|
[1]Hutter, K.: Order and disorder in granular materials. In:Kinetic and Continuum Theories of Granular and Porous media, 7-29 (1999)
[2]Wang, Y., Hutter, K.: Granular material theories revisited. In : Geomorphological Fluid Mechanics, 79-107 (2001)
[3]Hutter, K.: Order and disorder in granular materials. In:Kinetic and Continuum Theories of Granular and Porous media, 1-65 (1999)
[4]潘國樑:環境地質與防災科技,地景企業股份有限公司 (2005)
[5]Campbell.: Computer simulation of rapid granular flows. In:Proc. 10th National Congr. (1986)
[6]Tabor, D.: Gases, Liquids and solids and other states of matter. 3rd ed. Cambridge University press. (1993)
[7]Goodman, MA., Cowin, SC.: A continuum theory for granular materials. Archive for Rational Mechanics and Analysis. 44, 249-266. (1972)
[8]Fang, C., Wang, Y., Hutter, K.: A thermo-mechanical continuum theory with internal length for cohesionless granular materials. Part I. A class of constitutive models. Continuum Mechanics and Thermodynamics. 17(8), 545-576 (2006)
[9]Svendsen, B., Hutter, K., Laloui, L.: Constitutive models for granular materials including quasi-static frictional behaviour: toward a thermodynamic theory of plasticity. Continuum Mechanics and Thermodynamics. 4, 263-275 (1999)
[10]Liu, I.: Method of Lagrange multipliers for exploitation of entropy principle. Archive for Rational Mechanicsand Analysis. 46, 131-148 (1972)
[11]Wang, Y., Hutter, K.: Shearing flows in a Goodman-Cowin type granular material-theory and numerical results. Particulate Science and Technology. 17, 97-124 (1999)
[12]Bagnold, RA.: Experiments on a gravity free dispersion of large solid spheres in a Newtonian fluid under shear. Proceeding of the Royal Society of London, Series A. 225, 49-63 (1954)
[13]Savage, SB.: Gravity flow of cohesionless granular materials in chutes and channels. Journal of Fluid Mechanics. 92, 53-96 (1979)
[14]Kirchner, N.: Thermodynamically consistent modeling of abrasive granular materials.I. Non-equilibrium theory. Proceedings of the Royal Society of London, Series A. 458, 2153-2176 (2002)
[15]Kirchner, N., Teufel , A.: Thermodynamically consistent modeling of abrasive granular materials.II. Thermodynamic equilibrium and applications to steady shear flows. Proceedings of the Royal Society of London, Series A. 458, 3053-3077 (2002)
[16]Bauer, E., Herle, I.: Stationary states in hypoplasticity. In Constitutive Modelling of Granular Materials. Springer, 167-192 (2000)
[17]Herle, I., Gudehus, G.: Determination of parameters of a hyproplastic constitutive model from properties of grain assemblies. Mechanics of Cohesive-Frictional Materials Vol. 4, issue 5, 461-485 (1999)
[18]Fang, C.: A thero-mechanical continuum theory with internal length of cohesionless granular materials. Ph. D. Thesis, Institute of Mechanics, Darmstadt University of Technology. (2005)
[19]Perng, A.T.H., Capart, H., Chou, H.T.: Granular configurations, motions, and correlations in slow uniform flows driven by an inclined conveyor belt, Gran. Matter 8, 5-17 (2006)
[20]Pudasaini, S., Hutter, K.: Avalancje Dynamics, Springer Verlag, Berlin Heidelberg. (2007)
[21]Eringen AC, Kadafar CB.: Polar field theories. In Continuum Physics IV, Eringen AC (ed.). Academic Press: New York. (1976)
[22]Hutter, K., Wang, Y.: Phenomenological thermodynamics and entropy principle. In: Entropy (Greven, A., Keller, G., Warnecke, G., eds.), 1st ed., Princeton University Press, 57-77 (2003)
[23]Müller, I.: Thermodynamics. Pitman: London. (1985)
[24]Wilmanski, K.: Porous Media at Finite Strains. The new model with the balance equation of porosity, Arch. Mech. 48, Nr. 4, 591-628 (1996)
|