跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/10 17:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱冠豪
研究生(外文):Kuan-Hao Chiu
論文名稱:應用微分再生核方法於多層疊合彈性與壓電材料板靜力分析
論文名稱(外文):A Differential Reproducing Kernel Particle Method for the Static Analysis of Multilayered Elastic and Piezoelectric Plates
指導教授:吳致平
指導教授(外文):Chih-Ping Wu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系碩博士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:62
中文關鍵詞:無網格方法適點方法再生核靜力分析彎矩壓電材料板
外文關鍵詞:Point collocationMeshless methodsStaticBendingPiezoelectric platesReproducing kernels
相關次數:
  • 被引用被引用:0
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
本文應用微分再生核(DRKP)方法於簡支承多層疊合彈性與壓電材料板之靜力分析。有別於傳統文獻中之再生核方法,直接以近似形狀函數進行微分運算來獲得導函數相應之形狀函數;DRKP方法則以基底函數微分再生條件來決定高階導函數之形狀函數。本文應用廣義Hellinger-Reissner能量穩值原理,經由變分推衍程序獲得三維電彈力學Euler-Lagrange方程式和可能的邊界條件。依據DRKP適點方法,求解簡支承多層疊合彈性或壓電材料板受電場和彈性場外載重作用下的靜力行為。結果顯示DRKP方法是一種十分精準並且快速收歛的無網格方法。
A differential reproducing kernel particle (DRKP) method is proposed and developed for the analysis of simply supported, multilayered elastic and piezoelectric plates by following up the consistent concepts of reproducing kernel particle (RKP) method. Unlike the RKP method in which the shape functions for derivatives of the reproducing kernel (RK) approximants are obtained by directly taking the differentiation with respect to the shape functions of the RK approximants, we construct a set of differential reproducing conditions to determine the shape functions for the derivatives of RK approximants. On the basis of the extended Hellinger-Reissner principle, the Euler-Lagrange equations of three-dimensional piezoelectricity and the possible boundary conditions are derived. A point collocation method based on the present DRKP approximations is formulated for the static analysis of simply supported, multilayered elastic and piezoelectric plates under electro-mechanical loads. It is shown that the present DRKP method indeed is a fully meshless approach with excellent accuracy and fast convergence rate.
中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
第一章 緒論 1
1.1 研究動機 1
1.2 本文內容 3
第二章 廣義Hellinger-Reissner能量穩值原理 5
2.1 基本三維電彈力學方程式 5
2.2 Hellinger-Reissner能量函數 6
2.3 三維電彈力學Euler-Lagrange方程式 9
第三章 微分再生核(DRKP)方法 14
3.1 再生核形狀函數 14
3.2 再生核形狀函數的推導 16
3.3 加權函數 18
第四章 應用問題解析 20
4.1 無因次化 20
4.2 雙傅利葉級數方法展開 21
第五章 數值範例與綜合討論 25
5.1 單層壓電材料板 25
5.2 多層疊合複合材料板 27
5.3 多層疊合壓電材料板 30
第六章 結論 34
參考文獻 35
表5.1 各種壓電材料的彈性係數、壓電係數與介電電容率
等參數值 40
表5.2 單層壓電材料板受側向電位勢之收斂性比較 41
表5.3 多層疊合複合材料板[00/900/00]外表面受正向載重之
收斂性比較 42
表5.4 各種寬厚比之多層疊合複合材料板[00/900/00]外表面
受正向載重收斂性比較 43
表5.5 多層疊合壓電材料板受彈性場外載重作用之收斂性
比較 44
表5.6 多層疊合壓電材料板受電位勢作用之收斂性比較 45
表5.7 多層疊合壓電材料板受電位移作用之收斂性比較 46
圖1.1 複合層板之幾何形狀與正交座標示意圖 47
圖5.1 多層疊合壓電材料板之疊層排序與廣域座標示意圖 48
圖5.2 疊序[00/900/00]複合材料層板受正向載重作用各變數
沿厚度方向之變化圖 49
圖5.3 多層疊合壓電材料板受上下表面正向載重作用各變
數沿厚度方向之變化圖 53
圖5.4 多層疊合壓電材料板受上下表面電位勢作用各變數
沿厚度方向之變化圖 56
圖5.5 多層疊合壓電材料板受上下表面電位移作用各變數
沿厚度方向之變化圖 59
自述 62
Atluri, S.N.; Cho, J.Y.; Kim, H.G. : Analysis of thin beams, using the meshless local Petrov-Galerkin method, with generalized moving least squares interpolations. Comput. Mech., vol. 24, pp. 334_347, 1999.
Atluri, S.N.; Zhu, T. : A new meshless local Petro-Galerkin (MLPG) approach in computational mechanics. Comput. Mech., vol. 22, pp. 117_127, 1998.
Atluri, S.N.; Zhu, T. : The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics. Comput. Mech., vol. 25, pp. 169_179, 2000a.
Atluri, S.N.; Zhu, T. : New concepts in meshless methods. Int. J. Numer. Meth. Engng., vol. 47, pp. 537_556, 2000b.
Aluru, N.R. : A point collocation method based on reproducing kernel approximations. Int. J. Numer. Meth. Engng., vol. 47, pp. 1083_1121, 2000.
Ballhause, D.; D’Ottavio, M.; , B.; Carrera, E. : A unified formulation to assess multilayered theories for piezoelectric plates. Comput. & Struct., vol. 83, pp. 1217_1235, 2005.
Batra, R.C.; Vidoli, S. : Higher-order piezoelectric plate theory derived from a three-dimensional variational principle. AIAA J., vol. 40, pp. 91_104, 2002.
Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P. : Meshless methods: An overview and recent developments. Comput. Methods Appl. Mech. Engrg., vol. 139, pp. 3_47, 1996.
Belytschko, T.; Lu, Y.Y.; Gu, L. : Element-Free Galerkin Methods. Int. J. Numer. Meth. Engng., vol. 37, pp. 229_256, 1994.
Chen, J.S.; Pan, C.; Wu, C.T.; Liu, W.K. : Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput. Methods Appl. Mech. Engrg., vol. 139, pp. 195_227, 1996.
Chen, J.S.; Pan, C.; Roque, C.M.O.L.; Wang, H.P. : Lagrangian reproducing kernel particle method for metal forming analysis. Comput. Mech., vol. 22, pp. 289_307, 1998.
Dube, G.P.; Kapuria S.; Dumir, P.C. : Exact piezothermoelastic solution of simply_supported orthotropic flat panel in cylindrical bending. Int. J. Mech. Sci., vol. 38, pp. 1161_1177, 1996.
Heyliger, P. : Static behavior of laminated elastic/piezoelectric plates. AIAA J., vol. 32, pp. 2481_2484, 1994.
Heyliger, P.; Brooks, S. : Free vibration of piezoelectric laminates in cylindrical bending. Int. J. Solids Struct., vol. 32, pp. 2945_2960, 1995.
Heyliger, P.; Brooks, S. : Exact solutions for laminated piezoelectric plates in cylindrical bending. J. Appl. Mech., vol. 63, pp. 903_910, 1996.
Jonnalagadda, K.D.; Blandford, G.E.; Tauchert, T.R. : Piezothermoelastic composite plate analysis using first-order shear deformation theory. Comput. & Struct., vol. 51, pp. 79_89, 1994.
Khdeir, A.A.; Aldraihem O.J. : Analytical models and solutions of laminated composite piezoelectric plates. Mech. Adv. Mater. Struct., vol. 14, pp. 67_80, 2007.
Lancaster, P.; Salkauakas, K. : Surfaces generated by moving least squares methods. Math. Comput., vol. 37, pp. 141_158, 1981.
Lee, J.S.; Jiang, L.Z. : Exact electroelastic analysis of piezoelectric laminae via state space approach. Int. J. Solids Struct., vol. 33, pp. 977_990, 1996.
Liu, W.K.; Jun, S.; Li, S.; Adee J.; Belytschko, T. : Reproducing kernel particle methods for structural dynamics. Int. J. Numer. Meth. Engng. vol. 38, pp. 1655_1679, 1995.
Liu, W.K.; Jun, S.; Zhang, Y.F. : Reproducing kernel particle methods. Int. J. Numer. Meth. Engng. vol. 20, pp. 1081_1106, 1995.
Lu, Y.Y.; Belytschko, T.; Gu, L. : A new implementation of the element free Galerkin method. Comput. Methods Appl. Mech. Engrg., vol. 113, pp. 397_414, 1994.
Mindlin, R. : High frequency vibrations of piezoelectric crystal plates. Int. J. Solids Struct., vol. 8, pp. 895_906, 1972.
, E.; Idelsohn, S.; Zienkiewicz, O.C.; Taylor, R.L. : A finite point method in computational mechanics_Applications to convective transport and fluid flow. Int. J. Numer. Meth. Engng. vol. 39, pp. 3839_3866, 1996.
Pagano, N.J. : Exact solutions for composites in cylindrical bending. J. Compos. Mater., vol. 3, pp. 398_411, 1969.
Pagano, N.J. : Exact solutions for rectangular bidirectional composites and sandwich plates. J. Compos. Mater., vol. 4, pp. 20_34, 1970.
Pan, E. : Exact solutions magneto-electro-elastic laminates in cylindrical bending. Int. J. Solids Struct., vol. 40, pp. 6859_6876, 2001.
Pan, E.; Heyliger, P.R. : Exact solution for simply supported and multilayered magneto-electro-elastic plates. J. Appl. Mech., vol. 68, pp. 608_618, 2003.
Shu, X. : Free vibration of laminated piezoelectric composite plates based on an accurate theory. Compos. Struct., vol. 67, pp. 375_382, 2005.
Tauchert, T.R. : Piezothermoelastic behavior of a laminate. J. Thermal Stresses, vol. 15, pp. 25_37, 1992.
Tiersten, H.F., Linear Piezoelectric Plate Vibrations, Plenum Press, New York, 1969.
Vel, S.S.; Batra, R.C. : Three-dimensional analytical solution for hybrid multilayered piezoelectric plates. J. Appl. Mech., vol. 67, pp. 558_567, 2000.
Wu, C.P.; Lo, J.Y.; Chao, J.K. : A three-dimensional asymptotic theory of laminated piezoelectric shells. CMC: Comput. Mater. Continua, vol. 2, pp.119_137, 2004.
Wu, C.P.; Lo, J.Y. : An asymptotic theory for dynamic response of laminated piezoelectric shells. Acta Mech., vol. 183, pp. 177_208, 2006.
Wu, C.P.; Syu, Y.S. : Exact solution of functionally graded piezoelectric shells under cylindrical bending. Int. J. Solids Struct., vol. 44, pp. 6450_6472, 2007.
Wu, C.P.; Syu, Y.S.; Lo, J.Y. : Three-dimensional solutions of multilayered piezoelectric hollow cylinders by an asymptotic approach. Int. J. Mech. Sci., vol. 49, pp. 669_689, 2007.
王永明;黃子倫,微分再生核近似法於三維彈性力學上之應用.國立成功大學土木系碩士論文,2002。
王永明;汪神義,複合層板之無網格法分析. 國立成功大學土木系碩士論文,2003。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top