 212, 474-482.
Burda, C., Chen, X., Narayanan, R. and El-Sayed, M. A., 2005. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025-1102.
Brink JA, 2003. Use of high concentration contrast media (HCCM): principles and rationale-body CT. Eur J Radiol. 45:S53–8.
Bilbao, G., Gomez-Navarro, J., Curiel, D., 1998. In Targeted AdenoViral Vectors for Cancer Gene Therapy; Walden, P., et al., Eds.; Plenum Press: New York. 57, 365-374.
C. Berry, J, Curtis A., 2003. Fictionalization of magnetic nanoparticles for application in biomedicine. J Phys D: Appl Phys 36, R198–R206.
Chenjie Xu, Jin Xie, Nathan Kohler, Edward G. Walsh, Y. Eugene Chin, and Shouheng Sun., 2008. Monodisperse Magnetite Nanoparticles Coupled with Nuclear Localization Signal Peptide for Cell-Nucleus Targeting. Chem. Asian J. 3, 548 – 552
C. Antoniak, J. Lindner, M. Spasova, D. Sudfeld, M. Acet, and M. Farle., 2006. Enhanced orbital magnetism in Fe50Pt50 nanoparticles. Phys. Rev. Lett. 97, 117201.
Citri, A., Skaria, K. B. and Yarden, Y., 2003. The deaf and the dumb: the biology of ErbB-2 and ErbB-3. Exp Cell Res. 284, 54-65.
Catherine C Berry and Adam S G Curtis., 2003. Fictionalization of magnetic nanoparticles for applications in biomedicine J. Phys. D: Appl. Phys. 36 R198–R206
Dongkyu Kim, Sangjin Park, Jae Hyuk Lee, Yong Yeon Jeong and Sangyong Jon., 2007. Antibiofouling Polymer-Coated Gold Nanoparticles as a Contrast Agent for in Vivo X-ray Computed Tomography Imaging. J. Am. Chem. Soc. 129, 7661-7665
Daniel L. J. Thorek, Antony K. Chen, Julie Czupryna, and Aanrew Tsourkas, 2006. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng. 34(1): 23-38.
Dodd, C. H., Hsu, H. C., Chu, W. J., Yang, P., Zhang, H. G., Mountz, J. D., Jr., Zinn, K., Forder, J., Josephson, L., Weissleder, R., Mountz, J. M. and Mountz, J. D., 2001. Normal T-cell response and in vivo magnetic resonance imaging of T cells loaded with HIV transactivator-peptide-derived superparamagnetic nanoparticles. J Immunol. Methods. 256, 89-105.
Graus-Porta, D., Beerli, R. R., Daly, J. M. and Hynes, N. E., 1997. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. Embo. J. 16, 1647-1655.
Guerin, M., Barrois, M., Terrier, M. J., Spielmann, M. and Riou, G., 1988. Over expression of either c-myc or c-erbB-2/neu proto-oncogenes in human breast carcinomas: correlation with poor prognosis. Oncogene Res. 3, 21-31.
Hicks RJ, Lau E, Alam NZ, Chen RY., 2007. Imaging in the diagnosis and treatment of non-small cell lung cancer. Respirology. 12:165–72.
Hizoh I, Haller C., 2002. Radiocontrast-induced renal tubular cell apoptosis. Invest Radiol;37:428-434.
Haller C, Hizoh, 2004. The cytotoxicity of iodinated radiocontrast agents on renal cells in vitro. Invest Radiol. 39,149-154.
H. Kodama, S. Momose, T. Sugimoto, T. Uzumaki, and A. Tanaka., 2005. Chemically synthesized FePt nanoparticle material for ultrahigh-density recording. IEEE Trans. Magn., 41 ( 2) 665–669
Hillyer JF., Albrecht RM., 2001. Gastrointestinal presorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm. Sci., 90:1927~36.
Hillyer JF., Albrecht RM., 1999. Correlative instrumental neutron activation analysis, light microscopy, transmission electron microscopy, and X-ray microanalysis for qualitative and quantitative detection of colloidal gold spheres in biological specimens. Microsc. Microanal, 4:481e 90.
H. Kodama., S. Momose., T. Sugimoto., T. Uzumaki., and A. Tanaka., 2005. Chemically synthesized FePt nanoparticle material for ultrahigh-density recording. IEEE Trans. Magn., 41, (2), 665–669
Ji ZQ., Sun H., Wang H., Xie Q., Liu Y., Wang Z., 2006. Biodistribution and tumor uptake of C60 (OH)x in mice. J Nanopart. Res, 8:53e63.
Jun, Y., Huh, Y.-M., Choi, J.-s., Lee, J.-H., Song, H.-T., Kim, S. J., Yoon, S., Kim, K.-S., Shin, J.-S., Suh, J.-S., Cheon, J., 2005. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J. Am. Chem. Soc. 127, 5732–5733.
Kaim, A. H., Wischer, T., O'Reilly, T., Jundt, G., Frohlich, J., von Schulthess, G. K. and Allegrini, P. R., 2002. MR imaging with ultrasmall superparamagnetic iron oxide particles in experimental soft-tissue infections in rats. Radiology. 225, 808-814.
Kang, H. W., Josephson, L., Petrovsky, A., Weissleder, R. and Bogdanov, A., Jr., 2002. Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture. Bioconjug. Chem. 13, 122-127.
Koropchak, J. A., Sadain, S., Yang, X., Magnusson, L. E., Heybroek, M., Anisimov, M. and Kaufman, S. L., 1999. Nanoparticle detection technology for chemical analysis. Anal Chem. 71, 386A-394A.
Kachra, Z., E. Beaulieu., L. Delbecchi., N. Mousseau., F. Berthelet., R. Moumdjian., R. Del Maestro., and R. Beliveau., 1999. Expression of matrix metalloproteinases and their inhibitors in human brain tumors. Clin. Exp. Metastasis. 17, 555–566
Kalderon D., Roberts BL., Richardson WD., Smith AE., 1984. A short amino acid sequence able to specify nuclear location. Cell 39 (3 Pt 2), 499-509
Koenig, S. H., Keller, K. E., 1995. Theory of 1/T1 and 1/T2 NMRD profiles of solutions of magnetic nanoparticles. Magn. Reson. Med. 34, 227–233.
Lin CC, Chou CW, Shiau AL, Tu CF, Ko TM, Chen YL, Yang BC, Tao MH, Lai MD. (2004), Therapeutic HER2/Neu DNA vaccine inhibits mouse tumor naturally overexpressing endogenous neu. Mol Ther.10(2):290-301.
Lee, J. H., Huh, Y. M., Jun, Y. W., Seo, J. W., Jang, J. T., Song, H. T., Kim, S., Cho, E. J., Yoon, H. G., Suh, J. S., Cheon, J., 2006. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 13, 95-99.
Lanza, G. M., Winter, P. M., Caruthers, S. D., Morawski, A. M., Schmieder, A. H., Crowder, K. C. and Wickline, S. A., 2004. Magnetic resonance molecular imaging with nanoparticles. J Nucl Cardiol. 11, 733-743.
Lauterbur, P. C., 1973. Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature. 242, 190-191.
Masayuki Suda., Masaru Nakagawa., Tomokazu Iyoda., and Yasuaki Einaga., 2007. Reversible Photoswitching of Ferromagnetic FePt-nps at Room Temperature. J. am. chem. SOC. 129, 5538-5543
M. A. M. Gijs, Magnetic bead handling on-chip: New opportunities fors analytical applications. Microfluid Nanofluid. 1, 22–40.
McIntire GL., Bacon ER., Toner JL., Cornacoff JB., Losco PE., 1998. Iodinated CT X-ray contrast agents to lung draining lymph nodes in dogs. J Pharma Sci. 87,1466–70.
Niidome T., Yamagata M., Okamoto Y., Akiyama Y., Takahishi H., Kawano T., et al.., 2006. PEG-modified gold nanorods with a stealth character for in vivo application. J Control Release. 114, 343-347.
Ogan, M. D., Schmiedl U., Moseley M. E., Grodd W., Paajanen H.,. and Brasch R. C., 1987. Albumin labeled with Gd-DTPA. An intravascular contrast-enhancing agent for magnetic resonance blood pool imaging: preparation and characterization. Invest Radiol, 22, 665-71
Oeffinger, B. E. and Wheatley, M. A., 2004. Development and characterization of a nano-scale contrast agent. Ultrasonics. 42, 343-347.
Pankhurst, Q. A., Connolly, J., Jones, S. K., Dobson, J., 2003 Applications of magnetic nanoparticles in biomedicine. J. Phys. D. 36, R167–R181.
Reimer, P. and Tombach, B., 1998. Hepatic MRI with SPIO: detection and characterization of focal liver lesions. Eur Radiol. 8, 1198-1204.
Rockall, A. G., Sohaib, S. A., Harisinghani, M. G., Babar, S. A., Singh, N., Jeyarajah, A. R., Oram, D. H., Jacobs, I. J., Shepherd, J. H. and Reznek, R. H., 2005. Diagnostic performance of nanoparticle-enhanced magnetic resonance imaging in the diagnosis of lymph node metastases in patients with endometrial and cervical cancer. J Clin Oncol. 23, 2813-2821.
Rosi, N. L. and Mirkin, C. A., 2005. Nanostructures in biodiagnostics. Chem. Rev. 105, 1547-1562.
Rabin O., Manuel Perez J., Grimm J., Wojtkiewicz G., Weissleder R., 2006. An X-ray computed tomography imaging agent based on long circulating bismuthsulphide nanoparticles. Nat. Mater. 5, 118–22.
R. Ivkov., S. J. DeNardo., W. Daum., A. R. Foreman, R. C. Goldstein, V. S. Nemkov, G. L. De Nardo., 2005. Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer. Clin Cancer Res. 11,7093s-7103s
Schellenberger, E. A., Bogdanov, A., Jr., Hogemann, D., Tait, J., Weissleder, R. and Josephson, L., 2002. Annexin V-CLIO: a nanoparticle for detecting apoptosis by MRI. Mol Imaging. 1, 102-107.
Simon, H. U., Haj-Yehia, A. and Levi-Schaffer, F., 2000. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis. 5, 415-418.
Sokolov, K., Aaron, J., Hsu, B., Nida, D., Gillenwater, A., Follen, M., MacAulay, C., Adler-Storthz, K., Korgel, B., Descour, M., Pasqualini, R., Arap, W., Lam, W. and Richards-Kortum, R., 2003. Optical systems for in vivo molecular imaging of cancer. Technol Cancer Res Treat. 2, 491-504.
Sau TK., Pal A., Pal T., 2001. Size regime dependent catalysis by gold nanoparticles for the reduction of eosin. J Phys Chem B. 105, 9266–9272
S. Sun., S. Anders., H. F. Hamann., J. U. Thiele., J. F. Baglin., T. Thomson., E. E. Fullerton., C. B. Murray and B. D. Terris., 2002. Polymer mediated self-assembly of magnetic nanoparticles. J. Amer. Chem. Soc. 124, 2884–2885.
Shouheng Sun., C. B. Murray.,1 Dieter Weller., Liesl Folks., Andreas Moser., 2000. Monodisperse FePt-nps and Ferromagnetic FePt Nanocrystal Superlattices. Science. 287, 1989
Tsao, M. S., Grisham, J. W. and Nelson, K. G., 1985. Clonal analysis of tumorigenicity and paratumorigenic phenotypes in rat liver epithelial cells chemically transformed in vitro. Cancer Res. 45, 5139-5144.
Weissleder, R., Elizondo, G., Wittenberg, J., Rabito, C. A., Bengele, H. H. and Josephson, L., 1990. Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology. 175, 489-493.
W. H. Buckingham., M. Domanus., S. Hetzel., G. Kunkel and J. Storhoff., 2004. Direct detection of bacterial genomic DNA using gold Nanoparticle probes. Proc. 26th Annual Int. Conf. IEEE EMBS. 1953–1955.
Weissleder, R., Lee, A. S., Khaw, B. A., Shen, T. and Brady, T. J., 1992. Antimyosin-labeled monocrystalline iron oxide allows detection of myocardial infarct: MR antibody imaging. Radiology. 182, 381-385.
Whitesides, G. M., 2003. The 'right' size in nanobiotechnology. Nat Biotechnol. 21, 1161-1165.
X. Yang., C. Liu., J. Ahner., J. Yu., T. Klemmer., E. Johns., D. Weller., 2004. Fabrication of FePt-nps for self-organized magnetic array. J. Vac. Sci. Technol., B , 22, 31.
Yasumura Y., Kawakita M., 1963. "The research for the SV40 by means of tissue culture technique. Nippon Rinsho 21 (6): 1201–1219.
Yarden, Y. and Sliwkowski, M. X., 2001. Untangling the ErbB signaling network. Nat Rev Mol Cell Biol. 2, 127-137.
Yoo JS, 1998. Selective gas-phase oxidation at oxide nanoparticles on microporous materials., Springer Science Business Media Catal Today. 41,409–432
Young-Wook Jun., Jung-wook Seo and Jinwoo Cheon., 2008. Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Accounts Chem. Res. 41 (2), 179-189
Zhou, X. D., Tang, Z. Y., Yang, B. H., Lin, Z. Y., Ma, Z. C., Ye, S. L., Wu, Z. Q., Fan, J., Qin, L. X. and Zheng, B. H., 2001. Experience of 1000 patients who underwent hepatectomy for small hepatocellular carcinoma. Cancer. 91, 1479-1486.